CS623: Introduction to Computing with Neural Nets *(lecture-13)*

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Hopfield Net: an o(n²) algorithm

Consider the energy expression

$$E = - [w_{12} x_1 x_2 + w_{13} x_1 x_3 + \dots + w_{1n} x_1 x_n + w_{23} x_2 x_3 + w_{24} x_2 x_4 + \dots + w_{2n} x_2 x_n \vdots + w_{(n-1)n} x_{(n-1)} x_n]$$

- E has [n(n-1)]/2 terms
- Nature of each term
 - $-w_{ii}$ is a real number
 - $-x_i$ and x_j are each +1 or -1

No. of steps taken to reach stability

• $E_{gap} = E_{high} - E_{low}$

Analysis of the weights and consequent E_{high} and E_{low}

W_{il} is any weight with upper and lower bounds as *W_{max}* and *W_{min}* respectively. Suppose

$$\begin{split} w_{min} &\leq w_{ij} \leq w_{max} \\ w_{max} \geq w_{min} \\ \bullet \text{ Case 1: } w_{max} \geq 0, \ w_{min} \geq 0 \\ E_{high} &= (1/2) \ ^* w_{max} \ ^* n \ ^* (n-1) \\ E_{low} &= -(1/2) \ ^* w_{max} \ ^* n \ ^* (n-1) \end{split}$$

Continuation of analysis of E_{high} and E_{low}

• Case 2:
$$w_{min} < 0$$
, $w_{max} < 0$
 $E_{high} = (1/2) * w_{min} * n * (n-1)$
 $E_{low} = -(1/2) * w_{min} * n * (n-1)$

• Case 3: $w_{max} > 0$, $w_{min} < 0$ $E_{high} = (1/2) * max(|w_{max}|, |w_{min}|) * n*(n-1)$ $E_{low} = -(1/2) * max(|w_{max}|, |w_{min}|) * n*(n-1)$

The energy gap

• In general,

To find ΔE_{min}

$$\Delta E_p = (x_p^{initial} - x_p^{final}) * net_p$$

where ΔE_p is the change in energy due to
the p^{th} neuron changing activation.

$$|\Delta E_{p}| = |(x_{p}^{initial} - x_{p}^{final}) * net_{p}|$$
$$= 2 * |net_{p}|$$
where $net_{p} = \Sigma^{n}_{j=1, j\neq p} w_{pj} x_{j}$

To find ΔE_{min}

- [Σⁿ_{j=1, j≠p} w_{pj}x_j]_{min} is determined by the precision of the machine computing it.
- For example, assuming 7 places after the decimal point, the value cannot be lower than 0.0000001 [it can be 0, but that is not of concern to us, since the net will continue in the same state]
- Thus ΔE_{min} is a constant independent of n, determined by the precision of the machine.

Final observation: o(n²)

- It is <u>possible</u> to reach the minimum <u>independent</u> of *n*.
- Hence in the worst case, the number of steps taken to cover the energy gap is less than or equal to

 $[max(|w_{max}|,|w_{min}|) * n * (n-1)] / constant$

Thus stability has to be attained in O(n²) steps

Hopfield Net for Optimization

- Optimization problem
 - Maximizes or minimizes a quantity
- Hopfield net used for optimization
 - Hopfield net and Traveling Salesman Problem
 - Hopfield net and Job Scheduling Problem

The essential idea of the correspondence

- In optimization problems, we have to *minimize* a quantity.
- Hopfield net minimizes the energy
- THIS IS THE CORRESPONDENCE

Hopfield net and Traveling Salesman problem

- We consider the problem for *n*=4 cities
- In the given figure, nodes represent cities and edges represent the paths between the cities with associated distance.

Traveling Salesman Problem

- Goal
 - Come back to the city A, visiting *j* = 2 to *n* (*n* is number of cities) exactly once and minimize the total distance.
- To solve by Hopfield net we need to decide the *architecture*:
 - How many neurons?
 - What are the weights?

Constraints decide the parameters

- For *n* cities and *n* positions, establish city to position correspondence, *i.e*.
 Number of neurons = *n* cities * *n* positions
- 2. Each position can take <u>one and only one</u> city
- 3. Each city can be in exactly one position
- 4. Total distance should be minimum

Architecture

- n * n matrix where rows denote cities and columns denote positions
- cell(i, j) = 1 if and only if ith city is in jth position
- Each cell is a neuron
- n² neurons, O(n⁴) connections

 $pos(\alpha)$

Expressions corresponding to constraints

1. Each city in one and only one position *i.e.* a row has a single 1.

$$E_1 = \frac{A}{2} \sum_{i=1}^n \sum_{\alpha=1}^n \sum_{\beta=1, \beta\neq\alpha}^n x_{i\alpha} x_{i\beta}$$

- Above equation partially ensures each row has a single 1
- $x_{i\alpha}$ is I/O cost at the *cell(i, \alpha)*

- 2. Each position has a single city
- i.e. each column has at most single 1.

$$E_2 = \frac{B}{2} \sum_{\alpha=1}^n \sum_{i=1}^n \sum_{j=1, j\neq i}^n x_{i\alpha} \cdot x_{j\alpha}$$

3. All cities MUST be visited once and only once

 $E_{3} = \frac{C}{2} \left[\left(\sum_{i=1}^{n} \sum_{\alpha=1}^{n} x_{i\alpha} \right) - n \right]^{2}$

- *E*₁, *E*₂, *E*₃ ensure that each row has exactly one 1 and each column has exactly one 1
- If we minimize

 $E_1 + E_2 + E_3$

 Ensures a Hamiltonian circuit on the city graph which is an NP-complete problem.

Constraiant of distance

4. The distance traversed should be minimum

$$E_4 = \frac{D}{2} \left[\sum_{i=1}^n \sum_{j=1, j \neq i}^n d_{ij} \cdot x_{i\alpha} \cdot (x_{j,(\alpha+1)} + x_{j,(\alpha-1)}) \right]$$

 d_{ii} = distance between city *i* and city *j*

• We equate constraint energy:

$$E_{Problem} = E_{network} \qquad (*)$$
Where, $E_{problem} = E_1 + E_2 + E_3 + E_4$
and $E_{network}$ is the well known energy
expression for the Hopfield net

• Find the weights from (*).