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Hopfield Net: an o(n2) algorithm
• Consider the energy expression
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• E has [n(n-1)]/2 terms
• Nature of each term

– wij is a real number
– xi and xj are each +1 or -1



No. of steps taken to reach stability

• Egap = Ehigh - Elow
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Analysis of the weights and 
consequent Ehigh and Elow

• Wil is any weight with upper and lower 
bounds as Wmax and Wmin respectively. 
Suppose

wmin ≤ wij ≤ wmax

wmax > wmin

• Case 1: wmax > 0, wmin > 0
Ehigh = (1/2) * wmax * n * (n-1)
Elow = -(1/2) * wmax * n * (n-1)



Continuation of analysis of Ehigh and 
Elow

• Case 2: wmin < 0, wmax < 0
Ehigh = (1/2) * wmin * n * (n-1)
Elow = -(1/2) * wmin * n * (n-1)

• Case 3: wmax > 0, wmin < 0
Ehigh = (1/2) * max(|wmax|,|wmin|) * n*(n-1)
Elow = -(1/2) * max(|wmax|,|wmin|) * n*(n-1)



The energy gap

• In general,

Ehigh

Elow

Egap = max(|wmax|, |wmin|) * n*(n-1)



To find ΔEmin

ΔEp = (xp
initial - xp

final) * netp
where ΔEp is the change in energy due to 
the pth neuron changing activation.

| ΔEp | = | (xp
initial - xp

final) * netp|
= 2 * | netp|

where netp = Σn
j=1, j≠p wpjxj



To find ΔEmin

• [Σn
j=1, j≠p wpjxj]min is determined by the precision of 

the machine computing it.
• For example, assuming 7 places after the 

decimal point, the value cannot be lower than 
0.0000001 [it can be 0, but that is not of concern 
to us, since the net will continue in the same 
state]

• Thus ΔEmin is a constant independent of n, 
determined by the precision of the machine.



Final observation: o(n2)

• It is possible to reach the minimum 
independent of n.

• Hence in the worst case, the number of 
steps taken to cover the energy gap is less 
than or equal to
[max(|wmax|,|wmin|) * n * (n-1)] / constant

• Thus stability has to be attained in O(n2)
steps



Hopfield Net for Optimization

• Optimization problem
– Maximizes or minimizes a quantity

• Hopfield net used for optimization
– Hopfield net and Traveling Salesman Problem
– Hopfield net and Job Scheduling Problem



The essential idea of the 
correspondence

• In optimization problems, we have to 
minimize a quantity. 

• Hopfield net minimizes the energy
• THIS IS THE CORRESPONDENCE



Hopfield net and Traveling 
Salesman problem

• We consider the problem for n=4 cities
• In the given figure, nodes represent cities 

and edges represent the paths between 
the cities with associated distance.
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Traveling Salesman Problem

• Goal
– Come back to the city A, visiting j = 2 to n (n is 

number of cities) exactly once and minimize 
the total distance.

• To solve by Hopfield net we need to 
decide the architecture:
– How many neurons?
– What are the weights?



Constraints decide the parameters

1. For n cities and n positions, establish city 
to position correspondence, i.e.

Number of neurons = n cities * n positions
2. Each position can take one and only one

city
3. Each city can be in exactly one position
4. Total distance should be minimum



Architecture
• n * n matrix where 

rows denote cities and 
columns denote 
positions

• cell(i, j) = 1 if and only 
if ith city is in jth position

• Each cell is a neuron
• n2 neurons, O(n4) 

connections

pos(α)

city(i)



Expressions corresponding to 
constraints

1. Each city in one and only one position i.e. a 
row has a single 1.

• Above equation partially ensures each row has 
a single 1

• xiα is I/O cost at the cell(i, α)
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Expressions corresponding to 
constraints (contd.)

2. Each position has a single city
i.e. each column has at most single 1.
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Expressions corresponding to 
constraints (contd.)

3. All cities MUST be visited once and only once
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Expressions corresponding to 
constraints (contd.)

• E1, E2, E3 ensure that each row has 
exactly one 1 and each column has 
exactly one 1

• If we minimize 
E1 + E2 + E3

• Ensures a Hamiltonian circuit on the city 
graph which is an NP-complete problem.



Constraiant of distance

4. The distance traversed should be minimum
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dij = distance between city i and city j



Expressions corresponding to 
constraints (contd.)

• We equate constraint energy:
EProblem = Enetwork (*)

Where, Eproblem= E1+E2+E3+E4

and Enetwork is the well known energy 
expression for the Hopfield net

• Find the weights from (*).
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