CS623: Introduction to Computing with Neural Nets *(lecture-15)*

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Finding weights for Hopfield Net applied to TSP

- Alternate and more convenient *E*_{problem}
- $E_P = E_1 + E_2$

where

 E_1 is the equation for *n* cities, each city in one position and each position with one city.

 E_2 is the equation for distance

Expressions for E_1 and E_2

$$E_1 = \frac{A}{2} \left[\sum_{\alpha=1}^n \left(\sum_{i=1}^n x_{i\alpha} - 1 \right)^2 + \sum_{i=1}^n \left(\sum_{\alpha=1}^n x_{i\alpha} - 1 \right)^2 \right]$$

$$E_2 = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \sum_{\alpha=1}^n d_{ij} \cdot x_{i\alpha} \cdot (x_{j,\alpha+1} + x_{j,\alpha-1})$$

Explanatory example

Fig. 1 shows two possible directions in which tour can take place

		pos –		
		1	2	3
city	1	x ₁₁	x ₁₂	X ₁₃
↓ ↓	2	X ₂₁	x ₂₂	x ₂₃
	3	x ₃₁	X ₃₂	х ₃₃

For the matrix alongside, $x_{i\alpha} = 1$, if and only if, ith city is in position α

Expressions of Energy

$$E_{problem} = E_{1} + E_{2}$$

$$E_{1} = \frac{A}{2} \left[\left(x_{11} + x_{12} + x_{13} - 1 \right)^{2} + \left(x_{21} + x_{22} + x_{23} - 1 \right)^{2} + \left(x_{31} + x_{32} + x_{33} - 1 \right)^{2} + \left(x_{11} + x_{21} + x_{31} - 1 \right)^{2} + \left(x_{12} + x_{22} + x_{32} - 1 \right)^{2} + \left(x_{12} + x_{22} + x_{32} - 1 \right)^{2} + \left(x_{13} + x_{23} + x_{33} - 1 \right)^{2} \right]$$

Expressions (contd.)

$$E_{2} = \frac{1}{2} \left[d_{12} x_{11} (x_{22} + x_{23}) + d_{12} x_{12} (x_{23} + x_{21}) + d_{12} x_{13} (x_{21} + x_{22}) + d_{13} x_{11} (x_{32} + x_{33}) + d_{13} x_{12} (x_{33} + x_{31}) + d_{13} x_{13} (x_{31} + x_{32}) \dots \right]$$

$$E_{network} = -[w_{11,12}x_{11}x_{12} + w_{11,13}x_{11}x_{13} + w_{12,13}x_{12}x_{13} + w_{11,21}x_{11}x_{21} + w_{11,22}x_{11}x_{22} + w_{11,23}x_{11}x_{23} + w_{11,31}x_{11}x_{31} + w_{11,32}x_{11}x_{32} + w_{11,33}x_{11}x_{33}...]$$

Find row weight

- To find, $w_{11,12}$ = -(co-efficient of $x_{11}x_{12}$) in E_{network}
- Search $a_{11}a_{12}$ in $E_{problem}$

$$w_{11,12} = -A$$
 ...from E_1 . E_2 cannot contribute

Find column weight

To find, w_{11,21}

= -(co-efficient of x₁₁x₂₁) in E_{network}

Search co-efficient of x₁₁x₂₁ in E_{problem}

$$W_{11,21} = -A$$
 ... from E_1 . E_2 cannot contribute

Find Cross weights

- To find, $w_{11,22}$ = -(co-efficient of $x_{11}x_{22}$)
- Search $x_{11}x_{22}$ from $E_{problem.} E_1$ cannot contribute
- Co-eff. of $x_{11}x_{22}$ in E_2 $(d_{12} + d_{21})/2$

Therefore, $w_{11,22} = -((d_{12} + d_{21})/2)$

Find Cross weights

- To find, $W_{11,33}$ = -(co-efficient of $x_{11}x_{33}$)
- Search for $x_{11}x_{33}$ in $E_{problem}$ $W_{11,33} = -((d_{13} + d_{31})/2)$

Summary

- Row weights = -A
- Column weights = -A
- Cross weights =

 -[(d_{ij} + d_{ji})/2], j = i ± 1
 0, j>i+1 or j<(i-1)s
- Threshold = -2A

Interpretation of wts and thresholds

- Row wt. being negative causes the winner neuron to suppress others: one 1 per row.
- Column wt. being negative causes the winner neuron to suppress others: one 1 per column.
- Threshold being -2A makes it possible to for activations to be positive sometimes.
- For non-neighbour row and column (*j*>*i*+1 or *j*<*i*-1) neurons, the wt is 0; this is because non-neighbour cities should not influence the activations of corresponding neurons.
- Cross wts when non-zero are proportional to negative of the distance; this ensures discouraging cities with large distances between them to be neighbours.

Can we compare $E_{problem}$ and $E_{network}$?

$$E_1 = \frac{A}{2} \left[\sum_{\alpha=1}^n \left(\sum_{i=1}^n x_{i\alpha} - 1 \right)^2 + \sum_{i=1}^n \left(\sum_{\alpha=1}^n x_{i\alpha} - 1 \right)^2 \right]$$

 E_1 has square terms $(x_{i\alpha})^2$ which evaluate to 1/0. It also has constants again evaluating to 1.

Sum of square terms and constants

<=*n* X (1+1+...*n* times +1) + *n* X (1+1+...*n* times +1) =2*n*(*n*+1)

Additionally, there are linear terms of the form $const^* x_{i\alpha}$ which will produce the thresholds of neurons by equating with the linear terms in $E_{network}$.

Can we compare E_{problem} and E_{network}? (contd.)

$$E_{2} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{\alpha=1}^{n} d_{ij} \cdot x_{i\alpha} \cdot (x_{j,\alpha+1} + x_{j,\alpha-1})$$

This expressions can contribute only product terms which are equated with the product terms in $E_{network}$

Can we compare $E_{problem}$ and $E_{network}$ (contd)

- So, yes, we CAN compare $E_{problem}$ and $E_{network}$.
- $E_{problem} \leq E_{network} + 2n(n+1)$
- When the weight and threshold values are chosen by the described procedure, minimizing $E_{network}$ implies minimizing $E_{problem}$

Principal Component Analysis

Purpose and methodology

- Detect correlations in multivariate data
- Given *P* variables in the multivariate data, introduce *P* principal components *Z*₁, *Z*₂, *Z*₃, ...,*Z*_P
- Find those components which are responsible for the biggest variation
- Retain them only and thereby reduce the dimensionality of the problem

Example: IRIS Data (only 3 values out of 150)

ID	Petal Length (a ₁)	Petal Width (a ₂)	Sepal Length (a ₃)	Sepal Width (a ₄)	Classific ation
001	5.1	3.5	1.4	0.2	Iris- setosa
051	7.0	3.2	4.7	1.4,	Iris- versicol or
101	6.3	3.3	6.0	2.5	Iris- virginica

Training and Testing Data

- Training: 80% of the data; 40 from each class: total 120
- Testing: Remaining 30
- Do we have to consider all the 4 attributes for classification?
- Do we have to have 4 neurons in the input layer?
- Less neurons in the input layer may reduce the overall size of the n/w and thereby reduce training time
- It will also likely increase the generalization performance (Occam Razor Hypothesis: A simpler hypothesis (i.e., the neural net) generalizes better

The multivariate data

Some preliminaries

- Sample mean vector: $\langle \mu_1, \mu_2, \mu_3, ..., \mu_p \rangle$ For the *i*th variable: $\mu_i = (\Sigma^n_{j=1} x_{ij})/n$
- Variance for the *i*th variable:

 $\sigma_i^2 = [\Sigma_{j=1}^n (x_{ij} - \mu_i)^2]/[n-1]$

Sample covariance:

 $C_{ab} = [\Sigma^{n}_{j=1} ((x_{aj} - \mu_{a})(x_{bj} - \mu_{b}))]/[n-1]$ This measures the correlation in the data In fact, the correlation coefficient

 $r_{ab} = c_{ab} / \sigma_a \sigma_b$

Standardize the variables

• For each variable x_{ij} Replace the values by $y_{ij} = (x_{ij} - \mu_i)/\sigma_i^2$

Correlation Matrix

$$R = \begin{bmatrix} 1 & r_{12} & r_{13} \dots & r_{1p} \\ r_{21} & 1 & r_{23} \dots & r_{2p} \\ & \vdots & & \\ r_{p1} & r_{p2} & r_{p3} \dots & 1 \end{bmatrix}$$