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Boltzmann Machine

Hopfield net

Probabilistic neurons

Energy expression = -2, 2., W; X; X;
where x; = activation of /" neuron
Used for optimization

Central concern is to ensure global
minimum

Based on simulated annealing



Comparative Remarks

Feed forward | Hopfield net Boltzmann

n/w with BP m/c
Mapping Associative Constraint
device: Memory satisfaction.
(I/p pattern --> + (Mapping +
o/p pattern), i.e. | Optimization Optimization
Classification | device device)
Minimizes total |Energy Entropy
sum square (Kullback—
error Leibler

divergence)



http://en.wikipedia.org/wiki/Kullback-Leibler_divergence
http://en.wikipedia.org/wiki/Kullback-Leibler_divergence
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Comparative Remarks (contd.)

Feed forward Hopfield net |Boltzmann m/c
n/w with BP
Deterministic Deterministic Probabillistic
neurons neurons neurons
Learning to Pattern Probability
associate i/p Distribution
with o/p i.e.

equivalent to a
function




Comparative Remarks (contd.)

Feed forward
n/w with BP

Hopfield net

Boltzmann m/c

Can get stuck In

. ocal minimum

Can come out

local minimum | possible of local
(Greedy minimum
approach)

Credit/blame Activation Probabllity and
assignment product activation
(consistent with | (consistent with | product

Hebbian rule)

Hebbian rule)

(consistent with
Hebbian rule)




Theory of Boltzmann m/c

e For the m/c the computation means the
following:

At any time instant, make the state of the
k! neuron (s,) equal to 1, with probability:
1/(1 +exp(-AE, /1))

AE, = change In energy of the m/c when the

ki neuron changes state

T = temperature which is a parameter of the
m/c



Theory of Boltzmann m/c (contd.)

P(s,=1) P(s, = 1) =
. = 1) =

1/(1+ exp(-AEK/ T))

sing T

0 AE,=a
k




Theory of Boltzmann m/c (contd.)

AE, = EX; i — EXitial
— (Sinitialk_ Sﬁnalk) * Z#kajS-
We observe:
1. The higher the temperature, lower is P(S,=1)
2. at T =infinity, P(S,=1) = P(S,=0) = 0.5, equal
chance of being in state O or 1. Completely random
behavior

3. If T =20, then P(S,=1) > 1
4. The derivative is proportional P(S,=1)*(1 - P(S,=1))



Consequence of the form of
P(S,=1)
P(S,) a exp(-E(S,)) / T
\ Probability Distribution called as
Boltzmann Distribution

v

N - bits

P(S,) is the probability of the state S,

Local “sigmoid” probabilistic behavior leads to global
Boltzmann Distribution behaviour of the n/w



P(S,) a exp(-E(S,) / T




Ratio of state probabillities

 Normalizing,
P (Sa) = (exp ('E (Sa)) / T) / (Zﬁ ¢ all states©XP ('E (S,B)/ T)

P(S,) / P(Sy) = exp -(E(S,) - E(Sp) )/ T



Learning a probability distribution

* Digression: Estimation of a probability
distribution Q by another distribution P

» D =deviation = ) .,/ space QN Q/P

« D >= 0, which is a required property (just
like sum square error >= 0)



To prove D >=0

Lemma: In (1/x) >= (1 - x)
Let, x=1/(1-y)

In(1-y) =-[y+y2/2+y3/3+y¥/4 + ..]



Proof (contd.)

(1—x)=1-1/(1-y)
=-y(1-y)"
=y(1T+y+y?+y°+..)
=-f[y+ty +y +yt+ ]

But, y + y2/2 +y3/3+ .. <sy+y? +y3+ .

Lemma proved.



Proof (contd.)

D= QInQ/P

>= Zover the sample space Q(1 — F/ Q)
=2 (Q-P)
=3y Q-3P
=1-1=0
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