
CS623: Introduction to 
Computing with Neural Nets

(lecture-17)
Pushpak Bhattacharyya

Computer Science and Engineering 
Department
IIT Bombay



Boltzmann Machine

• Hopfield net
• Probabilistic neurons
• Energy expression = -Σi Σj>i wij xi xj

where xi = activation of ith neuron
• Used for optimization
• Central concern is to ensure global 

minimum
• Based on simulated annealing
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Comparative Remarks (contd.)
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Comparative Remarks (contd.)
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Theory of Boltzmann m/c

• For the m/c the computation means the 
following:
At any time instant, make the state of the 
kth neuron (sk) equal to 1, with probability:

1 / (1 + exp(-ΔEk / T))
ΔEk = change in energy of the m/c when the 

kth neuron changes state
T = temperature which is a parameter of the 

m/c



Theory of Boltzmann m/c (contd.)

P(sk = 1)

ΔEk
0

1

P(sk = 1) = 
1 / (1 + exp(-ΔEk / T))

Increasing T

ΔEk = α



Theory of Boltzmann m/c (contd.)

ΔEk = Ek
final – Ek

initial

= (sinitial
k - sfinal

k) * Σj≠kwkjsj

We observe:
1. The higher the temperature, lower is P(Sk=1)
2. at T = infinity, P(Sk=1) = P(Sk=0) = 0.5, equal 

chance of being in state 0 or 1. Completely random 
behavior

3. If T 0, then P(Sk=1) 1
4. The derivative is proportional P(Sk=1)*(1 - P(Sk=1))



Consequence of the form of 
P(Sk=1)

P(Sα) α exp( -E(Sα)) / T

Probability Distribution called as 
Boltzmann Distribution

1 -1 1   -1

N - bits

P(Sα) is the probability of the state Sα

Local “sigmoid” probabilistic behavior leads to global 
Boltzmann Distribution behaviour of the n/w



T

P(Sα) α exp( -E(Sα)) / T

P

E



Ratio of state probabilities

• Normalizing,
P(Sα) = (exp(-E(Sα)) / T) / (∑β є all statesexp(-E(Sβ)/T)

P(Sα) / P(Sβ) = exp -(E(Sα) - E(Sβ) ) / T



Learning a probability distribution

• Digression: Estimation of a probability 
distribution Q by another distribution P

• D = deviation = ∑sample space Qln Q/P
• D >= 0, which is a required property (just 

like sum square error >= 0)



To prove D >= 0

Lemma: ln (1/x) >= (1 - x)

Let, x = 1 / (1 - y)

ln(1 - y) = -[y + y2/2 + y3/3 + y4/4 + …]



Proof (contd.)

(1 – x) = 1 – 1/(1 - y)
= -y(1 - y)-1

= -y(1 + y + y2 + y3 + …)
= -[y + y2 + y3 + y4 + …]

But, y + y2/2 + y3/3 + …<= y + y2 + y3 + …

Lemma proved.



Proof (contd.)

D = ∑ Q ln Q / P
>= ∑over the sample space Q(1 – P/Q)
= ∑ (Q - P)
= ∑ Q - ∑P
= 1 – 1 = 0
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