CS623: Introduction to Computing with Neural Nets (lecture-17)

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Boltzmann Machine

- Hopfield net
- Probabilistic neurons
- Energy expression = $-\sum_{i} \sum_{j>i} w_{ij} x_i x_j$ where x_i = activation of *i*th neuron
- Used for optimization
- Central concern is to ensure global minimum
- Based on simulated annealing

Comparative Remarks

Feed forward n/w with BP	Hopfield net	Boltzmann m/c
Mapping device:	Associative Memory	Constraint satisfaction.
(i/p pattern> o/p pattern), <i>i.e.</i> Classification	+ Optimization device	(Mapping + Optimization device)
Minimizes total sum square error	Energy	Entropy (<u>Kullback–</u> <u>Leibler</u> divergence)

Comparative Remarks (contd.)

Feed forward n/w with BP	Hopfield net	Boltzmann m/c
Deterministic neurons	Deterministic neurons	Probabilistic neurons
Learning to associate i/p with o/p <i>i.e.</i> equivalent to a function	Pattern	Probability Distribution

Comparative Remarks (contd.)

Feed forward n/w with BP	Hopfield net	Boltzmann m/c
Can get stuck in local minimum (Greedy approach)	Local minimum possible	Can come out of local minimum
Credit/blame assignment (consistent with Hebbian rule)	Activation product (consistent with Hebbian rule)	Probability and activation product (consistent with Hebbian rule)

Theory of Boltzmann m/c

• For the m/c the computation means the following:

At any time instant, make the state of the k^{th} neuron (s_k) equal to 1, with probability:

 $1 / (1 + exp(-\Delta E_k / T))$

- ΔE_k = change in energy of the m/c when the k^{th} neuron changes state
- T = temperature which is a parameter of the m/c

Theory of Boltzmann m/c (contd.)

Theory of Boltzmann m/c (contd.)

$$\Delta E_{k} = E^{k}_{\text{final}} - E^{k}_{\text{initial}} = (S^{\text{initial}}_{k} - S^{\text{final}}_{k}) * \Sigma_{j\neq k} W_{kj} S_{j}$$

We observe:

- 1. The higher the temperature, lower is $P(S_k=1)$
- 2. at T = infinity, $P(S_k=1) = P(S_k=0) = 0.5$, equal chance of being in state 0 or 1. Completely random behavior
- 3. If $T \rightarrow 0$, then $P(S_k=1) \rightarrow 1$
- 4. The derivative is proportional $P(S_k=1)^*(1 P(S_k=1))$

 $P(S_{\alpha})$ is the probability of the state S_{α} Local "sigmoid" probabilistic behavior leads to global Boltzmann Distribution behaviour of the n/w

Ratio of state probabilities

• Normalizing,

 $P(S_{\alpha}) = (exp(-E(S_{\alpha})) / T) / (\sum_{\beta \ \epsilon \ all \ states} exp(-E(S_{\beta})/T)$

 $P(S_{\alpha}) / P(S_{\beta}) = exp - (E(S_{\alpha}) - E(S_{\beta})) / T$

Learning a probability distribution

• Digression: Estimation of a probability distribution Q by another distribution P

- $D = \text{deviation} = \sum_{\text{sample space}} Q \ln Q / P$
- D >= 0, which is a required property (just like sum square error >= 0)

To prove $D \ge 0$

Lemma: ln (1/x) >= (1 - x)

Let,
$$x = 1 / (1 - y)$$

 $ln(1 - y) = -[y + y^2/2 + y^3/3 + y^4/4 + \dots]$

Proof (contd.)

$$(1 - x) = 1 - 1/(1 - y)$$

= $-y(1 - y)^{-1}$
= $-y(1 + y + y^{2} + y^{3} + ...)$
= $-[y + y^{2} + y^{3} + y^{4} + ...]$
But, $y + y^{2}/2 + y^{3}/3 + ... <= y + y^{2} + y^{3} + ...$

Lemma proved.

Proof (contd.)

$D = \sum Q \ln Q / P$ >= $\sum_{over the sample space} Q(1 - P/Q)$ = $\sum (Q - P)$ = $\sum Q - \sum P$ = 1 - 1 = 0