CS623: Introduction to Computing with Neural Nets *(lecture-19)*

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Illustration of the basic idea of Boltzmann Machine

- To learn the identity function
- The setting is probabilistic, x = 1 or

x = -1, with uniform probability, *i.e.*,

$$- P(x=1) = 0.5, P(x=-1) = 0.5$$

- For, x=1, y=1 with P=0.9
- For, x=-1, y=-1 with P=0.9

Illustration of the basic idea of Boltzmann Machine (contd.)

- Let α = output neuron states
 - β = input neuron states
 - $P_{\alpha|\beta}$ = observed probability distribution
 - $Q_{\alpha|\beta}$ = desired probability distribution
 - Q_{β} = probability distribution on input states β

Illustration of the basic idea of Boltzmann Machine (contd.)

- The divergence D is given as:
- $D = \sum_{\alpha} \sum_{\beta} Q_{\alpha|\beta} Q_{\beta} \ln Q_{\alpha|\beta} / P_{\alpha|\beta}$ called KL divergence formula

Gradient descent for finding the weight change rule

 $P(S_{\alpha}) \alpha \exp(-E(S_{\alpha})/T)$

 $P(S_{\alpha}) = (exp(-E(S_{\alpha})/T)) / (\sum_{\beta \in all \ states} exp(-E(S_{\beta})/T))$

 $ln(P(S_{\alpha})) = (-E(S_{\alpha})/T) - ln Z$

 $D = \sum_{\alpha} \sum_{\beta} Q_{\alpha|\beta} Q_{\beta} \ln \left(Q_{\alpha|\beta} / P_{\alpha|\beta} \right)$

 $\Delta w_{ij} = \eta \ (\delta D / \delta w_{ij}); gradient descent$

Calculating gradient: 1/2

$$\begin{split} \delta D \ / \ \delta w_{ij} &= \delta / \delta w_{ij} \left[\sum_{\alpha} \sum_{\beta} Q_{\alpha|\beta} Q_{\beta} \ln \left(Q_{\alpha|\beta} \ / \ P_{\alpha|\beta} \right) \right] \\ &= \delta / \delta w_{ij} \left[\sum_{\alpha} \sum_{\beta} Q_{\alpha|\beta} Q_{\beta} \ln Q_{\alpha|\beta} \right] \\ &- \sum_{\alpha} \sum_{\beta} Q_{\alpha|\beta} Q_{\beta} \ln P_{\alpha|\beta} \right] \end{split}$$

Constant With respect To *w_{ii}*

 $\delta(\ln P_{\alpha|\beta}) / \delta w_{ij} = \delta / \delta w_{ij} [-E(S_{\alpha})/T - \ln Z]$

 $Z = \sum_{\beta} exp(-E(S_{\beta}))/T$

Calculating gradient: 2/2

$$\begin{split} \delta \left[-E(S_{\alpha})/T \right] / \delta w_{ij} &= (-1/T) \ \delta / \delta w_{ij} \left[-\sum_{i} \sum_{j>i} w_{ij} s_{i} s_{j} \right] \\ &= (-1/T) \left[-s_{i} s_{j} \right]_{\alpha} \right] \\ &= (1/T) \left[s_{i} s_{j} \right]_{\alpha} \end{split}$$

 $\delta (\ln Z)/\delta w_{ij} = (1/Z)(\delta Z/\delta w_{ij})$

 $Z = \sum_{\beta} exp(-E(S_{\beta})/T)$

$$\begin{split} \delta Z / \delta w_{ij} &= \sum_{\beta} [exp(-E(S_{\beta})/T) (\delta(-E(S_{\beta}/T)/\delta w_{ij})] \\ &= (1/T) \sum_{\beta} exp(-E(S_{\beta})/T) . s_i s_j |_{\beta} \end{split}$$

Final formula for Δw_{ij}

 $\Delta w_{ij} = \frac{1}{T} \frac{[s_i s_j]_{\alpha} - (1/Z)}{\sum_{\beta} exp(-E(S_{\beta})/T) \cdot s_i s_j]_{\beta}}$ $= [1/T][s_{i}s_{j}]_{\alpha} - \sum_{\beta} P(S_{\beta}).s_{i}s_{j}|_{\beta}]$

Expectation of ith and jth Neurons being on together

Issue of Hidden Neurons

- Boltzmann machines
 - can come with hidden neurons
 - are equivalent to a Markov Random field
 - with hidden neurons are like a Hidden Markov Machines
- Training a Boltzmann machine is equivalent to running the Expectation Maximization Algorithm

Use of Boltzmann machine

- Computer Vision
 - Understanding scene involves what is called "Relaxation Search" which gradually minimizes a cost function with progressive relaxation on constraints
- Boltzmann machine has been found to be slow in the training

– Boltzmann training is NP-hard.

Questions

- Does the Boltzmann machine reach the global minimum? What ensures it?
- Why is simulated annealing applied to Boltzmann machine?
 - local minimum → increase T → n/w runs →gradually reduce T → reach global minimum.
- Understand the effect of varying T
 - Higher T → small difference in energy states ignored, convergence to local minimum fast.