CS623: Introduction to Computing with Neural Nets (lecture-2)

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Recapituation

The human brain

Functional Map of the Brain

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

Step function / Threshold function y = 1 for $\Sigma w_i x_i >= \theta$ =0 otherwise

Perceptron Training Algorithm (PTA)

Preprocessing:

1. The computation law is modified to

 $y = 1 \quad \text{if} \quad \sum w_i x_i > \theta$ $y = 0 \quad \text{if} \quad \sum w_i x_i < \theta$

PTA – preprocessing cont...

2. Absorb θ as a weight

3. Negate all the zero-class examples

Example to demonstrate preprocessing

- OR perceptron
- 1-class <1,1>, <1,0>, <0,1> 0-class <0,0>

Augmented x vectors:-1-class <-1,1,1> , <-1,1,0> , <-1,0,1> 0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing cont.

Now the vectors are

Perceptron Training Algorithm

- Start with a random value of w ex: <0,0,0...>
- 2. Test for wx_i > 0
 If the test succeeds for i=1,2,...n
 then return w
- 3. Modify w, $w_{next} = w_{prev} + x_{fail}$

Tracing PTA on OR-example

W=<0,0,0> W=<-1,0,1> w=<0,0,1> W=<-1,1,1> w=<0,1,2> W=<1,1,2> W=<0,2,2> w=<1,2,2>

wx₁ fails wx₄ fails wx₂ fails wx₁ fails wx₄ fails wx₂ fails wx₄ fails **SUCCESS**

Theorems on PTA

- 1. The process will terminate
- 2. The order of selection of x_i for testing and w_{next} does not matter.

End of recap

Proof of Convergence of PTA

- Perceptron Training Algorithm (PTA)
- Statement:

Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Proof of Convergence of PTA

- Suppose w_n is the weight vector at the nth step of the algorithm.
- At the beginning, the weight vector is w₀
- Go from w_i to w_{i+1} when a vector X_j fails the test $w_i X_j > 0$ and update w_i as $w_{i+1} = w_i + X_j$
- Since Xjs form a linearly separable function,

 $\exists w^* \text{ s.t. } w^*X_i > 0 \forall j$

Proof of Convergence of PTA

Consider the expression

$$G(w_n) = \underline{w}_n \underline{w}^* |w_n|$$

where w_n = weight at nth iteration

• $G(w_n) = |w_n| \cdot |w^*| \cdot \cos \theta$ $|w_n|$

where θ = angle between w_n and w^{*}

- $G(w_n) = |w^*| \cdot \cos \theta$
- $G(w_n) \le |w^*|$ (as $-1 \le \cos \theta \le 1$)

Behavior of Numerator of G

$$\begin{split} & w_{n} \cdot w^{*} = (w_{n-1} + X^{n-1}{}_{fail}) \cdot w^{*} \\ &= w_{n-1} \cdot w^{*} + X^{n-1}{}_{fail} \cdot w^{*} \\ &= (w_{n-2} + X^{n-2}{}_{fail}) \cdot w^{*} + X^{n-1}{}_{fail} \cdot w^{*} \dots \\ &= w_{0} \cdot w^{*} + (X^{0}{}_{fail} + X^{1}{}_{fail} + \dots + X^{n-1}{}_{fail}) \cdot w^{*} \\ & w^{*} \cdot X^{i}{}_{fail} \text{ is always positive: note carefully} \end{split}$$

- Suppose |X_j| ≥ δ, where δ is the minimum magnitude.
- Num of $G \ge |w_0 \cdot w^*| + n \delta \cdot |w^*|$
- So, numerator of G grows with n.

Behavior of Denominator of G

•
$$|\mathbf{w}_{n}| = \sqrt{w_{n} \cdot w_{n}}$$

= $\sqrt{(w_{n-1} + X^{n-1}_{fail})^{2}}$
= $\sqrt{(w_{n-1})^{2} + 2 \cdot w_{n-1} \cdot X^{n-1}_{fail} + (X^{n-1}_{fail})^{2}}$
 $\leq \sqrt{(w_{n-1})^{2} + (X^{n-1}_{fail})^{2}}$ (as $w_{n-1} \cdot X^{n-1}_{fail}$
 ≤ 0)

$$\leq \sqrt{(W_0)^2 + (X_{fail}^0)^2 + (X_{fail}^1)^2 + \dots + (X_{fail}^{n-1})^2}$$

- $|X_j| \le \rho$ (max magnitude)
- So, Denom $\leq \sqrt{(w_0)^2 + n\rho^2}$

Some Observations

- Numerator of G grows as n
- Denominator of G grows as √ n
 => Numerator grows faster than denominator
- If PTA does not terminate, G(w_n) values will become unbounded.

Some Observations contd.

- But, as |G(w_n)| ≤ |w^{*}| which is finite, this is impossible!
- Hence, PTA has to converge.
- Proof is due to Marvin Minsky.

Convergence of PTA

• Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Study of Linear Separability

 W. X_j = 0 defines a hyperplane in the (n+1) dimension.
 => W vector and X_j vectors are perpendicular to each other.

Linear Separability

Test for Linear Separability (LS)

• Theorem:

A function is linearly separable iff the vectors corresponding to the function do not have a Positive Linear Combination (PLC)

- PLC Both a necessary and sufficient condition.
- X₁, X₂, ..., X_m Vectors of the function
 Y₁, Y₂, ..., Y_m Augmented negated set
- Prepending -1 to the 0-class vector X_i and negating it, gives Y_i

Example (1) - XNOR

- The set {Y_i} has a PLC if ∑ P_i Y_i = 0 , 1 ≤ i ≤ m
 - where each P_i is a non-negative scalar and
 - atleast one $P_i > 0$
- Example : 2 bit even-parity (X-NOR function)

X ₁	<0,0> +	Y ₁	<-1,0,0>
X ₂	<0,1> -	Y ₂	<1,0,-1>
Х ₃	<1,0> -	Y ₃	<1,-1,0>
X ₄	<1,1> +	Y ₄	<-1,1,1>

Example (1) - XNOR

- $P_1[-1 \ 0 \ 0]^T + P_2[1 \ 0 \ -1]^T$ + $P_3[1 \ -1 \ 0]^T + P_4[-1 \ 1 \ 1]^T$ = $[0 \ 0 \ 0]^T$
- All $P_i = 1$ gives the result.
- For Parity function,
 PLC exists => Not linearly separable.

Example (2) – Majority function 3-bit majority function

Y _i
<1 0 0 0>
<1 0 0 -1>
<1 0 -1 0>
<-1 0 1 1>
<1 -1 0 0>
<-1 1 0 1>
<-1 1 1 0>
<-1 1 1 1>

Suppose PLC exists. Equations obtained are:

$$P_1 + P_2 + P_3 - P_4 + P_5 - P_6 - P_7 - P_8 = 0$$

 $-P_5 + P_6 + P_7 + P_8 = 0$

$$-P_3 + P_4 + P_7 + P_8 = 0$$

$$-P_2 + P_4 + P_6 + P_8 = 0$$

- On solving, all P_i will be forced to 0
- 3 bit majority function => No PLC => LS

Limitations of perceptron

- Non-linear separability is all pervading
- Single perceptron does not have enough computing power
- Eg: XOR cannot be computed by perceptron

Solutions

- Tolerate error (Ex: *pocket algorithm* used by connectionist expert systems).
 - Try to get the best possible hyperplane using only perceptrons
- Use higher dimension surfaces Ex: Degree - 2 surfaces like parabola
- Use layered network

Example - XOR $\theta = 0.5$ w₂=1 $W_1 = 1$ $\mathbf{X}_1 \mathbf{X}_2$ 1 X_1X_2 1.5 -1 -1 1.5 **X**₂ X₁

Multi Layer Perceptron (MLP)

- Question:- How to find weights for the hidden layers when no target output is available?
- Credit assignment problem to be solved by "Gradient Descent"

Assignment

- Fine by solving linear inequalities the perceptron to solve the majority Boolean Function.
- Then feed it to your implementation of the perceptron training algorithm and study its behaviour.
- Download SNNS and WEKA packages and try your hand at the perceptron algorithm built in the packages.