CS623: Introduction to Computing with Neural Nets *(lecture-20)*

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Self Organization

Biological Motivation

Maslow's hierarchy

Mapping of Brain

Left Brain – Logic, Reasoning, Verbal ability Right Brain – Emotion, Creativity

Maps in the brain. Limbs are mapped to brain

Character Recognition: A, A, A, A, A

"

Kohonen Net

- Self Organization or Kohonen network fires a group of neurons instead of a single one.
- The group "some how" produces a "picture" of the cluster.
- Fundamentally SOM is competitive learning.
- But weight changes are incorporated on a neighborhood.
- Find the winner neuron, apply weight change for the winner and its "neighbors".

Neurons on the contour are the "neighborhood" neurons.

Weight change rule for SOM

Neighbórhood: function of n

Learning rate: function of n

 $\delta(n)$ is a decreasing function of n $\eta(n)$ learning rate is also a decreasing function of n $0 < \eta(n) < \eta(n-1) <=1$

Pictorially

Clusters:

Clustering Algos

- 1. Competitive learning
- 2. K means clustering
- 3. Counter Propagation

K – means clustering

K o/p neurons are required from the knowledge of *K* clusters being present.

n neurons

Steps

- Initialize the weights randomly.
 I^k is the vector presented at kth iteration.
- 3. Find W* such that $|w^* - I^k| < |w_j - I^k|$ for all j 4. make W*(new) = W* (old) + $\eta(I^k - w^*)$.

 $5 K \leftarrow K + 1$; if go to 3.

6. Go to 2 until the error is below a threshold.

Two part assignment

Supervised

Cluster Discovery By SOM/Kohenen Net

NeoCognitron (Fukusima et. al.)

Hierarchical feature extraction based

Corresponding Netowork

S-Layer

- Each S-layer in the neocognitron is intended for extraction of features from corresponding stage of hierarchy.
- Particular S-layers are formed by distinct number of S-planes. Number of these Splanes depends on the number of extracted features.

V-Layer

- Each V-layer in the neocognitron is intended for obtaining of informations about average activity in previous Clayer (or input layer).
- Particular V-layers are always formed by only one V-plane.

C-Layer

- Each C-layer in the neocognitron is intended for ensuring of tolerance of shifts of features extracted in previous Slayer.
- Particular C-layers are formed by distinct number of C-planes. Their number depends on the number of features extracted in the previous S-layer.