#### CS623: Introduction to Computing with Neural Nets *(lecture-3)*

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

### Computational Capacity of Perceptrons

#### Separating plane

•  $\sum w_i x_i = \theta$  defines a linear surface in the  $(W,\theta)$  space, where  $W = \langle w_1, w_2, w_3, \dots, w_n \rangle$  is an n-dimensional vector.

 $\mathbf{X}_1$ 

 A point in this (W,θ) space defines a perceptron.



#### **The Simplest Perceptron**



Depending on different values of w and  $\theta$ , four different functions are possible

#### Simplest perceptron contd.



#### Counting the #functions for the simplest perceptron

 For the simplest perceptron, the equation is w.x=θ.

Substituting x=0 and x=1, we get  $\theta$ =0 and w= $\theta$ . These two lines intersect to \_\_\_\_\_\_ form four regions, which  $\overset{R3}{\checkmark}$ correspond to the four functions.



#### **Fundamental Observation**

 The number of TFs computable by a perceptron is equal to the number of regions produced by 2<sup>n</sup> hyper-planes, obtained by plugging in the values <x<sub>1</sub>,x<sub>2</sub>,x<sub>3</sub>,...,x<sub>n</sub>> in the equation

$$\sum_{i=1}^{n} \mathbf{W}_i \mathbf{X}_i = \mathbf{\Theta}$$

 Intuition: How many lines are produced by the existing planes on the new plane? How many regions are produced on the new plane by these lines?

#### The geometrical observation

 Problem: m linear surfaces called hyperplanes (each hyper-plane is of (d-1)-dim) in d-dim, then what is the max. no. of regions produced by their intersection?
 i.e. R<sub>m,d</sub> = ?

#### Concept forming examples

 Max #regions formed by m lines in 2-dim is R<sub>m,2</sub> = R<sub>m-1,2</sub> + ? The new line intersects m-1 lines at m-1 points and forms m new regions.

 $R_{m,2} = R_{m-1,2} + m$ ,  $R_{1,2} = 2$ 

 Max #regions formed by m planes in 3 dimensions is

$$R_{m,3} = R_{m-1,3} + R_{m-1,2}$$
,  $R_{1,3} = 2$ 

# Concept forming examples contd..

 Max #regions formed by m planes in 4 dimensions is

 $R_{m,4} = R_{m-1,4} + R_{m-1,3}$ ,  $R_{1,4} = 2$ 

 $R_{m,d} = R_{m-1,d} + R_{m-1,d-1}$ Subject to  $R_{1,d} = 2$  $R_{m,1} = 2$ 

#### **General Equation**

$$\mathbf{R}_{m,d} = \mathbf{R}_{m-1,d} + \mathbf{R}_{m-1,d-1}$$

Subject to  $R_{1,d} = 2$  $R_{m,1} = 2$ 

All the hyperplanes pass through the origin.

#### Method of Observation for lines in 2-D

$$\begin{aligned} R_{m,2} &= R_{m-1,2} + m \\ R_{m-1,2} &= R_{m-2,2} + m-1 \\ R_{m-2,2} &= R_{m-3,2} + m-2 \\ &\vdots \\ R_{2,2} &= R_{1,2} + 2 \end{aligned}$$

Therefore, 
$$R_{m,2} = R_{m-1,2} + m$$
  
= 2 + m + (m-1) + (m-2) + ...+ 2  
= 1 + (1 + 2 + 3 + ... + m)  
= 1 + [m(m+1)]/2

#### Method of generating function

$$\begin{split} R_{m,2} &= R_{m-1,2} + m \\ f(x) &= R_{1,2} \, x + R_{2,2} \, x^2 + R_{3,2} \, x^3 + \ldots + R_{i,2} \, x^m \\ &\quad + \ldots + \alpha -> Eq1 \\ xf(x) &= R_{1,2} \, x^2 + R_{2,2} \, x^3 + R_{3,2} \, x^4 + \ldots + \\ R_{i,2} \, x^{m+1} + \ldots + \alpha -> Eq2 \end{split}$$

Observe that  $R_{m,2} - R_{m-1,2} = m$ 

## Method of generating functions cont...

Eq1 – Eq2 gives  $(1-x)f(x) = R_{1,2}x + (R_{2,2} - R_{1,2})x^{2} + (R_{3,2} - R_{2,2})x^{3} + \dots + (R_{m,2} - R_{m-1,2})x^{m} + \dots + \alpha$   $(1-x)f(x) = R_{1,2}x + (2x^{2} + 3x^{3} + \dots + mx^{m} + \dots)$   $= 2x^{2} + 3x^{3} + \dots + mx^{m} + \dots$   $f(x) = (2x^{2} + 3x^{3} + \dots + mx^{m} + \dots)(1-x)^{-1}$ 

## Method of generating functions cont...

 $f(x) = (2x^{2} + 3x^{3} + ... + mx^{m} + ..)(1 + x + x^{2} + x^{3} ...)$  $\rightarrow Eq3$ 

Coeff of  $x^m$  is  $R_{m,2} = (2 + 2 + 3 + 4 + ...+m)$ = 1+[m(m+1)/2] The general problem of *m* hyperplanes in *d* dimensional space

c(m,d) = c(m-1,d) + c(m-1,d-1)

subject to *c(m,1)= 2 c(1,d)= 2* 

#### Generating function

$$\begin{split} f(x,y) &= R_{1,1}xy + R_{1,2}xy^2 + R_{1,3}xy^3 + \dots \\ &+ R_{2,1}x^2y + R_{2,2}x^2y^2 + R_{2,3}x^2y^3 + \dots \\ &+ R_{3,1}x^3y + R_{3,2}x^3y^2 + \dots \end{split}$$

 $f(x,y) = \sum_{m \ge 1} \sum_{n \ge 1} R_{m,d} x^m y^d$ 

# of regions formed by m hyperplanes passing through origin in the d dimensional space

#### $C(m,d) = 2.\Sigma^{d-1} \sum_{i=0}^{m-1} C_i$

#### Machine Learning Basics

• Learning from examples:



 $e_1, e_2, e_3...$  are +ve examples  $f_1, f_2, f_3...$  are –ve examples

#### Machine Learning Basics cont..

- Training: arrive at hypothesis *h* based on the data seen.
- Testing: present new data to h test performance.



#### **Feedforward Network**

#### Limitations of perceptron

- Non-linear separability is all pervading
- Single perceptron does not have enough computing power
- Eg: XOR cannot be computed by perceptron

#### **Solutions**

- Tolerate error (Ex: *pocket algorithm* used by connectionist expert systems).
  - Try to get the best possible hyperplane using only perceptrons
- Use higher dimension surfaces Ex: Degree - 2 surfaces like parabola
- Use layered network

#### **Pocket Algorithm**

- Algorithm evolved in 1985 essentially uses PTA
- Basic Idea:
  - Always preserve the best weight obtained so far in the "pocket"
  - Change weights, if found better (i.e. changed weights result in reduced error).

#### XOR using 2 layers

 $x_1 \oplus x_2 = (x_1 \overline{x_2})(\overline{x_1} x_2)$  $= OR(AND(x_1, NOT(x_2)), AND(NOT(x_1), x_2)))$ 

• Non-LS function expressed as a linearly separable function of individual linearly separable functions.





#### **Example - XOR** $\theta = 0.5$ w<sub>2</sub>=1 $W_1 = 1$ $\mathbf{X}_1 \mathbf{X}_2$ 1 $X_1X_2$ 1.5 -1 -1 1.5 X<sub>1</sub> **X**<sub>2</sub>

#### Some Terminology

- A multilayer feedforward neural network has
  - Input layer
  - Output layer
  - Hidden layer (asserts computation)

Output units and hidden units are called computation units.

#### Training of the MLP

- Multilayer Perceptron (MLP)
- Question:- How to find weights for the hidden layers when no target output is available?
- Credit assignment problem to be solved by "Gradient Descent"

#### **Gradient Descent Technique**

Let E be the error at the output layer

$$E = \frac{1}{2} \sum_{j=1}^{p} \sum_{i=1}^{n} (t_i - o_i)_j^2$$

- t<sub>i</sub> = target output; o<sub>i</sub> = observed output
- i is the index going over n neurons in the outermost layer
- j is the index going over the p patterns (1 to p)
- Ex: XOR:- p=4 and n=1

#### Weights in a ff NN

- w<sub>mn</sub> is the weight of the connection from the n<sup>th</sup> neuron to the m<sup>th</sup> neuron
- E vs w surface is a complex surface in the space defined by the weights w<sub>ii</sub>
- $-\frac{\delta E}{\delta w_{mn}}$  gives the direction in which a movement of the operating point in the  $w_{mn}$  co-ordinate space will result in maximum decrease in error





#### Sigmoid neurons

- Gradient Descent needs a derivative computation
  - not possible in perceptron due to the discontinuous step function used!
  - → Sigmoid neurons with easy-to-compute derivatives used!



$$y \rightarrow 1 \text{ as } x \rightarrow \infty$$
  
 $y \rightarrow 0 \text{ as } x \rightarrow -\infty$ 

Computing power comes from non-linearity of sigmoid function.

#### **Derivative of Sigmoid function**



#### Training algorithm

- Initialize weights to random values.
- For input x = <x<sub>n</sub>,x<sub>n-1</sub>,...,x<sub>0</sub>>, modify weights as follows

Target output = t, Observed output = o

$$\Delta w_i \propto -\frac{\delta E}{\delta w_i}$$
$$E = \frac{1}{2}(t-o)_2$$

• Iterate until  $E < \delta$  (threshold)

Calculation of 
$$\Delta \mathbf{w}_{i}$$
  

$$\frac{\delta E}{\delta W_{i}} = \frac{\delta E}{\delta net} \times \frac{\delta net}{\delta W_{i}} \left( where : net = \sum_{i=0}^{n-1} w_{i}x_{i} \right)$$

$$= \frac{\delta E}{\delta o} \times \frac{\delta o}{\delta net} \times \frac{\delta net}{\delta W_{i}}$$

$$= -(t-o)o(1-o)x_{i}$$

$$\Delta w_{i} = -\eta \frac{\delta E}{\delta w_{i}} (\eta = \text{learning constant}, 0 \le \eta \le 1)$$

$$\Delta w_{i} = \eta (t-o)o(1-o)x_{i}$$

#### Observations

*Does the training technique support our intuition?* 

- The larger the  $x_i$ , larger is  $\Delta w_i$ 
  - Error burden is borne by the weight values corresponding to large input values