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Computational Capacity of 
Perceptrons



Separating plane

• � wixi = � defines a linear surface in the 
(W,�) space, where W=<w1,w2,w3,…,wn> 
is an n-dimensional vector.

• A point in this (W,�) space 
defines a perceptron.
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The Simplest Perceptron
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Depending on different values of
w and �, four different functions are possible



Simplest perceptron contd.
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Counting the #functions for the 
simplest perceptron

• For the simplest perceptron, the equation 
is    w.x=�.

Substituting x=0 and x=1,
we get �=0 and w=�.

These two lines intersect to 
form four regions, which 
correspond to the four functions.
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Fundamental Observation

• The number of TFs computable by a perceptron 
is equal to the number of regions produced by 2n

hyper-planes,obtained by plugging in the values 
<x1,x2,x3,…,xn> in the equation 

�i=1
nwixi= �

• Intuition: How many lines are produced by the 
existing planes on the new plane? How many 
regions are produced on the new plane by these 
lines?



The geometrical observation

• Problem: m linear surfaces called hyper-
planes (each hyper-plane is of (d-1)-dim) 
in d-dim, then what is the max. no. of 
regions produced by their intersection?
i.e. Rm,d = ?



Concept forming examples

• Max #regions formed by m lines in 2-dim 
is Rm,2 = Rm-1,2 + ?
The new line intersects m-1 lines at m-1 
points and forms m new regions.

Rm,2 = Rm-1,2 + m ,   R1,2 = 2
• Max #regions formed by m planes in 3 

dimensions is 
Rm,3 = Rm-1,3 + Rm-1,2 ,   R1,3 = 2



Concept forming examples 
contd..

• Max #regions formed by m planes in 4 
dimensions is 

Rm,4 = Rm-1,4 + Rm-1,3 ,   R1,4 = 2

Rm,d = Rm-1,d + Rm-1,d-1

Subject to
R1,d = 2
Rm,1 = 2



General Equation

Rm,d = Rm-1,d + Rm-1,d-1

Subject to
R1,d = 2
Rm,1 = 2

All the hyperplanes pass through the origin.



Method of Observation for lines in 
2-D

Rm,2 = Rm-1,2 + m
Rm-1,2 = Rm-2,2 + m-1
Rm-2,2 = Rm-3,2 + m-2

:
R2,2 = R1,2 + 2

Therefore, Rm,2 = Rm-1,2 + m 
= 2 + m + (m-1) + (m-2) + …+ 2
= 1 + ( 1 + 2 + 3 + … + m)
= 1 + [m(m+1)]/2



Method of generating function

Rm,2 = Rm-1,2 + m
f(x) = R1,2 x + R2,2 x2 + R3,2 x3 + … + Ri,2 xm

+ … + � –>Eq1
xf(x) = R1,2 x2 + R2,2 x3 + R3,2 x4 + … + 

Ri,2  xm+1 + … + � –>Eq2

Observe that Rm,2 - Rm-1,2 = m



Method of generating functions 
cont…

Eq1 – Eq2 gives 
(1-x)f(x) = R1,2 x + (R2,2 - R1,2)x2

+ (R3,2 - R2,2)x3 + …
+ (Rm,2 - Rm-1,2)xm + … + �

(1-x)f(x) = R1,2 x + (2x2 + 3x3 + …+mxm+..)
= 2x2 + 3x3 + …+mxm+..

f(x) = (2x2 + 3x3 + …+mxm+..)(1-x)-1



Method of generating functions 
cont…

f(x) = (2x2 + 3x3 + …+mxm+..)(1+x+x2+x3…)
�Eq3

Coeff of xm is 
Rm,2 = (2 + 2 + 3 + 4 + …+m)

= 1+[m(m+1)/2]



The general problem of m hyperplanes
in d dimensional space

c(m,d) = c(m-1,d) + c(m-1,d-1)

subject to
c(m,1)= 2
c(1,d)= 2



Generating function

f(x,y) = R1,1xy + R1,2xy2 + R1,3xy3 + …
+ R2,1x2y + R2,2 x2y2 + R2,3x2y3+...
+ R3,1x3y + R3,2x3y2 + ……… 

f(x,y) = �
m�1
�

n�1 
Rm,d xmyd



# of regions formed by m hyperplanes
passing through origin in the d 

dimensional space

c(m,d)= 2.�d-1
i=0

m-1ci



Machine Learning Basics

• Learning from examples:

e1,e2,e3… are +ve examples
f1, f2, f3… are –ve examples
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Machine Learning Basics cont..

• Training: arrive at hypothesis h based on 
the data seen.

• Testing: present new data to h test 
performance.
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Feedforward Network



Limitations of perceptron

• Non-linear separability is all pervading
• Single perceptron does not have enough 

computing power
• Eg: XOR cannot be computed by 

perceptron



Solutions
• Tolerate error (Ex: pocket algorithm used 

by connectionist expert systems).
– Try to get the best possible hyperplane using 

only perceptrons

• Use higher dimension surfaces 
Ex: Degree - 2 surfaces like parabola

• Use layered network



Pocket Algorithm

• Algorithm evolved in 1985 – essentially 
uses PTA

• Basic Idea: 
� Always preserve the best weight obtained so 

far in the “pocket” 
� Change weights, if found better (i.e. changed 

weights result in reduced error).



XOR using 2 layers
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• Non-LS function expressed as a linearly separable 
function of individual linearly separable functions.



Example - XOR
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Example - XOR 
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Some Terminology

• A multilayer feedforward neural network 
has 
– Input layer
– Output layer
– Hidden layer (asserts computation)

Output units and hidden units are called
computation units.



Training of the MLP

• Multilayer Perceptron (MLP)

• Question:- How to find weights for the 
hidden layers when no target output is 
available?

• Credit assignment problem – to be solved 
by “Gradient Descent” 



Gradient Descent Technique
• Let E be the error at the output layer

• ti = target output; oi = observed output

• i is the index going over n neurons in the 
outermost layer

• j is the index going over the p patterns (1 to p)
• Ex: XOR:– p=4 and n=1
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Weights in a ff NN
• wmn is the weight of the 

connection from the nth neuron 
to the mth neuron

• E vs surface is a complex 
surface in the space defined by 
the weights wij

• gives the direction in which 
a movement of the operating 
point in the wmn co-ordinate 
space will result in maximum 
decrease in error
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Sigmoid neurons
• Gradient Descent needs a derivative computation

- not possible in perceptron due to the discontinuous step  
function used!

� Sigmoid neurons with easy-to-compute derivatives used!

• Computing power comes from non-linearity of 
sigmoid function.
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Derivative of Sigmoid function
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Training algorithm

• Initialize weights to random values.
• For input x = <xn,xn-1,…,x0>, modify weights as 

follows
Target output = t, Observed output = o

• Iterate until E <  δ (threshold)
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Calculation of �wi
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Observations
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• The larger the xi, larger is �wi

– Error burden is borne by the weight values 
corresponding to large input values


