
CS623: Introduction to
Computing with Neural Nets

(lecture-3)
Pushpak Bhattacharyya

Computer Science and Engineering
Department
IIT Bombay

Computational Capacity of
Perceptrons

Separating plane

• � wixi = � defines a linear surface in the
(W,�) space, where W=<w1,w2,w3,…,wn>
is an n-dimensional vector.

• A point in this (W,�) space
defines a perceptron.

y

x1

. . .

�

w1 w2 w3 wn

x2 x3 xn

The Simplest Perceptron

�

y

x1

w1

Depending on different values of
w and �, four different functions are possible

Simplest perceptron contd.

10101
11000
f4f3f2f1x

��0
w�0

��0
w>0

�<0
w�0

�<0
W<0

0-function Identity Function Complement Function

True-Function

Counting the #functions for the
simplest perceptron

• For the simplest perceptron, the equation
is w.x=�.

Substituting x=0 and x=1,
we get �=0 and w=�.

These two lines intersect to
form four regions, which
correspond to the four functions.

�=0

w=�
R1

R2R3

R4

Fundamental Observation

• The number of TFs computable by a perceptron
is equal to the number of regions produced by 2n

hyper-planes,obtained by plugging in the values
<x1,x2,x3,…,xn> in the equation

�i=1
nwixi= �

• Intuition: How many lines are produced by the
existing planes on the new plane? How many
regions are produced on the new plane by these
lines?

The geometrical observation

• Problem: m linear surfaces called hyper-
planes (each hyper-plane is of (d-1)-dim)
in d-dim, then what is the max. no. of
regions produced by their intersection?
i.e. Rm,d = ?

Concept forming examples

• Max #regions formed by m lines in 2-dim
is Rm,2 = Rm-1,2 + ?
The new line intersects m-1 lines at m-1
points and forms m new regions.

Rm,2 = Rm-1,2 + m , R1,2 = 2
• Max #regions formed by m planes in 3

dimensions is
Rm,3 = Rm-1,3 + Rm-1,2 , R1,3 = 2

Concept forming examples
contd..

• Max #regions formed by m planes in 4
dimensions is

Rm,4 = Rm-1,4 + Rm-1,3 , R1,4 = 2

Rm,d = Rm-1,d + Rm-1,d-1

Subject to
R1,d = 2
Rm,1 = 2

General Equation

Rm,d = Rm-1,d + Rm-1,d-1

Subject to
R1,d = 2
Rm,1 = 2

All the hyperplanes pass through the origin.

Method of Observation for lines in
2-D

Rm,2 = Rm-1,2 + m
Rm-1,2 = Rm-2,2 + m-1
Rm-2,2 = Rm-3,2 + m-2

:
R2,2 = R1,2 + 2

Therefore, Rm,2 = Rm-1,2 + m
= 2 + m + (m-1) + (m-2) + …+ 2
= 1 + (1 + 2 + 3 + … + m)
= 1 + [m(m+1)]/2

Method of generating function

Rm,2 = Rm-1,2 + m
f(x) = R1,2 x + R2,2 x2 + R3,2 x3 + … + Ri,2 xm

+ … + � –>Eq1
xf(x) = R1,2 x2 + R2,2 x3 + R3,2 x4 + … +

Ri,2 xm+1 + … + � –>Eq2

Observe that Rm,2 - Rm-1,2 = m

Method of generating functions
cont…

Eq1 – Eq2 gives
(1-x)f(x) = R1,2 x + (R2,2 - R1,2)x2

+ (R3,2 - R2,2)x3 + …
+ (Rm,2 - Rm-1,2)xm + … + �

(1-x)f(x) = R1,2 x + (2x2 + 3x3 + …+mxm+..)
= 2x2 + 3x3 + …+mxm+..

f(x) = (2x2 + 3x3 + …+mxm+..)(1-x)-1

Method of generating functions
cont…

f(x) = (2x2 + 3x3 + …+mxm+..)(1+x+x2+x3…)
�Eq3

Coeff of xm is
Rm,2 = (2 + 2 + 3 + 4 + …+m)

= 1+[m(m+1)/2]

The general problem of m hyperplanes
in d dimensional space

c(m,d) = c(m-1,d) + c(m-1,d-1)

subject to
c(m,1)= 2
c(1,d)= 2

Generating function

f(x,y) = R1,1xy + R1,2xy2 + R1,3xy3 + …
+ R2,1x2y + R2,2 x2y2 + R2,3x2y3+...
+ R3,1x3y + R3,2x3y2 + ………

f(x,y) = �
m�1
�

n�1
Rm,d xmyd

of regions formed by m hyperplanes
passing through origin in the d

dimensional space

c(m,d)= 2.�d-1
i=0

m-1ci

Machine Learning Basics

• Learning from examples:

e1,e2,e3… are +ve examples
f1, f2, f3… are –ve examples

e1

e2

e3 … en

Concept C

f1

f2 f3

…

fn

Machine Learning Basics cont..

• Training: arrive at hypothesis h based on
the data seen.

• Testing: present new data to h test
performance.

c
hconcept

hypothesis

Feedforward Network

Limitations of perceptron

• Non-linear separability is all pervading
• Single perceptron does not have enough

computing power
• Eg: XOR cannot be computed by

perceptron

Solutions
• Tolerate error (Ex: pocket algorithm used

by connectionist expert systems).
– Try to get the best possible hyperplane using

only perceptrons

• Use higher dimension surfaces
Ex: Degree - 2 surfaces like parabola

• Use layered network

Pocket Algorithm

• Algorithm evolved in 1985 – essentially
uses PTA

• Basic Idea:
� Always preserve the best weight obtained so

far in the “pocket”
� Change weights, if found better (i.e. changed

weights result in reduced error).

XOR using 2 layers

()()
)))),(()),(,((2121

212121

xxNOTANDxNOTxANDOR

xxxxxx

=
=⊕

• Non-LS function expressed as a linearly separable
function of individual linearly separable functions.

Example - XOR

011

001

110
000

x1x
2

x2x1

w2=1.5w1=-1
� = 1

x1 x2 Θ<+
Θ<
Θ≥

Θ<

21
1
2

0

ww

w

w

� Calculation of XOR

Calculation of x1x2

w2=1w1=1
� = 0.5

x1x2 x1x2

Example - XOR

w2=1w1=1
� = 0.5

x1x2 x1x2

-1

x1 x2

-11.5
1.5

1 1

Some Terminology

• A multilayer feedforward neural network
has
– Input layer
– Output layer
– Hidden layer (asserts computation)

Output units and hidden units are called
computation units.

Training of the MLP

• Multilayer Perceptron (MLP)

• Question:- How to find weights for the
hidden layers when no target output is
available?

• Credit assignment problem – to be solved
by “Gradient Descent”

Gradient Descent Technique
• Let E be the error at the output layer

• ti = target output; oi = observed output

• i is the index going over n neurons in the
outermost layer

• j is the index going over the p patterns (1 to p)
• Ex: XOR:– p=4 and n=1

��
= =

−=
p

j

n

i
jii otE

1 1

2)(
2
1

Weights in a ff NN
• wmn is the weight of the

connection from the nth neuron
to the mth neuron

• E vs surface is a complex
surface in the space defined by
the weights wij

• gives the direction in which
a movement of the operating
point in the wmn co-ordinate
space will result in maximum
decrease in error

W

m

n

wmn

mnw
E

δ
δ−

mn
mn w

E
w

δ
δ−∝∆

Sigmoid neurons
• Gradient Descent needs a derivative computation

- not possible in perceptron due to the discontinuous step
function used!

� Sigmoid neurons with easy-to-compute derivatives used!

• Computing power comes from non-linearity of
sigmoid function.

−∞→→
∞→→

xy

xy

 as 0
 as 1

Derivative of Sigmoid function

)1(
1

1
1

1
1

)1(
)(

)1(
1

1
1

22

yy
ee

e
e

e
edx

dy
e

y

xx

x

x
x

x

x

−=�
�

�
�
�

�

+
−

+
=

+
=−

+
−=

+
=

−−

−

−
−

−

−

Training algorithm

• Initialize weights to random values.
• For input x = <xn,xn-1,…,x0>, modify weights as

follows
Target output = t, Observed output = o

• Iterate until E < δ (threshold)

i
i w

E
w

δ
δ−∝∆

2)(
2
1

otE −=

Calculation of �wi

ii

i
i

i

i

n

i
ii

ii

xoootw

w
E

w

xooot

W
net

net
o

o
E

xwnetwhere
W
net

net
E

W
E

)1()(

)10 constant, learning(

)1()(

:
1

0

−−=∆

≤≤=−=∆

−−−=

××=

�
�

�
�
�

� =×= �
−

=

η

ηη
δ
δη

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

Observations

�����������	
�
�������
����������������

���
�
���

• The larger the xi, larger is �wi

– Error burden is borne by the weight values
corresponding to large input values

