CS623: Introduction to
Computing with Neural Nets
(lecture-3)

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Computational Capacity of
Perceptrons

Separating plane

* > wx, =0 defines a linear surface in the
(W,0) space, where W=<w,,W,,W,,...,W>
IS an n-dimensional vector.

» A point in this (W,8) space 4
defines a perceptron.

The Simplest Perceptron

Depending on different values of
w and 0, four different functions are possible

Simplest perceptron contd.

x |[fl |12 |3 |14
O 0 [0 |1 |]
1 (0O |1 |0
l |
O-function

0=0
w<0

True-Function

0<0
W<0

Identity Function

6>0
w>()

'

Complement Function

0<0
w<0

Counting the #functions for the
simplest perceptron
* For the simplest perceptron, the equation
IS W.X=0.
Substituting x=0 and x=1,
we get 6=0 and w=0.
These two lines intersect to
form four regions, which
correspond to the four functions.

Fundamental Observation

« The number of TFs computable by a perceptron
IS equal to the number of regions produced by 2"
hyper-planes,obtained by plugging in the values
<X1,X5,Xs,...,X,> IN the equation

2i-1"WiX= 6
* Intuition: How many lines are produced by the

existing planes on the new plane? How many

regions are produced on the new plane by these
lines?

The geometrical observation

* Problem: m linear surfaces called hyper-
planes (each hyper-plane is of (d-1)-dim)
In d-dim, then what is the max. no. of
regions produced by their intersection?

Concept forming examples

« Max #regions formed by m lines in 2-dim
IS Rno=Rni2+ 7

The new line intersects m-1 lines at m-1
points and forms m new regions.

Rnz=Rpi2+m, Ryp;=2

« Max #regions formed by m planes in 3
dimensions is
Rns=Rmis+Rni2, Riz=2

Concept forming examples
contd..

« Max #regions formed by m planes in 4

dimensions IS
Rm,4 = Rm-1,4 + Rm-1,3 ; I:{1,4 =2

I:{m,d = I:{m-1,d + I:{m-1,d-1

Subject to
R, d= 2

I:{m,1 =2

General Equation

I:{m,d = I:{m-1,d + I:{m-1,d-1

Subject to
R1,d =2
I:{m,1 =2

All the hyperplanes pass through the origin.

Method of Observation for lines in
2-D

Rmo = Rpqo+ M

:%m 12 =Rpnoo+ M-

22 = :{m_3,2 + M-2

R, 5

Therefore, R, ,=R,.1,+m
=2+m+ (M-1) + (M-2) + ...+ 2
=1+(1+2+3+... +m)
=1+ [m(m+1)]/2

Method of generating function

Rno =Rpqo+m
f(x) = Ryox+ Roo X2+ Rgox3 + ... + R, x™
+ ...+ a—>Eq1
Xf(X) = RyoX2+ Roo X3 + Ry X+ ... +
R, x™!+ ... +a—>Eq2

Method of generating functions
cont...

Eql — Eg2 gives
(1-x)f(x) = Ry o X + (Ry, - Ry p)Xx?
+ (R3o - Roo)x®+ ...
+ (Rno - Rpq2)X™+ ... +a
(1-x)f(x) = Ry 5 X + (2%% + 3x® + ...+mx™+..)
= 2X% + 3X3 + ...+mxM+..
f(X) = (2x% + 3x3 + ...+mx™+..)(1-x) "

Method of generating functions
cont...

f(X) = (2%x% + 3x3 + ...+mxX™+.)(14+X+X%+X3...)
- EQ3

Coeff of XM is
Rno=2+2+3+4+...+m)
= 1+[m(m+1)/2]

The general problem of m hyperplanes
iIn d dimensional space

c(m,d) = c(m-1,d) + c(m-1,d-1)

subject to
c(m,1)=2
c(1,d)=2

Generating function

f(x,y) = Ry 41Xy + Ry oxy? + Ry 5xy° + ...
+ R, X2y + Ry, X2y2 + R, gx2y3+...
+ R3 X%y + Rgox%y2 + ...l

(xy)=2 .2

d
I:{m,d me

m=1"n=1

of regions formed by m hyperplanes
passing through origin in the d
dimensional space

c(m,d)=2.297_,mc.

Machine Learning Basics

» Learning from examples:

Concept C

e,,6,,65... are +ve examples
fy, f5, f5... @are —ve examples

Machine Learning Basics cont..

 Training: arrive at hypothesis h based on
the data seen.

» Testing: present new data to h test
performance.

hypothesis
concept

Feedforward Network

Limitations of perceptron

* Non-linear separabillity is all pervading

» Single perceptron does not have enough
computing power

» Eg: XOR cannot be computed by
perceptron

Solutions

» Tolerate error (Ex: pocket algorithm used
by connectionist expert systems).

— Try to get the best possible hyperplane using
only perceptrons

» Use higher dimension surfaces
Ex: Degree - 2 surfaces like parabola
» Use layered network

Pocket Algorithm

 Algorithm evolved in 1985 — essentially
uses PTA

 Basic ldea:

»> Always preserve the best weight obtained so
far in the “pocket”

» Change weights, if found better (i.e. changed
weights result in reduced error).

XOR using 2 layers
X ® Xy = (xlx_z)(flxz)
= OR(AND(x,, NOT (x,)), AND(NOT (x,), x,)))

* Non-LS function expressed as a linearly separable
function of individual linearly separable functions.

Example - XOR

6=0.5
w,=1 & Calculation of XOR

w, =1
X4 X5
X{ (X5 [X¢X
0 [0 |B
O |1 |1
1 10 |0
1 |1 [0

X4 Xo

Calculation of xx,

6=1 0<0O
='1 W2=15 w2=>0
wl<®

Xo wl4w2 <@

Example - XOR

0=05

X1Xo| 1 +—1 XX

Some Terminology

* A multilayer feedforward neural network
has

— Input layer
— Qutput layer
— Hidden layer (asserts computation)

Output units and hidden units are called
computation units.

Training of the MLP

* Multilayer Perceptron (MLP)

 Question:- How to find weights for the
hidden layers when no target output is
available?

 Credit assignment problem — to be solved
by “Gradient Descent’

Gradient Descent Technique

Let E be the error at the output layer

n

E=-3Y 0,-0);

j=1 i=1

t. = target output; o, = observed output

| IS the iIndex going over n neurons in the
outermost layer

] Is the index going over the p patterns (1 to p)
Ex: XOR:— p=4 and n=1

Weights in a ff NN

* W, IS the weight of the
connection from the nt" neuron
to the mth neuron

« Evs w surface is a complex
surface in the space defined by

the weights w;

+ L gives the direction in which

a movement of the operating
point in the w,,, co-ordinate
space will result in maximum
decrease in error

m
Wmn

(n

OFE
ow

mn

Awm o< —

Sigmoid neurons

« Gradient Descent needs a derivative computation

- not possible in perceptron due to the discontinuous step
function used!

- Sigmoid neurons with easy-to-compute derivatives used!
________________________ y > las x o> o
y > 0as x > —o

e e S e e S

« Computing power comes from non-linearity of
sigmoid function.

Derivative of Sigmoid function

-1
Y l+e
d 1 . e
_y: —X 2(€): —X\ 2
dx (I+e) (I+e)

1 1
= — (1 xj=y(1—y)
l+e l+e

Training algorithm

* Initialize weights to random values.

* For input X = <X,,,X,,1,---,Xg>, Modify weights as
follows
Target output = t, Observed output = 0

Aw. c><—5—E

i

1
E=—(t-o0
S ok

 |terate until E < o (threshold)

Calculation of Aw.

OF OF Onet o
— = X where : net = Z WX,
oW. onet oW, =

l l

OFE 0o Onet
X X
oo onet oW.

l

=—(t—o0)o(l-0)x,
OFE .

Aw, = -1 5—(77 = learning constant, 0 <7 <1)
Wi

Aw. =n({t—-o0)o(l-o0)x,

Observations

Does the training technique support our
intuition?
* The larger the x;, larger Is Aw;

— Error burden is borne by the weight values
corresponding to large input values

