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Weights in a ff NN

* W, IS the weight of the
connection from the nt" neuron
to the mth neuron

« Evs w surface is a complex
surface in the space defined by

the weights w;

+ L gives the direction in which

a movement of the operating
point in the w,,, co-ordinate
space will result in maximum
decrease in error
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Sigmoid neurons

« Gradient Descent needs a derivative computation

- not possible in perceptron due to the discontinuous step
function used!

- Sigmoid neurons with easy-to-compute derivatives used!
________________________ y > las x o> o
y > 0as x > —o
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« Computing power comes from non-linearity of
sigmoid function.



Derivative of Sigmoid function
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Training algorithm

* Initialize weights to random values.

* For input X = <X,,,X,,1,---,Xg>, Modify weights as
follows
Target output = t, Observed output = 0
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 |terate until E < o (threshold)



Calculation of Aw.

OFE OE  Onet &
— = X where : net = Z WX,
oW. omet oW, i=0
OE 0o  Onet
= X X
oo onet oW,
=—(t—o0)o(l-0)x,
OFE .
Aw, = -1 5—(77 = learning constant, 0 <7 <1)
Wi

Aw. =n({t—-o0)o(l-o0)x,



Observations

Does the training technique support our
intuition?
* The larger the x;, larger Is Aw;

— Error burden is borne by the weight values
corresponding to large input values



Observations contd.

* Aw, Is proportional to the departure from
target

e Saturation behaviour when ois 0 or 1

* Ifo<t, Aw, >0 andifo>t, Aw, <0 which
IS consistent with the Hebb’s law



inj—lebb’s law

Cé n;

» If n;and n; are both in excitatory state (+1)

— Then the change in weight must be such that it enhances
the excitation

— The change is proportional to both the levels of excitation
Aw; o e(n;) e(n)

» If n; and n; are in a mutual state of inhibition ( one is
+1 and the other is -1),

— Then the change in weight is such that the inhibition is
enhanced (change in weight is negative)



Saturation behavior

* The algorithm is iterative and incremental

* |f the weight values or number of input
values is very large, the output will be
large, then the output will be in saturation
region.

* The weight values hardly change in the
saturation region



If Sigmoid Neurons Are Used,
Do We Need MLP?

Does sigmoid have the power of separating non-
linearly separable data?

Can sigmoid solve the X-OR problem

(X-ority is non-linearly separable data)
link
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Typicallyy, << 0.5,y,>>0.5



Inequalities

O=1/(1+eMet)

o="1




<0, 0>

O=0
.,e 0 <y,

171+ eBWx WXty <y,

.e. (1/(1+e%)) <y,



<0, 1>

O =
l.e. 0>y,

1/(1 + e (—W1X1-W2X2 +WO)) S yu

(17 (1+ e™3*%)) >y,



<1, 0>

O=1
l.e. (1/1+eW,™W,) >y,

<1, 1>

O=0

l.e. 1/(1+ eW, WtWo) <y,



Rearranging, 1 gives

1/(1+e%,) < vy,
i.e. 1+ev, > 1/y,

.e. Wy > In((1-y)/y)  (5)



2 Gives

1/1 + e_W2+WO > yu
lL.e. 1+eW,™W, <1/y,
l.e. eW, "W, <1-y,/y,

e, W, +W._<In(1-y,)/y,

ie. W,-W,>In(y,/(1-y,)




3 Gives

W,-W_>In(y,/ (1-y,))

4 Gives

Wy =W, + W, > In ((1-y)/ y))



5+6+7 + 8 Gives

0>2In(1-y,)/y,+2Iny,/(1-y,)

ie.0> In[(1-y)y *y,/(1=y,)]

Le. (T-y)/y) ~(y, /(1 —yy)) <1



L [(-y) 7 (-y)] T Iy 7yl < T
. 2)Y, >>0.5
. 3) Y, <<0.5

From i, it and iii; Contradiction, hence
sigmoid cannot compute X-OR



Exercise

Use the fact that any non-linearly separable
function has positive linear combination to study
If sigmoid can compute any non-linearly
separable function.



Non-linearity 1s the source of power

y y = m,(h,.w; + h,.w,) + ¢,
h, = m,(W;.X; + W,.X,) + ¢,

h, = m;(Ws.X; + We.X,) + C4

Wo W,
h, h, Substituting h, & h,
y =kx; + kKX, +¢’
W Ws Wy
W, Thus a multilayer network can be
X X, collapsed into an eqv. 2 layer n/w

without the hidden layer



Can a linear neuron compute X-OR?

}//<y=mx+0
Yu
YL

e y>yyisregardedasy =1

e y<ypisregarded asy =0

Yu~> YL



[Linear Neuron & X-OR

We want y

Yy =W X4 +W2X2+C



[_inear Neuron 1/4

tor (1,1), (0,0)
y<¥yL

For (0,1), (1,0)
Yy>Yu

Yu> YL
Can (w, w,, ¢) be tfound



[ _1inear Neuron 2/4

(0,0)

y=w;.0+w,0+c
=C

y<¥yL

C<VyL - (1)

(0,1)

y=w;.l+w,0+c

y>Yu

Wy +c>yy -(2)



[_1inear Neuron 3/4

wi+w,+c<y; - 4)
Yu=>YL -(9)



[ 1inear Neuron 4/4

c<Vyp - (1)
W, +C>Yyy - (2)
W, + C > Yy - (3)
Wi +w,+c<y; -4)
Yu~> YL - (5)

Inconsistent



Observations

A linear neuron cannot compute XOR

A multilayer network with linear characteristic
neurons 1s collapsible to a single linear neuron.

Therefore addition of layers does not contribute to
computing power.

Neurons 1n feedforward network must be non-linear

Threshold elements will do iff we can linearize a non-
linearly function.



