CS623: Introduction to Computing with Neural Nets (lecture-4)

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Weights in a ff NN

- w_{mn} is the weight of the connection from the nth neuron to the mth neuron
- E vs w surface is a complex surface in the space defined by the weights w_{ii}
- $-\frac{\delta E}{\delta w_{mn}}$ gives the direction in which a movement of the operating point in the w_{mn} co-ordinate space will result in maximum decrease in error

Sigmoid neurons

- Gradient Descent needs a derivative computation
 - not possible in perceptron due to the discontinuous step function used!
 - → Sigmoid neurons with easy-to-compute derivatives used!

$$y \rightarrow 1 \text{ as } x \rightarrow \infty$$

 $y \rightarrow 0 \text{ as } x \rightarrow -\infty$

Computing power comes from non-linearity of sigmoid function.

Derivative of Sigmoid function

Training algorithm

- Initialize weights to random values.
- For input x = <x_n,x_{n-1},...,x₀>, modify weights as follows

Target output = t, Observed output = o

$$\Delta w_i \propto -\frac{\delta E}{\delta w_i}$$
$$E = \frac{1}{2}(t-o)^2$$

• Iterate until $E < \delta$ (threshold)

Calculation of Δw_i

$$\begin{split} \frac{\delta E}{\delta W_i} &= \frac{\delta E}{\delta net} \times \frac{\delta net}{\delta W_i} \left(where : net = \sum_{i=0}^{n-1} w_i x_i \right) \\ &= \frac{\delta E}{\delta o} \times \frac{\delta o}{\delta net} \times \frac{\delta net}{\delta W_i} \\ &= -(t-o)o(1-o)x_i \\ \Delta w_i &= -\eta \frac{\delta E}{\delta w_i} (\eta = \text{learning constant}, \ 0 \le \eta \le 1) \\ \Delta w_i &= \eta (t-o)o(1-o)x_i \end{split}$$

Observations

Does the training technique support our intuition?

- The larger the x_i , larger is Δw_i
 - Error burden is borne by the weight values corresponding to large input values

Observations contd.

- ∆w_i is proportional to the departure from target
- Saturation behaviour when o is 0 or 1
- If o < t, $\Delta w_i > 0$ and if o > t, $\Delta w_i < 0$ which is consistent with the Hebb's law

- If n_i and n_i are both in excitatory state (+1)
 - Then the change in weight must be such that it enhances the excitation
 - The change is proportional to both the levels of excitation $\Delta w_{ji} \alpha e(n_j) e(n_i)$
- If n_i and n_j are in a mutual state of inhibition (one is +1 and the other is -1),
 - Then the change in weight is such that the inhibition is enhanced (change in weight is negative)

Saturation behavior

- The algorithm is iterative and incremental
- If the weight values or number of input values is very large, the output will be large, then the output will be in saturation region.
- The weight values hardly change in the saturation region

If Sigmoid Neurons Are Used, Do We Need MLP?

Does sigmoid have the power of separating nonlinearly separable data?

Can sigmoid solve the X-OR problem

(X-ority is non-linearly separable data) link

 $O = 1 \text{ if } O > y_u$ $O = 0 \text{ if } O < y_l$ Typically y_l << 0.5 , y_u >> 0.5

<0, 0>

O = 0i.e 0 < y₁ $1 / 1 + e^{(-w_1 x_1 - w_2 x_2 + w_0)} < y_1$ i.e. $(1 / (1 + e^{w_0})) < y_1$ (1)

<0, 1>

O = 1i.e. $0 > y_{u}$ $1/(1 + e^{(-w_{1}x_{1} - w_{2}x_{2} + w_{0})}) > y_{u}$ $(1 / (1 + e^{-w_{2} + w_{0}})) > y_{u}$ (2)

O = 1
i.e.
$$(1/1 + e^{-w_1 + w_0}) > y_u$$
 (3)

Ν

$$O = 0$$

i.e. $1/(1 + e^{-w_1 - w_2 + w_0}) < y_1$ (4)

Rearranging, 1 gives

 $1/(1 + e_{o}^{w}) < y_{l}$ i.e. $1 + e_{o}^{w} > 1 / y_{l}$ i.e. $W_{o} > \ln ((1 - y_{l}) / y_{l})$ (5)

2 Gives

 $1/1 + e^{-w_2 + w_0} > y_{\mu}$ i.e. $1 + e^{-w_2 + w_0} < 1 / y_{\mu}$ i.e. $e^{-w_2+w_0} < 1-y_u / y_u$ i.e. $-W_2 + W_0 < \ln(1-y_1) / y_1$ i.e. $W_2 - W_0 > \ln (y_1 / (1 - y_1))$ (6) 3 Gives

$$W_1 - W_0 > \ln (y_u / (1 - y_u))$$
 (7)

4 Gives

 $-W_1 - W_2 + W_0 > \ln ((1 - y_1) / y_1)$ (8)

5 + 6 + 7 + 8 Gives

 $0 > 2 \ln (1 - y_1) / y_1 + 2 \ln y_u / (1 - y_u)$ i.e. $0 > \ln [(1 - y_1) / y_1 * y_u / (1 - y_u)]$

i.e. $((1 - y_1) / y_1) * (y_u / (1 - y_u)) < 1$

i.
$$[(1 - y_1) / (1 - y_y)] * [y_u / y_l] < 1$$

ii. 2) Y_u >> 0.5

iii. 3) Y₁ << 0.5

From i, ii and iii; Contradiction, hence sigmoid cannot compute X-OR

Exercise

Use the fact that any non-linearly separable function has positive linear combination to study if sigmoid can compute any non-linearly separable function.

Non-linearity is the source of power

$$y = m_1(h_1.w_1 + h_2.w_2) + c_1$$

$$h_1 = m_2(w_3.x_1 + w_4.x_2) + c_2$$

$$h_2 = m_3(w_5.x_1 + w_6.x_2) + c_3$$

Substituting $h_1 \& h_2$ y = $k_1 x_1 + k_2 x_2 + c'$

Thus a multilayer network can be collapsed into an eqv. 2 layer n/w without the hidden layer

Can a linear neuron compute X-OR?

- $y > y_U$ is regarded as y = 1
- $y < y_L$ is regarded as y = 0

 $y_U > y_L$

Linear Neuron & X-OR

$$y = w_1 x_1 + w_2 x_2 + c$$

Linear Neuron 1/4

for (1,1), (0,0) $y < y_L$ For (0,1), (1,0) $y > y_U$ $y_U > y_L$ Can (w₁, w₂, c) be found

Linear Neuron 2/4

<u>(0,0)</u> $y = w_1 . 0 + w_2 . 0 + c$ = c $y < y_L$ $c < y_L - (1)$ (0,1) $y = w_1.1 + w_2.0 + c$ $y > y_U$ $w_1 + c > y_U - (2)$

Linear Neuron 3/4

 $\frac{1,0}{w_{2} + c > y_{U}} - (3)$ $\frac{1,1}{w_{1} + w_{2} + c < y_{L}} - (4)$ $y_{U} > y_{L} - (5)$

Linear Neuron 4/4

$c < y_L$	- (1)
$w_1 + c > y_U$	- (2)
$w_2 + c > y_U$	- (3)
$w_1 + w_2 + c < y_L$	- (4)
$y_U > y_L$	- (5)

Inconsistent

Observations

- A linear neuron cannot compute XOR
- A multilayer network with linear characteristic neurons is collapsible to a single linear neuron.
- Therefore addition of layers does not contribute to computing power.
- Neurons in feedforward network must be non-linear
- Threshold elements will do iff we can linearize a nonlinearly function.