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Weights in a ff NN
• wmn is the weight of the 

connection from the nth neuron 
to the mth neuron

• E vs surface is a complex 
surface in the space defined by 
the weights wij

• gives the direction in which 
a movement of the operating 
point in the wmn co-ordinate 
space will result in maximum 
decrease in error
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Sigmoid neurons
• Gradient Descent needs a derivative computation

- not possible in perceptron due to the discontinuous step  
function used!

� Sigmoid neurons with easy-to-compute derivatives used!

• Computing power comes from non-linearity of 
sigmoid function.
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Derivative of Sigmoid function
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Training algorithm

• Initialize weights to random values.
• For input x = <xn,xn-1,…,x0>, modify weights as 

follows
Target output = t, Observed output = o

• Iterate until E <  δ (threshold)
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Calculation of �wi
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Observations
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• The larger the xi, larger is �wi

– Error burden is borne by the weight values 
corresponding to large input values



Observations contd.

• �wi is proportional to the departure from 
target

• Saturation behaviour when o is 0 or 1
• If o < t, �wi > 0 and if o > t, �wi < 0  which 

is consistent with the Hebb’s law



Hebb’s law

• If nj and ni are both in excitatory state (+1)
– Then the change in weight must be such that it enhances 

the excitation
– The change is proportional to both the levels of excitation

�wji � e(nj) e(ni) 

• If ni and nj are in a mutual state of inhibition ( one is 
+1 and the other is -1),
– Then the change in weight is such that the inhibition is 

enhanced (change in weight is negative)

nj

ni

wji



Saturation behavior

• The algorithm is iterative and incremental 
• If the weight values or number of input 

values is very large, the output will be 
large, then the output will be in saturation 
region. 

• The weight values hardly change in the 
saturation region



If Sigmoid Neurons Are Used, 
Do We Need MLP?

Does sigmoid have the power of separating non-
linearly separable data?

Can sigmoid solve the X-OR problem

(X-ority is non-linearly separable data)
link



O = 1 if  O > yu

O = 0 if  O < yl

Typically yl << 0.5 , yu >> 0.5

O = 1 / 1+ e -net
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Inequalities

O = 1 / (1+ e –net )
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<0, 0>

O = 0
i.e 0 < yl

1 / 1 + e(–w
1
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) < yl

i.e.    (1 / (1+ ew
o)) < yl (1)



<0, 1>

O = 1
i.e. 0 > yu
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<1, 0>

O = 1
i.e.  (1/1+ e-w

1
+w

0) > yu

<1, 1>

O = 0

i.e. 1/(1+ e-w
1

-w
2
+w

0) < yl

(3)

(4)



Rearranging, 1 gives

i.e.   1+ ew
o >  1 / yl

i.e.  Wo >  ln ((1- yl) / yl) (5)

1/(1+ ew
o)  <   yl



2 Gives

1/1+ e-w
2

+w
0 > yu

i.e.   1+ e-w
2

+w
0 < 1 / yu

i.e.   e-w
2

+w
0 < 1-yu / yu

i.e.  -W2 + Wo < ln (1-yu) / yu

i.e.   W2 - Wo > ln (yu / (1–yu)) (6)



W1 - Wo > ln (yu / (1- yu))

-W1 – W2 + Wo > ln ((1- yl)/ yl)

3 Gives

4 Gives

(7)

(8)



5 + 6 + 7 + 8 Gives 

0 > 2ln (1- yl )/ yl  + 2 ln yu / (1 – yu )

i.e. 0 >  ln [ (1- yl )/ yl * yu / (1 – yu )]

i.e. ((1- yl ) / yl)  * (yu / (1 – yu )) < 1 



i. [(1- yl ) / (1- yy )] *  [yu / yl]  < 1 

ii. 2) Yu  >> 0.5

iii. 3) Yl  << 0.5

From i, ii and iii; Contradiction, hence 
sigmoid cannot compute X-OR



Exercise

Use the fact that any non-linearly separable 
function has positive linear combination to study 
if sigmoid can compute any non-linearly 
separable function.



Non-linearity is the source of power

y = m1(h1.w1 + h2.w2) + c1

h1 = m2(w3.x1 + w4.x2) + c2

h2 = m3(w5.x1 + w6.x2) + c3

Substituting h1 & h2

y = k1x1 + k2x2 + c’

Thus a multilayer network can be 
collapsed into an eqv. 2 layer n/w
without the hidden layer

w1w2

h2 h1

x1 x2

w5

w4

y

w3w6



Can a linear neuron compute X-OR?

• y > yU is regarded as y = 1
• y < yL is regarded as y = 0

yU > yL

y = mx + c
yUyL



Linear Neuron & X-OR

We want

y = w1x1 + w2x2 + c

x2 x1

w1w2

y



Linear Neuron 1/4

for (1,1), (0,0)
y < yL

For (0,1), (1,0)
y > yU

yU > yL

Can (w1, w2, c) be found



Linear Neuron 2/4

(0,0)
y = w1.0 + w2.0 + c

= c
y < yL

c < yL - (1)
(0,1)
y = w1.1 + w2.0 + c
y > yU

w1 + c > yU - (2)



Linear Neuron 3/4

1,0
w2 + c > yU - (3)

1,1
w1 + w2 + c < yL - (4)
yU > yL - (5)



Linear Neuron 4/4

c < yL - (1)
w1 + c > yU - (2)
w2 + c > yU - (3)
w1 + w2 + c < yL - (4)
yU > yL - (5)

Inconsistent



Observations

• A linear neuron cannot compute XOR
• A multilayer network with linear characteristic 

neurons is collapsible to a single linear neuron.
• Therefore addition of layers does not contribute to 

computing power.
• Neurons in feedforward network must be non-linear
• Threshold elements will do iff we can linearize a non-

linearly function.


