CS623: Introduction to Computing with Neural Nets *(lecture-8)*

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Hardness of Training Feedforward NN

- NP-completeness result:
 - Avrim Blum, Ronald L. Rivest: Training a 3node neural network is NP-complete. Neural Networks 5(1): 117-127 (1992)Showed that the loading problem is hard
- As the number of training example increases, so does the training time EXPONENTIALLY

Numerous problems have been proven to be NP-complete

- The procedure is always the same:
- Take *an instance* of a *known* NP-complete problem; let this be *p*.
- Show a polynomial time Reduction of p TO an instance q of the problem whose status is being investigated.
- Show that the answer to q is yes, if and only if the answer to p is yes.

Training of NN

- Training of Neural Network is NP-hard
- This can be proved by the NPcompleteness theory
- Question

 Can a set of examples be loaded onto a Feed Forward Neural Network efficiently?

Architecture

- We study a special architecture.
- Train the neural network called 3-node neural network of feed forward type.
- ALL the neurons are 0-1 threshold neurons

Architecture

- h_1 and h_2 are hidden neurons
- They set up hyperplanes in the (n+1) dimensions space.

Confinement Problem

- Can two hyperplanes be set which confine <u>ALL and only</u> the positive points?
- Positive Linear Confinement problem is
 <u>NP-Complete.</u>
- Training of positive and negative points needs solving the CONFINEMENT PROBLEM.

Solving with Set Splitting Problem

- Set Splitting Problem
- Statement:
 - Given a set *S* of *n* elements $e_1, e_2, ..., e_n$ and a set of subsets of *S* called as concepts denoted by $c_1, c_2, ..., c_m$, does there exist a splitting of *S*
 - i.e. are there two sets S_1 (subset of S) and S_2 (subset of S) and none of $c_1, c_2, ..., c_m$ is subset of S_1 or S_2

Set Splitting Problem: example

Example

S = {
$$s_1, s_2, s_3$$
}
c₁ = { s_1, s_2 }, c₂ = { s_2, s_3 }

Splitting exists

$$S_1 = \{s_1, s_3\}, S_2 = \{s_2\}$$

Transformation

- For *n* elements in S, set up an *n*-dimensional space.
- Corresponding to each element mark a negative point at unit distance in the axes.
- Mark the origin as positive
- For each concept mark a point as positive.

Transformation

Proving the transformation

- Statement
 - Set-splitting problem has a solution if and only if positive linear confinement problem has a solution.
- Proof in two parts: if part and only if part
- If part
 - Given Set-splitting problem has a solution.
 - *To show* that the constructed Positive Linear Confinement (PLC) problem has a solution
 - *i.e.* to show that since S_1 and S_2 exist, P_1 and P_2 exist which confine the positive points

Proof – If part

• P_1 and P_2 are as follows:

 $-P_1: a_1x_1 + a_2x_2 + ... + a_nx_n = -1/2 -- Eqn A$ $-P_2: b_1x_1 + b_2x_2 + ... + b_nx_n = -1/2 -- Eqn B$ $a_i = -1, \quad \text{if } s_i \in S_1$ = n, otherwise $b_i = -1$, if $s_i \in S_2$ = n, otherwise

Representative Diagram

Proof (If part) – Positive points

- For origin (a +ve point), plugging in $x_1 = 0 = x_2 = \dots = x_n$ into P₁ we get, 0 > -1/2
- For other points
 - +ve points correspond to c_i 's
 - Suppose c_i contains elements $\{s_1^{i}, s_2^{i}, ..., s_{ni}^{i}\}$, then at least one of the s_j^{i} cannot be in S_j
 - \therefore co-efficient of $x_i^i = n$,

 \therefore LHS > -1/2

- Thus +ve points for each c_i belong to the same side of P_i as the origin.
- Similarly for P_2 .

Proof (If part) – Negative points

- -ve points are the unit distance points on the axes
 - They have only one bit as 1.
 - Elements in S_1 give rise to m_1 -ve points.
 - Elements in S_2 give rise to m_2 -ve points.
- -ve points corresponding to S_1
 - If $q_i \varepsilon S_1$ then x_i in P_1 must have co-efficient -1 $\therefore LHS = -1 < -1/2$

What has been proved

- Origin (+ve point) is on one side of P_1
- +ve points corresponding to c_i's are on the same side as the origin.
- -ve points corresponding to S_1 are on the opposite side of P_1

Illustrative Example

• Example

$$-S = \{s_{1}, s_{2}, s_{3}\}$$

- c₁ = {s₁, s₂}, c₂ = {s₂, s₃}
- Splitting : S₁ = {s₁, s₃}, S₂ = {s₂}

• +ve points:

-(<0, 0, 0>, +), (<1, 1, 0>, +), (<0, 1, 1>, +)

• -ve points:

-(<1, 0, 0>,-), (<0, 1, 0>,-), (<0, 0, 1>,-)

Example (contd.)

• The constructed planes are:

•
$$P_1$$
:
 $a_1x_1 + a_2x_2 + a_3x_3 = -1/2$
 $a_1x_1 + 3x_2 - x_3 = -1/2$
• P_2 :
 $b_1x_1 + b_2x_2 + b_3x_3 = -1/2$
 $a_3x_1 - x_2 + 3x_3 = -1/2$

Example (contd.)

- $P_1: -x_1 + 3x_2 x_3 = -1/2$
- <0, 0, 0>: LHS = 0 > -1/2,
 ∴ <0, 0, 0> is +ve pt (similarly, <1,1,0> and <0,1,1> are classified as +ve)
- <1, 0, 0>: LHS = -1 < -1/2,
 - -::<1, 0, 0> is -ve pt
- <0, 0, 1>: LHS = -1 < -1/2,

-::<0, 0, 1> is -ve pt

But <0,1,0> is classified as +ve, i.e., cannot classify the point of S_2 .

Example (contd.)

- $P_2: 3x_1 x_2 + 3x_3 = -1/2$
- <0, 0, 0> : LHS = 0 > -1/2- \therefore <0, 0, 0> is +ve pt
- <1, 1, 0> : LHS = 2 > -1/2- : <1, 1, 0> is +ve pt
- <0, 1, 1>: LHS = 2 > -1/2
 -∴<0, 1, 1> is +ve pt
- <0, 1, 0> : -1 < -1/2- \therefore <0, 1, 0> is -ve pt

Graphic for Example

Proof – Only if part

- Given +ve and -ve points constructed from the set-splitting problem, two hyperplanes P₁ and P₂ have been found which do positive linear confinement
- To show that S can be split into S_1 and S_2

Proof - Only if part (contd.)

• Let the two planes be:

 $-P_{1}: a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n} = \theta_{1}$

- $-\mathbf{P}_{2}:b_{I}x_{1}+b_{2}x_{2}+...+b_{n}x_{n}=\theta_{2}$
- Then,
 - $-S_{1} = \{\text{elements corresponding to -ve points separated}$ by P_{1}
 - $-S_2 = \{\text{elements corresponding to -ve points separated}$ by $P_2 \}$

Proof - Only if part (contd.)

- Since P_1 and P_2 take care of **all** -ve points, their union is equal to S ... (proof obvious)
- To show: No c_i is a subset of S_1 and S_2
- *i.e.*, there is in c_i at least one element $\notin S_1$ -- Statement (A)

Proof - Only if part (contd.)

- Suppose $c_i \subset S_i$, then every element in c_i is contained in S_i
- Let eⁱ₁, eⁱ₂, ..., eⁱ_{mi} be the elements of c_i corresponding to each element
- Evaluating for each co-efficient, we get,
 - $-a_{1} < \theta_{1}, \quad a_{2} < \theta_{1}, \dots, \quad a_{mi} < \theta_{1} (1)$ $-But a_{1} + a_{2} + \dots + a_{m} > \theta_{1} \quad --(2)$ $-and \ 0 > \theta_{1} \quad --(3)$
- CONTRADICTION

What has been shown

- Positive Linear Confinement is NP-complete.
- Confinement on any set of points of one kind is NPcomplete (easy to show)
- The architecture is special- only one hidden layer with two nodes
- The neurons are special, 0-1 threshold neurons, NOT sigmoid
- Hence, can we generalize and say that FF NN training is NP-complete?
- Not rigorously, perhaps; but strongly indicated