CS623: Introduction to Computing with Neural Nets *(lecture-9)*

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Transformation from set-spltting to positive linear confinement: for proving NPcompleteness of the latter

- $S = \{s_1, s_2, s_3\}$
- $c_1 = \{s_1, s_2\}, c_2 = \{s_2, s_3\}$

Proving the transformation

- Statement
 - Set-splitting problem has a solution if and only if positive linear confinement problem has a solution.
- Proof in two parts: *if part* and **only if** part
- If part
 - Given Set-splitting problem has a solution.
 - To show that the constructed Positive Linear Confinement (PLC) problem has a solution
 - *i.e.* to show that since S_1 and S_2 exist, P_1 and P_2 exist which confine the positive points

Proof of *if part*

• P_1 and P_2 are as follows:

 $-P_{1}: a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n} = -1/2 \qquad -- \text{ Eqn A}$ $-P_{2}: b_{1}x_{1} + b_{2}x_{2} + \dots + b_{n}x_{n} = -1/2 \qquad -- \text{ Eqn B}$ $a_{i} = -1, \quad \text{if } s_{i} \in S_{1}$ $= n, \quad \text{otherwise}$ $b_{i} = -1, \quad \text{if } s_{i} \in S_{2}$ $= n, \quad \text{otherwise}$

What is proved

- Origin (+ve point) is on one side of P_1
- +ve points corresponding to c_i 's are on the same side as the origin.
- -ve points corresponding to S_1 are on the opposite side of P_1

Illustrative Example

• Example

$$S = \{s_{1}, s_{2}, s_{3}\}$$

$$c_{1} = \{s_{1}, s_{2}\}, c_{2} = \{s_{2}, s_{3}\}$$

Splitting:
$$S_{1} = \{s_{1}, s_{3}\}, S_{2} = \{s_{2}\}$$

• +ve points:

-(<0, 0, 0>, +), (<1, 1, 0>, +), (<0, 1, 1>, +)

• -ve points:

- (<1, 0, 0>,-), (<0, 1, 0>,-), (<0, 0, 1>,-)

Example (contd.)

• The constructed planes are:

• P_1 : $a_1x_1 + a_2x_2 + a_3x_3 = -1/2$ $-x_1 + 3x_2 - x_3 = -1/2$ • P_2 : $b_1x_1 + b_2x_2 + b_3x_3 = -1/2$ $3x_1 - x_2 + 3x_3 = -1/2$

Graphic for Example

Proof of only if part

- Given +ve and -ve points constructed from the set-splitting problem, two hyperplanes P₁ and P₂ have been found which do positive linear confinement
- To show that S can be split into S_1 and S_2

Proof (Only if part) contd.

- Let the two planes be:
 - $-P_{1}: a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n} = \mathbf{\theta}_{1}$ $-P_{2}: b_{1}x_{1} + b_{2}x_{2} + \dots + b_{n}x_{n} = \mathbf{\theta}_{2}$
- Then,
 - $-S_{1} = \{\text{elements corresponding to -ve points} \\ \text{separated by } P_{1} \}$
 - $-S_2 = \{\text{elements corresponding to -ve points} \\ \text{separated by } P_2 \}$

Proof (Only if part) contd.

- Suppose $c_i \subset S_i$, then every element in c_i is contained in S_i
- Let eⁱ₁, eⁱ₂, ..., eⁱ_{mi} be the elements of c_i corresponding to each element
- Evaluating for each co-efficient, we get, $-a_1 < \theta_1, a_2 < \theta_1, \dots, a_{mi} < \theta_1 - (1)$ $-But a_1 + a_2 + \dots + a_m > \theta_1 - (2)$ $-and 0 > \theta_1 - (3)$
- CONTRADICTION

What has been shown

- Positive Linear Confinement is NP-complete.
- Confinement on any set of points of one kind is NP-complete (easy to show)
- The architecture is special- only one hidden layer with two nodes
- The neurons are special, 0-1 threshold neurons, NOT sigmoid
- Hence, can we generalize and say that FF NN training is NP-complete?
- Not rigorously, perhaps; but strongly indicated

Accelerating Backpropagation

Quickprop: Fahlman, '88

 Assume a parabolic approximation to the error surface

Quickprop basically makes use of the second derivative

- $E = aw^2 + bw + c$
- First derivative, $E' = \delta E / \delta w = 2aw + b$
- E'(t-1) = 2aw(t-1) + b --- (1)
- E'(t) = 2aw(t) + b --- (2)
- Solving,

-a = [E'(t) - E'(t-1)]/2[w(t) - w(t-1)]

-B = E'(t) - [E'(t) - E'(t-1)]w(t)/[w(t) - w(t-1)]

Next weight w(t+1)

- This is found by minimizing *E*(*t*+1)
- Set *E'(t+1)* to 0
- 2aw(t+1) + b = 0
- Substituting for a and b

 $-w(t+1)-w(t) = [w(t)-w(t-1)] \times [E'(t)]/[E'(t-1)-E'(t)]$

$$-i.e. \Delta w(t) = \Delta w(t-1) \frac{E'(t)}{E'(t-1)-E'(t)}$$

How to fix the hidden layer

By trial and error mostly

- No theory yet
- Read papers by Eric Baum
- Heuristics exist like the *mean* of the sizes of the i/p and the o/p layers (arithmetic, geometric and harmonic)

Grow the network: Tiling Algorithm

- A kind of divide and conquer strategy
- Given the classes in the data, run the perceptron training algorithm
- If linearly separable, convergence without any hidden layer
- If not, do as well as you can (pocket algorithm)
- This will produce classes with misclassified points

Tiling Algorithm (contd)

- Take the class with misclassified points and break into subclasses which contain no *outliers*
- Run PTA again *after recruiting* the required number of *perceptrons*
- Do this until homogenous classes are obtained
- Apply the same procedure for the first hidden layer to obtain the second hidden layer and so on

Illustration

- XOR problem
- Classes are

(0, 0) (1, 1) (1, 1) (0, 1)

As best a classification as possible

Classes with error

How to achieve this classification

Give the labels as shown: eqv to an OR problem

The partially developed n/w

 Get the first neuron in the hidden layer, which computes OR

Solve classification for h₂

This is x_1x_2

Next stage of the n/w

Getting the output layer

 Solve a tiling algo problem for the hidden layer

x ₂	x ₁	h ₁	h ₁	У
		$(x_1 + x_2)$	$\overline{x_1x_2}$	
0	0	0	1	0
0	1	1	1	1
1	0	1	1	1
1	1	1	0	0

Final n/w

Lab exercise

Implement the tiling algorithm and run it for

- 1. XOR
- 2. Majority
- 3. IRIS data