
CS623: Introduction to
Computing with Neural Nets

(lecture-9)
Pushpak Bhattacharyya

Computer Science and Engineering
Department
IIT Bombay

Transformation from set-spltting to positive
linear confinement: for proving NP-

completeness of the latter
• S = {s1, s2, s3}
• c1 = {s1, s2}, c2 = {s2, s3}

x1

x2

x3

(0,0,0) +ve

(0,0,1) -ve

(0,1,0) -ve

(1,0,0) -ve

(1,1,0) +ve

(0,1,1) +ve

Proving the transformation
• Statement

– Set-splitting problem has a solution if and only if
positive linear confinement problem has a solution.

• Proof in two parts: if part and only if part
• If part

– Given Set-splitting problem has a solution.
– To show that the constructed Positive Linear

Confinement (PLC) problem has a solution
– i.e. to show that since S1 and S2 exist, P1 and P2

exist which confine the positive points

Proof of if part
• P1 and P2 are as follows:

– P1 : a1x1 + a2x2+ ... + anxn = -1/2 -- Eqn A
– P2 : b1x1 + b2x2 + ... + bnxn = -1/2 -- Eqn B

ai = -1, if si ε S1

= n, otherwise
bi = -1, if si ε S2

= n, otherwise

What is proved

• Origin (+ve point) is on one side of P1

• +ve points corresponding to ci’s are on the
same side as the origin.

• -ve points corresponding to S1 are on the
opposite side of P1

Illustrative Example

• Example
� S = {s1, s2, s3}
� c1 = {s1, s2}, c2 = {s2, s3}
� Splitting : S1 = {s1, s3}, S2 = {s2}

• +ve points:
– (<0, 0, 0>,+), (<1, 1, 0>,+), (<0, 1, 1>,+)

• -ve points:
– (<1, 0, 0>,-), (<0, 1, 0>,-), (<0, 0, 1>,-)

Example (contd.)

• The constructed planes are:
• P1 :

� a1x1 + a2x2 + a3x3 = -1/2
� -x1 + 3x2 – x3 = -1/2

• P2:
� b1x1 + b2x2 + b3x3 = -1/2
� 3x1 – x2 + 3x3 = -1/2

Graphic for Example

P
1P

2

<1, 1, 0> +
<0, 0, 0> +
<0, 1, 1> +

<1, 0, 0> -
<0, 0, 1> -

<0, 1, 0> -

S1

S2

Proof of only if part

• Given +ve and -ve points constructed from the
set-splitting problem, two hyperplanes P1 and
P2 have been found which do positive linear
confinement

• To show that S can be split into S1 and S2

Proof (Only if part) contd.
• Let the two planes be:

– P1: a1x1 + a2x2+ ... + anxn = θ1

– P2 : b1x1 + b2x2 + ... + bnxn = θ2

• Then,
– S1 = {elements corresponding to -ve points

separated by P1}
– S2 = {elements corresponding to -ve points

separated by P2}

Proof (Only if part) contd.
• Suppose ci ⊂ S1, then every element in ci is

contained in S1
• Let e1

i, e2
i, ..., emi

i be the elements of ci
corresponding to each element

• Evaluating for each co-efficient, we get,
– a1 < θ1, a2 < θ1, ..., ami < θ1 -- (1)
– But a1 + a2 + ... + am > θ1 -- (2)
– and 0 > θ1 -- (3)

• CONTRADICTION

What has been shown

• Positive Linear Confinement is NP-complete.
• Confinement on any set of points of one kind is

NP-complete (easy to show)
• The architecture is special- only one hidden

layer with two nodes
• The neurons are special, 0-1 threshold neurons,

NOT sigmoid
• Hence, can we generalize and say that FF NN

training is NP-complete?
• Not rigorously, perhaps; but strongly indicated

Accelerating Backpropagation

Quickprop: Fahlman, ‘88

• Assume a parabolic approximation to the
error surface

Actual
Error
surface

Parabolic
Approximation

w

E

Wt-1Wt
True error
minimum

New wt
by
QP

Quickprop basically makes use of
the second derivative

• E= aw2 + bw + c
• First derivative, E’= δE/ δw= 2aw + b
• E’(t-1)= 2aw(t-1) + b --- (1)
• E’(t)= 2aw(t) + b --- (2)
• Solving,

– a= [E’(t) – E’(t-1)]/2[w(t) – w(t-1)]
– B= E’(t) - [E’(t) – E’(t-1)]w(t)/[w(t) – w(t-1)]

Next weight w(t+1)

• This is found by minimizing E(t+1)
• Set E’(t+1) to 0
• 2aw(t+1) + b = 0
• Substituting for a and b

– w(t+1)-w(t)= [w(t)-w(t-1)] X [E’(t)]/[E’(t-1)-E’(t)]

– i.e. ∆w(t) = ∆w(t-1)
E’(t)

E’(t-1)-E’(t)

How to fix the hidden layer

By trial and error mostly

• No theory yet
• Read papers by Eric Baum
• Heuristics exist like the mean of the sizes

of the i/p and the o/p layers (arithmetic,
geometric and harmonic)

Grow the network: Tiling Algorithm

• A kind of divide and conquer strategy
• Given the classes in the data, run the

perceptron training algorithm
• If linearly separable, convergence without

any hidden layer
• If not, do as well as you can (pocket

algorithm)
• This will produce classes with

misclassified points

Tiling Algorithm (contd)

• Take the class with misclassified points and
break into subclasses which contain no outliers

• Run PTA again after recruiting the required
number of perceptrons

• Do this until homogenous classes are obtained
• Apply the same procedure for the first hidden

layer to obtain the second hidden layer and so
on

Illustration

• XOR problem
• Classes are

(0, 0)

(1, 1)
(0, 1)

(1, 0)

As best a classification as possible

(0,0) (1,0)

(0,1) (1,1)
+ve

+ve

-ve

-ve

Classes with error

(0,0)

(1,1)

(0,1)

(1,0)

outlier

How to achieve this classification

• Give the labels as shown: eqv to an OR
problem

(0,0) (1,1)

(0,1)

(1,0)

outlier

+-

The partially developed n/w

• Get the first neuron in the hidden layer,
which computes OR

x1x2

h1

0.5

1.0
1.0

Break the incorrect class

(1,1)

(0,1)

(1,0)

outlier

(1,0)
(0,1)

(1,1)

(0,0)

+

-

Don’t care:
Make +

Solve classification for h2

(1,1)

(1,0)

(0,1)

(0,0)

+

-

This is x1x2

Next stage of the n/w

x1x2

h1h2 0.5

1.0
1.0

-1.0 -1.0

-1.5
Computes x1x2 Computes x1+x2

Getting the output layer

• Solve a tiling algo
problem for the
hidden layer

00111

11101

11110

01000

yh1

x1x2

h1

(x1+x2)
x1x2

(1,1)
(0,0)

(0,1)

(1,0)

+-

AND problem

Final n/w

x1x2

h1h2 0.5

1.0
1.0

-1.0 -1.0

-1.5

Computes x1x2 Computes x1+x2

• AND n/w

1.0 1.0

0.5

y
Computes x1x2

Lab exercise

Implement the tiling algorithm and run it for
1. XOR
2. Majority
3. IRIS data

