
Combinatorial optimization using Hopfield Net -
Intuitions

1 Sorting

1.1 Equations

• E1 = A
2

[
∑

i(
∑

α xi,α − 1)2 +
∑

α(
∑

i xi,α − 1)2]
Same as TSP

• E2 = B
∑

i

∑

α xiα ∗ Si ∗ α (where Si is the value at ith position in the
input array)
Summation over “value ∗ position” should be minimized (this will give
reverse sorting)

1.2 Weights and Thresholds

• wij = −A

Weight values for the neurons in the same row/column. If some value
Si is set into some position j, Si can not go to any other position and no
other value can be set in position j, so inhibit corresponding neurons.
Other weight values will be 0

• θ = 2A − SiBα

This depends on values of A and B. If the value Si has already been
set to some other place or if some other value has been set to position
α, look for the product Siα and depending upon the values of A and
B, make some decision.

Following problems are from Graph Theory. While solving them,

we add the threshold value to find the net input of a neuron. We

subtract the term with threshold in the engergy equation.

For all problems, we are assuming values of A and B to be 1

2 Vertex Cover

2.1 Equations

• E1 =
∑

i vi

Minimize the no. of vertices in the solution.

1



• E2 =
∑

i

∑

j dijvi ∨ vj

Cover each edge.
If dij = 1 i.e. vi and vj are adjacent, then at least one of them must
be there in the solution (to cover the edge). If none of them is in
the solution, vi ∨ vj will be 1 and the whole term will evaluate to 1,
increasing the energy. HN will try to avoid this in order to reach the
stable state.

2.2 Weights and Thresholds

• wij = −2dij

If some vertex v is in the solution, it reduces the requirement for its
neighbours to be in the solution.

• θij = 2
∑

i dij − 1
If all edges of a particular vertex v has been covered by the neighbours,
v is not required in the solution. In this case, 2

∑

i dij will remove
the effect of the input from the neighbours and −1 will not allow the
neuron to fire. If at least one edge is not being covered i.e. at least one
neighbour is at 0 output, total input from neighrous will be less than
2

∑

i dij and the neuron for v will fire.

3 Independent Set

3.1 Equations

• E1 =
∑

i vi

Maximize the no. of vertices in the solution.
Minimize the no. of neurons not fired.

• E2 =
[

∑

i

∑

j eij(vi ∧ vj)
]

There should not be an edge between the vertices in the IS.
If there is an edge and both vi and vj are 1 in the solution, this term
will add something to the energy. Again, HN will try to avoid this
situation

3.2 Weights and Thresholds

• wij=-eij

Every fired neighbour will add -1 to the net input of this neuron.

2



• θi=1
Don’t let this neuron fire if any of the neighbours has fired.

4 Clique

4.1 Equations

• E1 =
∑

i vi

Maximize the no. of vertices in the solution.
Minimize the no. of neurons not fired.

• E2 = −

[

∑

i

∑

j(eij − 1)(vi ∧ vj)
]

Confirm that there is an edge between every pair of vertices.
If there is no edge between vi and vj and still both of them are in the
solution, this will add something to energy. HN will avoid this.

4.2 Weights and Thresholds

• wij=-eij − 1
Every not-fired neighbour will add −1 to the net input of the selected
neuron.

• θ = 1
Let this neuron fire only if the net input is 0 i.e. every neighbour has
fired.

5 Matching

Same as Independent Set.
If edges i and j have some common vertex, dij = 1 else dij = 0.
ei - whether the edge is in the solution or not.

3


