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Seminar Outline

� Weight Initialization Problem (Part – I)

� Introduction to Genetic Algorithms (Part – II)

� GA-NN based solution (Part – III)



Problem Definition

Part - I



Backpropagation

� Feed-forward neural network training method

� Minimizes Mean Square Error 

� Gradient descent 

� Greedy Method
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Weight Initialization Problem

� Backpropagation is sensitive to initial 

conditions [KOL-1990]

� Initial conditions such as

- initial weights

- learning factor

- momentum factor
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Effect of Initial Weights

� Can get stuck in local minima

� May converge too slowly

� Achieved generalization can be poor
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Solution

� Use of global search methods to get the final 
weights, such as: Genetic algorithms, Simulated 
Annealing etc.

� Use global search methods to get closer to global 
minimum & then run local search (BP) to get exact 
solution

We will concentrate on the latter method 
using Genetic algorithms

Problem Definition



Genetic Algorithms
A primer

Part - II



Motivation

� Inspired by evolution in living organisms

� “Survival of the fittest”

� “Fitter” individuals in the population preferred 

to reproduce to create new generation

Genetic Algorithms



Other algorithms inspired by nature

� Neural networks – neurons in brain 

� Simulated annealing – physical properties of 
metals

� GA, NN have partly overlapped application 
areas – pattern recognition, ML, image 
processing, expert systems

Genetic Algorithms



Basic Steps

� Coding the problem

� Determining “fitness”

� Selection of parents for reproduction

� Recombination to produce new generation

Genetic Algorithms



Coding

Phenotype = Finished “construction” of the individual (values assigned 
to parameters)

Genotype = set of parameters represented in the chromosome

Chromosome = concatenated 
parameter values

Chromosome = collection of genes

Parameters of solutionGenes

GA in CSGA in nature

Genetic Algorithms



Generic Model for 
Genetic Algorithm (1)
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Generic Model for 
Genetic Algorithm (2)

BEGIN /* genetic algorithm */

generate initial population

WHILE NOT finished DO

BEGIN

compute fitness of each individual

IF population has converged THEN

finished := TRUE

ELSE

/* reproductive cycle */

apply genetic operators to produce children

END

END

END
Genetic Algorithms



Determining fitness

� Fitness function

� Varies from problem to problem

� Usually returns a value that we want to 

optimize

� Example: Strength / Weight ratio in a civil 

engineering problem

� Unimodal / Multimodal fitness functions –

Multimodal: several peaks

Genetic Algorithms



Selection

� Individuals selected to recombine and produce 
offspring

� Selection of parents based on “Roulette Wheel”
algorithm

� Fitter parents may get selected multiple times, not-

so-fit may not get selected at all

� Child can be less fit than parents, but such a child 

will probably “die out” without reproducing in the next 
generation.
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Roulette Wheel selection

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Individual 8
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Selection - variations

� Fitness-based v/s rank-based
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Recombination - Crossover

� Crossover probability (typically 0.6 < CP < 1)

� If no crossover, child is identical to parent

Genetic Algorithms



Crossover – variations (1)

� One-point crossover
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Crossover – variations (2)

� Two-point crossover

Genetic Algorithms



Crossover – variations (3)

� Uniform crossover
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Recombination - Mutation

� Crossover – rapidly searches a large problem space

� Mutation – allows more fine-grained search
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Convergence

� Gene convergence: when 95% of the 

population has the same value for that gene

� Population convergence: when all the genes 

reach convergence 
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Design Issues

� Goldberg’s principles of coding (building 

block hypothesis):

– Related genes should be close together

– Little interaction between genes

� Is it possible, (and if yes, how) to find coding 

schemes that obey the principles?

� If not, can the GA be modified to improve its 

performance in these circumstances?
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GA - Plus points

� Robust: Wide range of problems can be tackled

� “Acceptably good” solutions in “acceptably quick”

time

� Explore wide range of solution space reasonably 

quickly

� Combination of Exploration and Exploitation

� Hybridizing existing algorithms with GAs often 

proves beneficial

Genetic Algorithms



GA - shortcomings

� Need not always give a globally optimum 

solution!

� Probabilistic behavior

Genetic Algorithms



Weight Initialization using GA

Part - III



Applying GA to Neural Nets

� Optimizing the NN using GA as the 

optimization algorithm [MON-1989]

� Weight initialization

� Learning the network topology

� Learning network parameters

Weight Initialization using GA



Why use genetic algorithms?

� Global heuristic search (Global Sampling)

� Get close to the optimal solution faster

� Genetic operators create a diversity in the 

population, due to which a larger solution 

space can be explored.
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The Intuition

� Optimizing using only GA is not efficient.

– Might move away after getting close to the solution.

� Gradient Descent can zoom in to a solution in a local 

neighbourhood.

� Exploit the global search of GA with local search of 

backpropagation.

� This hybrid approach has been observed to be 
efficient.

Weight Initialization using GA



The Hybrid (GA-NN) Approach

GA provides ‘seeds’ for the BP to run.
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Basic Architecture

GA BP-FF

Random 

encoded weights

Fittest Candidates 

from GA  for BP

Next 

generation 

candidates

Evaluate

Fitness 
Function

Final weights
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Considerations

� Initially high learning rate

– To reduce required number of BP iterations 

� Learning rate and number of BP iterations as a 

function of fitness criteria: 

– To speed up convergence

– To exploit local search capability of BP

� Tradeoff between number of GA generations and 
BP iterations. 
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Encoding Problem

Q. What to encode?

Ans. Weights.

Q. How?

Ans. Binary Encoding

Weight Initialization using GA



Binary Weight Encoding
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Issues

� Order of the weights

� Code length 

� Weights are real valued
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Code Length ‘l l l l ‘

� Code length determines

- resolution

- precision

- size of solution space to be searched

� Minimal precision requirement � minimum ‘l ’
� limits the efforts to improve GA search by 
reducing gene length  

Weight Initialization using GA



Real Value Encoding Methods

� Gray-Scale

� DPE (Dynamic Parameter Encoding)

Weight Initialization using GA



Gray-Code Encoding

� Gray-code : Hamming distance between any two 
consecutive numbers is 1

� Better than or at least same as binary encoding

� Example

Weight Initialization using GA



Real-Value Encoding 
Using Gray-code
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Randomization + Transformation

Weight Initialization using GA

[a,b) – the interval
i – parameter value read from   chromosome
l – code length

X – random variable with values from [0,1)



Drawbacks

� Too large search space � large ‘l ’ � higher 

resolution � high precision � long time for 

GA to converge

� Instead: search can proceed from coarse to 

finer precision: i.e. DPE

Weight Initialization using GA



DPE 

(Dynamic Parameter Encoding) [SCH-1992]

� use small ‘l’ � coarse precision � search for 

most favored area � refine mapping �

again search � iterate till convergence with 

desired precision achieved 

� Zooming operation

Weight Initialization using GA



Zooming
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Fitness Function

� Mean Square Error

� Rate of change of Mean Square Error
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Genetic operators – problem-specific 
variations (1)

� UNBIASED-MUTATE-WEIGHTS

– With fixed p, replace weight by new randomly 

chosen value

� BIASED-MUTATE-WEIGHTS

– With fixed p, add randomly chosen value to 

existing weight value – biased towards existing 
weight value – exploitation

Weight Initialization using GA



Genetic operators – problem-specific 
variations (2)

� MUTATE-NODES

– Mutate genes for incoming weights to n non-input neurons

– Intuition: such genes form a logical subgroup, changing them 
together may result in better evaluation

� MUTATE-WEAKEST-NODES

– Strength of a node  = 

(n/w evaluation) – (n/w evaluation with this node “disabled” i.e. its 
outgoing weights set to 0)

– Select m weakest nodes and mutate their incoming / outgoing 
weights

– Does not improve nodes that are already “doing well”, so should 
not be used as a single recombination operator

Weight Initialization using GA



Genetic operators – problem-specific 
variations (3)

� CROSSOVER-WEIGHTS

– Similar to uniform crossover

� CROSSOVER-NODES

– Crossover the incoming weights of a parent node 
together

– Maintains “logical subgroups” across generations

Weight Initialization using GA



Genetic operators – problem-specific 
variations (4)

� OPERATOR-PROBABILITIES

– Decides which operator(s) from the operator pool 

get applied for a particular recombination

– Initially, all operators have equal probability

– An adaptation mechanism tunes the probabilities 

as the generations evolve

Weight Initialization using GA



Computational Complexity

� Training time could be large due to running 

multiple generations of GA and multiple runs 

of BP. 
� Total Time = Generations*PopulationSize*Training Time

� There is a tradeoff between the number of 

generations and number of trials to each 

individual

Weight Initialization using GA



CONCLUSION & FUTURE WORK

� Hybrid approach promising

� Correct choice of encoding and 
recombination operators are important.

� As part of course project
– Implement the hybrid approach

– Experiment with different learning rates and 
number of iterations and adapting them
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