
Weight Initialization for
Backpropagation with Genetic

Algorithms

Anoop Kunchukuttan

Sandeep Limaye

Ashish Lahane

Seminar Outline

� Weight Initialization Problem (Part – I)

� Introduction to Genetic Algorithms (Part – II)

� GA-NN based solution (Part – III)

Problem Definition

Part - I

Backpropagation

� Feed-forward neural network training method

� Minimizes Mean Square Error

� Gradient descent

� Greedy Method

Problem Definition

Weight Initialization Problem

� Backpropagation is sensitive to initial

conditions [KOL-1990]

� Initial conditions such as

- initial weights

- learning factor

- momentum factor

Problem Definition

Effect of Initial Weights

� Can get stuck in local minima

� May converge too slowly

� Achieved generalization can be poor

Problem Definition

Solution

� Use of global search methods to get the final
weights, such as: Genetic algorithms, Simulated
Annealing etc.

� Use global search methods to get closer to global
minimum & then run local search (BP) to get exact
solution

We will concentrate on the latter method
using Genetic algorithms

Problem Definition

Genetic Algorithms
A primer

Part - II

Motivation

� Inspired by evolution in living organisms

� “Survival of the fittest”

� “Fitter” individuals in the population preferred

to reproduce to create new generation

Genetic Algorithms

Other algorithms inspired by nature

� Neural networks – neurons in brain

� Simulated annealing – physical properties of
metals

� GA, NN have partly overlapped application
areas – pattern recognition, ML, image
processing, expert systems

Genetic Algorithms

Basic Steps

� Coding the problem

� Determining “fitness”

� Selection of parents for reproduction

� Recombination to produce new generation

Genetic Algorithms

Coding

Phenotype = Finished “construction” of the individual (values assigned
to parameters)

Genotype = set of parameters represented in the chromosome

Chromosome = concatenated
parameter values

Chromosome = collection of genes

Parameters of solutionGenes

GA in CSGA in nature

Genetic Algorithms

Generic Model for
Genetic Algorithm (1)

Genetic Algorithms

Generic Model for
Genetic Algorithm (2)

BEGIN /* genetic algorithm */

generate initial population

WHILE NOT finished DO

BEGIN

compute fitness of each individual

IF population has converged THEN

finished := TRUE

ELSE

/* reproductive cycle */

apply genetic operators to produce children

END

END

END
Genetic Algorithms

Determining fitness

� Fitness function

� Varies from problem to problem

� Usually returns a value that we want to

optimize

� Example: Strength / Weight ratio in a civil

engineering problem

� Unimodal / Multimodal fitness functions –

Multimodal: several peaks

Genetic Algorithms

Selection

� Individuals selected to recombine and produce
offspring

� Selection of parents based on “Roulette Wheel”
algorithm

� Fitter parents may get selected multiple times, not-

so-fit may not get selected at all

� Child can be less fit than parents, but such a child

will probably “die out” without reproducing in the next
generation.

Genetic Algorithms

Roulette Wheel selection

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Individual 8

Genetic Algorithms

Selection - variations

� Fitness-based v/s rank-based

Genetic Algorithms

Recombination - Crossover

� Crossover probability (typically 0.6 < CP < 1)

� If no crossover, child is identical to parent

Genetic Algorithms

Crossover – variations (1)

� One-point crossover

Genetic Algorithms

Crossover – variations (2)

� Two-point crossover

Genetic Algorithms

Crossover – variations (3)

� Uniform crossover

Genetic Algorithms

Recombination - Mutation

� Crossover – rapidly searches a large problem space

� Mutation – allows more fine-grained search

Genetic Algorithms

Convergence

� Gene convergence: when 95% of the

population has the same value for that gene

� Population convergence: when all the genes

reach convergence

Genetic Algorithms

Design Issues

� Goldberg’s principles of coding (building

block hypothesis):

– Related genes should be close together

– Little interaction between genes

� Is it possible, (and if yes, how) to find coding

schemes that obey the principles?

� If not, can the GA be modified to improve its

performance in these circumstances?

Genetic Algorithms

GA - Plus points

� Robust: Wide range of problems can be tackled

� “Acceptably good” solutions in “acceptably quick”

time

� Explore wide range of solution space reasonably

quickly

� Combination of Exploration and Exploitation

� Hybridizing existing algorithms with GAs often

proves beneficial

Genetic Algorithms

GA - shortcomings

� Need not always give a globally optimum

solution!

� Probabilistic behavior

Genetic Algorithms

Weight Initialization using GA

Part - III

Applying GA to Neural Nets

� Optimizing the NN using GA as the

optimization algorithm [MON-1989]

� Weight initialization

� Learning the network topology

� Learning network parameters

Weight Initialization using GA

Why use genetic algorithms?

� Global heuristic search (Global Sampling)

� Get close to the optimal solution faster

� Genetic operators create a diversity in the

population, due to which a larger solution

space can be explored.

Weight Initialization using GA

The Intuition

� Optimizing using only GA is not efficient.

– Might move away after getting close to the solution.

� Gradient Descent can zoom in to a solution in a local

neighbourhood.

� Exploit the global search of GA with local search of

backpropagation.

� This hybrid approach has been observed to be
efficient.

Weight Initialization using GA

The Hybrid (GA-NN) Approach

GA provides ‘seeds’ for the BP to run.

Weight Initialization using GA

Basic Architecture

GA BP-FF

Random

encoded weights

Fittest Candidates

from GA for BP

Next

generation

candidates

Evaluate

Fitness
Function

Final weights

Weight Initialization using GA

Considerations

� Initially high learning rate

– To reduce required number of BP iterations

� Learning rate and number of BP iterations as a

function of fitness criteria:

– To speed up convergence

– To exploit local search capability of BP

� Tradeoff between number of GA generations and
BP iterations.

Weight Initialization using GA

Encoding Problem

Q. What to encode?

Ans. Weights.

Q. How?

Ans. Binary Encoding

Weight Initialization using GA

Binary Weight Encoding

Weight Initialization using GA

Issues

� Order of the weights

� Code length

� Weights are real valued

Weight Initialization using GA

Code Length ‘l l l l ‘

� Code length determines

- resolution

- precision

- size of solution space to be searched

� Minimal precision requirement � minimum ‘l ’
� limits the efforts to improve GA search by
reducing gene length

Weight Initialization using GA

Real Value Encoding Methods

� Gray-Scale

� DPE (Dynamic Parameter Encoding)

Weight Initialization using GA

Gray-Code Encoding

� Gray-code : Hamming distance between any two
consecutive numbers is 1

� Better than or at least same as binary encoding

� Example

Weight Initialization using GA

Real-Value Encoding
Using Gray-code

Weight Initialization using GA

Randomization + Transformation

Weight Initialization using GA

[a,b) – the interval
i – parameter value read from chromosome
l – code length

X – random variable with values from [0,1)

Drawbacks

� Too large search space � large ‘l ’ � higher

resolution � high precision � long time for

GA to converge

� Instead: search can proceed from coarse to

finer precision: i.e. DPE

Weight Initialization using GA

DPE

(Dynamic Parameter Encoding) [SCH-1992]

� use small ‘l’ � coarse precision � search for

most favored area � refine mapping �

again search � iterate till convergence with

desired precision achieved

� Zooming operation

Weight Initialization using GA

Zooming

Weight Initialization using GA

Fitness Function

� Mean Square Error

� Rate of change of Mean Square Error

Weight Initialization using GA

Genetic operators – problem-specific
variations (1)

� UNBIASED-MUTATE-WEIGHTS

– With fixed p, replace weight by new randomly

chosen value

� BIASED-MUTATE-WEIGHTS

– With fixed p, add randomly chosen value to

existing weight value – biased towards existing
weight value – exploitation

Weight Initialization using GA

Genetic operators – problem-specific
variations (2)

� MUTATE-NODES

– Mutate genes for incoming weights to n non-input neurons

– Intuition: such genes form a logical subgroup, changing them
together may result in better evaluation

� MUTATE-WEAKEST-NODES

– Strength of a node =

(n/w evaluation) – (n/w evaluation with this node “disabled” i.e. its
outgoing weights set to 0)

– Select m weakest nodes and mutate their incoming / outgoing
weights

– Does not improve nodes that are already “doing well”, so should
not be used as a single recombination operator

Weight Initialization using GA

Genetic operators – problem-specific
variations (3)

� CROSSOVER-WEIGHTS

– Similar to uniform crossover

� CROSSOVER-NODES

– Crossover the incoming weights of a parent node
together

– Maintains “logical subgroups” across generations

Weight Initialization using GA

Genetic operators – problem-specific
variations (4)

� OPERATOR-PROBABILITIES

– Decides which operator(s) from the operator pool

get applied for a particular recombination

– Initially, all operators have equal probability

– An adaptation mechanism tunes the probabilities

as the generations evolve

Weight Initialization using GA

Computational Complexity

� Training time could be large due to running

multiple generations of GA and multiple runs

of BP.
� Total Time = Generations*PopulationSize*Training Time

� There is a tradeoff between the number of

generations and number of trials to each

individual

Weight Initialization using GA

CONCLUSION & FUTURE WORK

� Hybrid approach promising

� Correct choice of encoding and
recombination operators are important.

� As part of course project
– Implement the hybrid approach

– Experiment with different learning rates and
number of iterations and adapting them

REFERENCES (1)

� [BE1-1993] David Beasley, David Bull, Ralph Martin: An
Overview of Genetic Algorithms – Part 1, Fundamentals,
University Computing, 1993.
http://ralph.cs.cf.ac.uk/papers/GAs/ga_overview1.pdf

� [BE2-1993] David Beasley, David Bull, Ralph Martin: An
Overview of Genetic Algorithms – Part 2, Research Topics,
University Computing, 1993.
http://www.geocities.com/francorbusetti/gabeasley2.pdf

REFERENCES (2)

� [BEL-1990] Belew, R., J. McInerney and N. N. Schraudolph
(1990). Evolving networks: Using the genetic algorithm
with connectionist learning. CSE Technical Report CS90-
174, University of California, San Diego.
http://citeseer.ist.psu.edu/belew90evolving.html

� [KOL-1990] Kolen, J.F., & Pollack, J.B. (1990).
Backpropagation is sensitive to the initial conditions.
http://citeseer.ist.psu.edu/kolen90back.html

� [MON-1989] D. Montana and L. Davis, Training Feedforward
Neural Networks Using Genetic Algorithms, Proceedings of
the International Joint Conference on Artificial Intelligence,
1989. http://vishnu.bbn.com/papers/ijcai89.pdf

REFERENCES (3)

� [SCH-1992] Schraudolph, N. N., & Belew, R. K. (1992)
Dynamic parameter encoding for genetic algorithms.
Machine Learning Journal, Volume 9, Number 1, 9-22.
http://citeseer.ist.psu.edu/schraudolph92dynamic.html

� [WTL-1993] D. Whitley, A genetic algorithm tutorial, Tech.
Rep. CS-93-103, Department of Computer Science, Colorado
State University, Fort Collins, CO 8052, March 1993.
http://citeseer.ist.psu.edu/whitley93genetic.html

� [ZBY-1992] Zbygniew Michalewicz, Genetic Algorithms +
Data Structures = Evolution Programs, Springer-Verlag,
1992. Text Book.

