Weight Initialization for Backpropagation with Genetic Algorithms

Anoop Kunchukuttan Sandeep Limaye Ashish Lahane

Seminar Outline

- Weight Initialization Problem (Part I)
- Introduction to Genetic Algorithms (Part II)
- GA-NN based solution (Part III)

Problem Definition

Part - I

Backpropagation

- Feed-forward neural network training method
- Minimizes Mean Square Error
- Gradient descent
- Greedy Method

Weight Initialization Problem

- Backpropagation is sensitive to initial conditions [KOL-1990]
- Initial conditions such as
 - initial weights
 - learning factor
 - momentum factor

- Can get stuck in local minima
- May converge too slowly
- Achieved generalization can be poor

Solution

- Use of global search methods to get the final weights, such as: Genetic algorithms, Simulated Annealing etc.
- Use global search methods to get closer to global minimum & then run local search (BP) to get exact solution

We will concentrate on the latter method using Genetic algorithms

Genetic Algorithms A primer

Part - II

Motivation

- Inspired by evolution in living organisms
- "Survival of the fittest"
- "Fitter" individuals in the population preferred to reproduce to create new generation

Other algorithms inspired by nature

- Neural networks neurons in brain
- Simulated annealing physical properties of metals
- GA, NN have partly overlapped application areas – pattern recognition, ML, image processing, expert systems

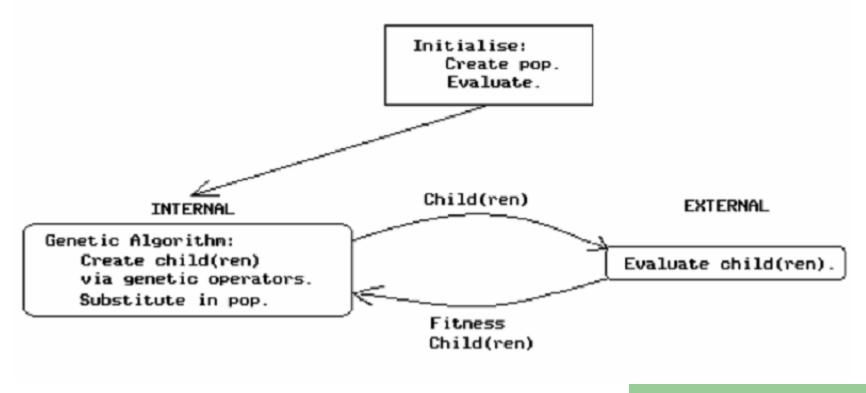
Basic Steps

- Coding the problem
- Determining "fitness"
- Selection of parents for reproduction
- Recombination to produce new generation

GA in nature	GA in CS
Genes	Parameters of solution
Chromosome = collection of genes	Chromosome = concatenated parameter values
Genotype = set of parameters represented in the chromosome	
Phenotype = Finished "construction" of the individual (values assigned to parameters)	
	Genetic Algorithms

denetic Algorithms

Generic Model for Genetic Algorithm (1)



Genetic Algorithms

Generic Model for Genetic Algorithm (2)

END

```
BEGIN /* genetic algorithm */
  generate initial population
  WHILE NOT finished DO
  BEGIN
      compute fitness of each individual
      IF population has converged THEN
          finished := TRUE
      ELSE
         /* reproductive cycle */
         apply genetic operators to produce children
      END
  END
```

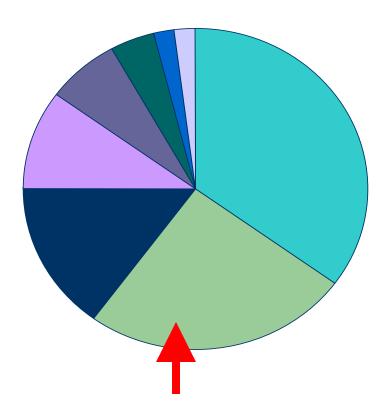
Determining fitness

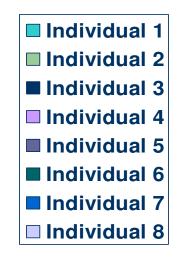
- Fitness function
- Varies from problem to problem
- Usually returns a value that we want to optimize
- Example: Strength / Weight ratio in a civil engineering problem
- Unimodal / Multimodal fitness functions Multimodal: several peaks

Selection

- Individuals selected to recombine and produce offspring
- Selection of parents based on "Roulette Wheel" algorithm
- Fitter parents may get selected multiple times, notso-fit may not get selected at all
- Child can be less fit than parents, but such a child will probably "die out" without reproducing in the next generation.

Roulette Wheel selection





Genetic Algorithms

Selection - variations

• Fitness-based v/s rank-based

rank

#1

#2 #3 #4 #5 6

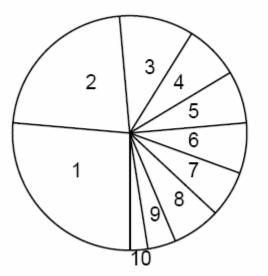
#7 #8 #9 #10 evaluation

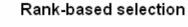
5.3

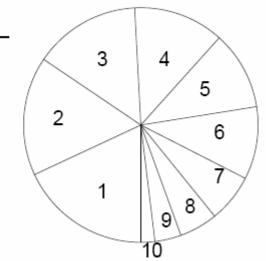
4.4 2.1 1.5

1.4 1.3 1.3 0.8 0.5

Fitness-based selection

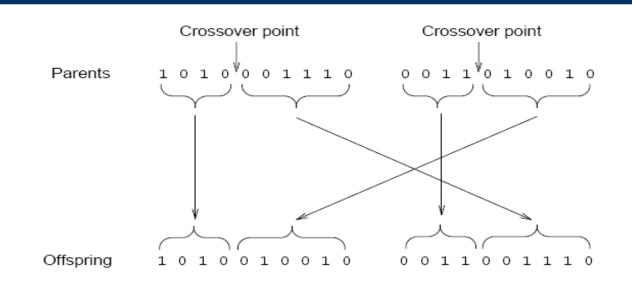






Genetic Algorithms

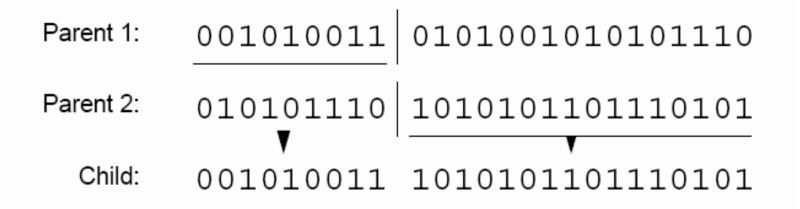
Recombination - Crossover



Crossover probability (typically 0.6 < CP < 1)
If no crossover, child is identical to parent

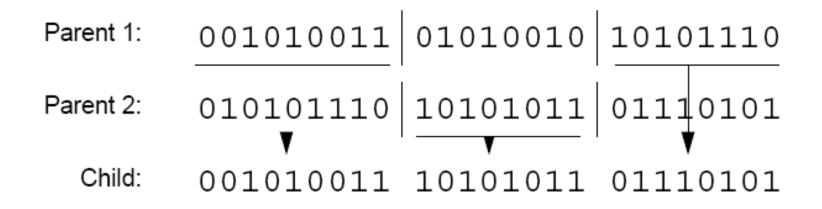
Crossover – variations (1)

• One-point crossover



Crossover – variations (2)

• Two-point crossover



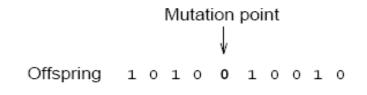
Genetic Algorithms

Crossover – variations (3)

• Uniform crossover

Genetic Algorithms

Recombination - Mutation



Mutated Offspring 1010 1 10010

- Crossover rapidly searches a large problem space
- Mutation allows more fine-grained search

Convergence

- Gene convergence: when 95% of the population has the same value for that gene
- Population convergence: when all the genes reach convergence

Design Issues

- Goldberg's principles of coding (building block hypothesis):
 - Related genes should be close together
 - Little interaction between genes
- Is it possible, (and if yes, how) to find coding schemes that obey the principles?
- If not, can the GA be modified to improve its performance in these circumstances?

GA - Plus points

- Robust: Wide range of problems can be tackled
- "Acceptably good" solutions in "acceptably quick" time
- Explore wide range of solution space reasonably quickly
- Combination of Exploration and Exploitation
- Hybridizing existing algorithms with GAs often proves beneficial

GA - shortcomings

- Need not always give a globally optimum solution!
- Probabilistic behavior

Genetic Algorithms

Weight Initialization using GA

Part - III

Applying GA to Neural Nets

- Optimizing the NN using GA as the optimization algorithm [мом-1989]
- Weight initialization
- Learning the network topology
- Learning network parameters

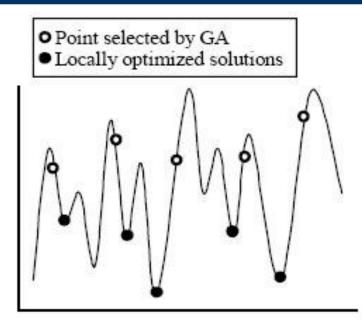
Why use genetic algorithms?

- Global heuristic search (Global Sampling)
- Get close to the optimal solution faster
- Genetic operators create a diversity in the population, due to which a larger solution space can be explored.

The Intuition

- Optimizing using only GA is not efficient.
 - Might move away after getting close to the solution.
- Gradient Descent can zoom in to a solution in a local neighbourhood.
- Exploit the global search of GA with local search of backpropagation.
- This hybrid approach has been observed to be efficient.

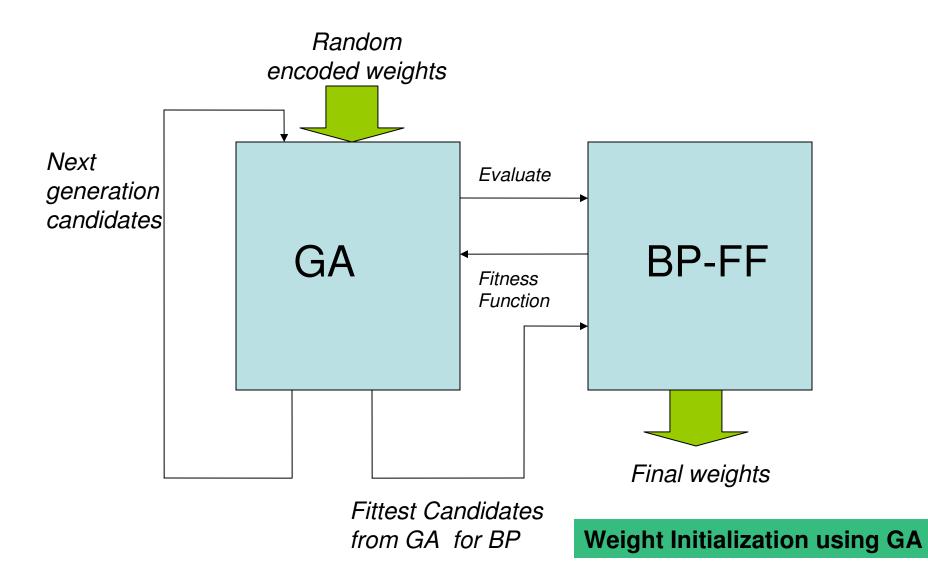
The Hybrid (GA-NN) Approach



GA provides 'seeds' for the BP to run.

Weight Initialization using GA

Basic Architecture



Considerations

- Initially high learning rate
 - To reduce required number of BP iterations
- Learning rate and number of BP iterations as a function of fitness criteria:
 - To speed up convergence
 - To exploit local search capability of BP
- Tradeoff between number of GA generations and BP iterations.

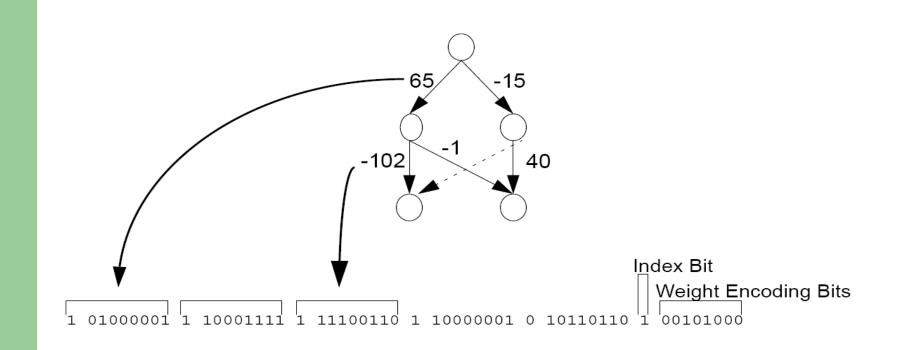
Encoding Problem

Q. What to encode?Ans. Weights.

Q. How?Ans. Binary Encoding

Weight Initialization using GA

Binary Weight Encoding



Weight Initialization using GA

• Order of the weights

• Code length

• Weights are real valued

Code Length 'l'

- Code length determines
 - resolution
 - precision
 - size of solution space to be searched
- Minimal precision requirement → minimum *l* '
 → limits the efforts to improve GA search by reducing gene length

Real Value Encoding Methods

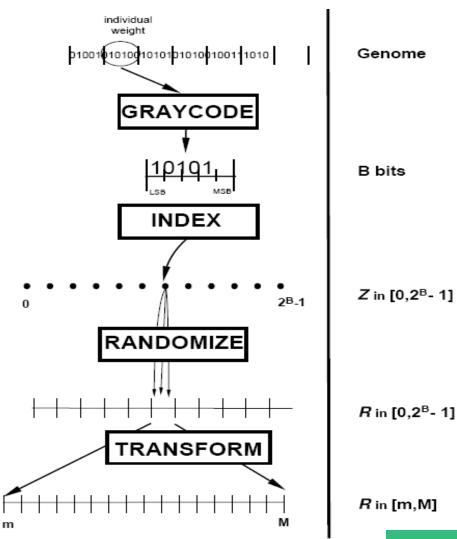
- Gray-Scale
- DPE (Dynamic Parameter Encoding)

Gray-Code Encoding

- Gray-code : Hamming distance between any two consecutive numbers is 1
- Better than or at least same as binary encoding

• Example	Number	Gray Codes	Binary Codes
	0	000	000
	1	001	001
	2	011	010
	3	010	011
	4	110	100
	5	111	101
	6	101	110
	7	100	111

Real-Value Encoding Using Gray-code



Randomization + Transformation

$$T(i) = a + (b - a) \frac{i + X}{2^{l}}$$

[a,b) – the interval

i – parameter value read from chromosome

l – code length

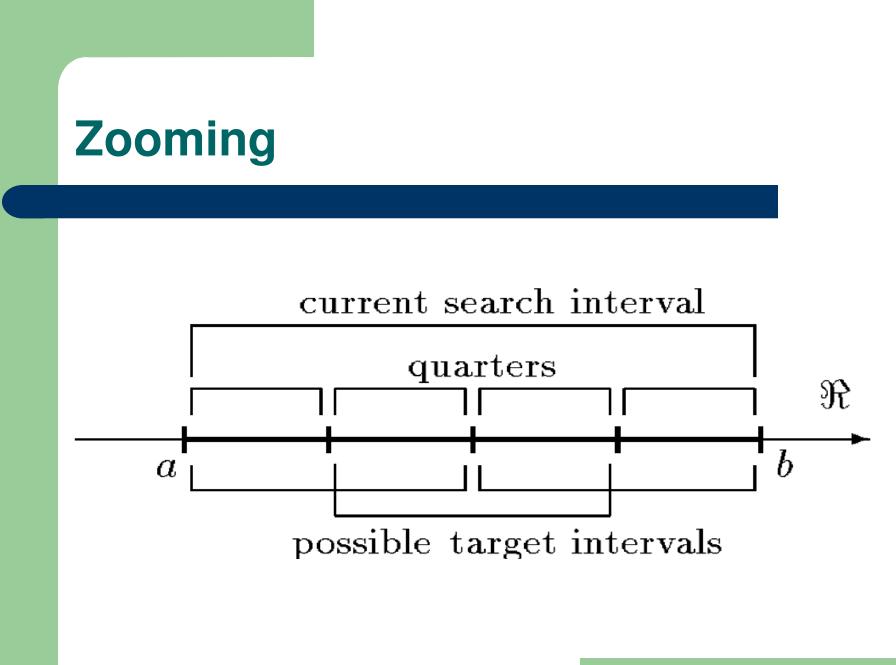
X – random variable with values from [0,1)

Drawbacks

- Too large search space → large 'l' → higher resolution → high precision → long time for GA to converge
- Instead: search can proceed from coarse to finer precision: i.e. DPE

DPE (Dynamic Parameter Encoding) [SCH-1992]

- use small 'l' → coarse precision → search for most favored area → refine mapping → again search → iterate till convergence with desired precision achieved
- Zooming operation



Fitness Function

- Mean Square Error
- Rate of change of Mean Square Error

Genetic operators – problem-specific variations (1)

• UNBIASED-MUTATE-WEIGHTS

 With fixed p, replace weight by new randomly chosen value

• BIASED-MUTATE-WEIGHTS

 With fixed p, add randomly chosen value to existing weight value – biased towards existing weight value – exploitation

Genetic operators – problem-specific variations (2)

- MUTATE-NODES
 - Mutate genes for incoming weights to *n* non-input neurons
 - Intuition: such genes form a logical subgroup, changing them together may result in better evaluation
- MUTATE-WEAKEST-NODES
 - Strength of a node =
 - (n/w evaluation) (n/w evaluation with this node "disabled" i.e. its outgoing weights set to 0)
 - Select *m* weakest nodes and mutate their incoming / outgoing weights
 - Does not improve nodes that are already "doing well", so should not be used as a single recombination operator

Genetic operators – problem-specific variations (3)

• CROSSOVER-WEIGHTS

- Similar to uniform crossover

• CROSSOVER-NODES

- Crossover the incoming weights of a parent node together
- Maintains "logical subgroups" across generations

Genetic operators – problem-specific variations (4)

• OPERATOR-PROBABILITIES

- Decides which operator(s) from the operator pool get applied for a particular recombination
- Initially, all operators have equal probability
- An adaptation mechanism tunes the probabilities as the generations evolve

Computational Complexity

- Training time could be large due to running multiple generations of GA and multiple runs of BP.
- Total Time = Generations*PopulationSize*Training Time
- There is a tradeoff between the number of generations and number of trials to each individual

CONCLUSION & FUTURE WORK

- Hybrid approach promising
- Correct choice of encoding and recombination operators are important.
- As part of course project
 - Implement the hybrid approach
 - Experiment with different learning rates and number of iterations and adapting them

REFERENCES (1)

- [BE1-1993] David Beasley, David Bull, Ralph Martin: An Overview of Genetic Algorithms – Part 1, Fundamentals, University Computing, 1993. <u>http://ralph.cs.cf.ac.uk/papers/GAs/ga_overview1.pdf</u>
- [BE2-1993] David Beasley, David Bull, Ralph Martin: An Overview of Genetic Algorithms – Part 2, Research Topics, University Computing, 1993.

http://www.geocities.com/francorbusetti/gabeasley2.pdf

REFERENCES (2)

- [BEL-1990] Belew, R., J. McInerney and N. N. Schraudolph (1990). Evolving networks: Using the genetic algorithm with connectionist learning. CSE Technical Report CS90-174, University of California, San Diego. <u>http://citeseer.ist.psu.edu/belew90evolving.html</u>
- [KOL-1990] Kolen, J.F., & Pollack, J.B. (1990).
 Backpropagation is sensitive to the initial conditions. <u>http://citeseer.ist.psu.edu/kolen90back.html</u>
- [MON-1989] D. Montana and L. Davis, Training Feedforward Neural Networks Using Genetic Algorithms, Proceedings of the International Joint Conference on Artificial Intelligence, 1989. <u>http://vishnu.bbn.com/papers/ijcai89.pdf</u>

REFERENCES (3)

- [SCH-1992] Schraudolph, N. N., & Belew, R. K. (1992)
 Dynamic parameter encoding for genetic algorithms. Machine Learning Journal, Volume 9, Number 1, 9-22. <u>http://citeseer.ist.psu.edu/schraudolph92dynamic.html</u>
- [WTL-1993] D. Whitley, A genetic algorithm tutorial, Tech. Rep. CS-93-103, Department of Computer Science, Colorado State University, Fort Collins, CO 8052, March 1993. <u>http://citeseer.ist.psu.edu/whitley93genetic.html</u>
- [ZBY-1992] Zbygniew Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, 1992. <u>Text Book.</u>