POS Tagger for Hindi

Nitin Agrawal
Smriti Singh
Manish Shrivastava
Kuhoo Gupta

Under Guidance of:
Prof. Pushpak Bhattacharyya
Outline

- Motivation
- Introduction
- Hindi POS Tagger
- Challenges
- Stages
Motivation

Part-of-Speech (POS) tagger is the basic building block for various NLP tools.

Wide applications:
- Information Retrieval, Machine Translation, Word Sense Disambiguation, Question Answering System etc.

Efficient POS tagger has not been reported for Hindi.
Introduction

POS tagging is the process of identifying lexical category of a word on the basis of its context in the sentence

Input: राम खेल रहा है.

(PPN: Proper noun, VM_MSX_PrDX: Verb main (male, singular, present, durative), VAUX: Verb auxiliary)

Classification

Rule based, Stochastic and Hybrid

Supervised and Unsupervised
Hindi POS Tagger

- Rule-based tagger
 - Hindi morphologically rich
 - Morphological analysis helps in
 - Determining the category
 - Determining the feature value

- Uses manually formulated rules at various stages
 - Non-availability of tagged corpora
Challenges: Hindi POS Tagging

🌟 Morphological Analysis
- Determining category and values of feature (gender, number, person, etc.) from morphemes present in word

🌟 Resolving ambiguities
- Multiple suffix: “खेलता” -> “ता” or “ा”
- Multiple category: “चमकता” -> verb or adjective
- Multiple feature values: “लड़के” -> singular oblique or plural direct

🌟 Handling unknown words
- Foreign word (गुडवाय), Proper noun (सलमान), Spelling mistake, etc.
Resources and Stages

RESOURCES
- Lexicon
- Suffix-replacement rules
- Unique suffix list
- Derivational morphology rules
- Suffix analysis
- Stem analysis
- Morpheme flag map
- Multi-category disambiguation rules
- Verb-group analysis rules
- Multi-analysis disambiguation rules

STAGES IN TAGGING
- Tokenisation
- Stemming
- Morpheme analysis and flagging
- Multi-category disambiguation
- Verb-group identification
- Phrase level analysis
- Tag generation
Cleaning and Tokenisation

Separating special characters attached to words

- Input: “भें घर जा रहा हूँ”
- After cleaning: “भें घर जा रहा हूँ”

Sentencification: Identifying sentences

- Input: राम अच्छा लड़का है | वह सबका आदर करता है
- After cleaning:
 - Sentence 1: राम अच्छा लड़का है
 - Sentence 2: वह सबका आदर करता है

Tokenisation: Breaking into units processed by the system

- Input: “भें घर जा रहा हूँ”
- Tokens: “, भें, घर, जा, रहा, हूँ , ”, ।
Morphological Analyser

- Identifies and analyses the structural component of the word
- Involves two stages
 - Suffix and category identification by stemmer
 - Analysis by morpheme analyser
- Applications: WorldNet API's, aAQUA search engine
Stemmer

Provides

- Stem, suffix and grammatical category
 - Input word: लड़कों
 - Output
 - Stem: लड़का
 - Suffix: ओँ
 - Grammatical Category: Noun

Performs initial tagging

- Output all possible categories for input word
 - Input word: चमकता
 - Output categories: Verb, Adjective

Heuristics for handling unknown applied at this level
Stemmer Block Diagram
Morpheme Analyser

 PROVIDES GRAMMATICAL INFORMATION FOR THE WORD FROM THE CONSTITUENT MORPHEMES

- Verb: gender, number, person, tense, aspect and mood
- Noun: number, case
- Pronoun: number, person

INVOLVES STEM ANALYSIS AND SUFFIX ANALYSIS

FLAGS THE PRESENCE OF MORPHEME IN SUFFIX AND STEM

USED FOR PHRASE LEVEL ANALYSIS OF VERB
Morpheme Analyser Block Diagram

- **Suffix analysis Table**
- **Stem analysis Table**
- **Morpheme flag mapping Table**

Input: रहता
Stem: रह
Suffix: ता
Category: verb
Analysis: masculine
Flag: r and t

- **रह, ता, verb**
- **रह, verb**
- **ता, verb**
- **ी, Masculine**
- **रहा, ता, verb**
Morpheme flagging

Flag the presence of morpheme
- Used for verb-group analysis
- Uses morpheme-flag map table

Example
- Input word: “रहता”
- Flags present: r for ‘रह’ and t for ‘त’
Multiple Category Disambiguator

- A word can occur in multiple categories
 - “खेल” can be verb and noun
- Results show 25% (approx) of the words get multiple categories
- Manually formulated disambiguation rules are used
- At present system is using 32 rules
- 30% of ambiguous words gets disambiguated using these rules
Multiple Category Disambiguation Rules

Rule format
- **PRESENTCAT** `<pcat>` **CONTEXT-INFORMATION** `<ntag>` THEN `<ctag>`
- **CONTEXT-INFORMATION** can be like
 - NEXTTAG – next word’s tag
 - PREVIOUSSTAG – previous word’s tag

Rule: **PRESENTCAT** adverb,adjective **NEXTCAT** verb THEN adverb
- Before applying rule: “दोस्ती_[N_S_X] को _[CM] लगातार _[ADJ ADV]
 बढ़ाना_[VM_MXX_NXX] है _[VAUX]।”
- After applying rule: “दोस्ती_[N_S_X] को _[CM] लगातार _[ADV]
 बढ़ाना_[VM_MXX_NXX] है _[VAUX]।”
Verb-Group Identification

Verb-group comprises finite main-verb and its auxiliaries

Example:

- Input sentence: “राम खेलता रहता है।”

Useful for

- Main verb identification, “खेलता रहता है।” , “घर में रहता है।”
- Aspect & Mood information

Identification needs determining category

- Mark the beginning of verb group, e.g. verb
- Mark the end of verb group, e.g. copular verb
- Come between in verb group, e.g. neg, particle
Phrase Level Analysis

- Uses context information of word for analysis

- Task performed at this level:
 - Verb group analysis
 - Identifying aspect and mood information
 - Multiple analysis disambiguation
Verb-group Analysis

Use rules and morpheme flag information for analysis

- Verb PRESENTFLAG <pflag>CONTEXT-INFORMATION
 <nflag>THEN <ana>

- CONTEXT-INFORMATION can be like
 - NEXTFLAG (Flag of word next to main-verb)
 - NEXTFLAG2 (Flag of word 2 positions ahead of main-verb)

Example,

- Input sentence: “राम खेलता रहता है।”
- Verb-group: “खेलता रहता है”
- Flags: “खेलता” - t, “रहता” – rt, “है” – null
- Rule applied: verb PRESENTFLAG t NEXTFLAG rt THEN A:H
- Analysis: Aspect Habitual (H) in verb group
Multiple Analysis Disambiguation

- Multiple analyses of morpheme in suffix is possible, e.g “`” of “लड़के”
 - “`” in “लड़के खेल रहे हैं” provides plural direct information
 - “`” in “लड़के ने अच्छा खेला” provides singular oblique information

- Disambiguation with the help of rules
 - noun NEXTCAT cm THEN N:S,C:O
 - Means If the noun has multiple feature value and the category of next word is case-marker (cm) then the correct analysis of noun is singular number and oblique case
Tag Generation

Category and feature value information is presented in the form of tag

Properties of Tagset
- Broad coverage: Tags for major categories
- Readability: Fixed tag format for categories with feature values,
 - Verb -> VM_GNP_TAM
 - Noun -> N_N_C

At present tags for 17 categories excluding categories with feature values

Number of tags including categories with feature values expected to be greater then 500