CS460/626 : Natural Language Processing/Speech, NLP and the Web
(Lecture 33, 34– Binding Theory; Merger)

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay
3rd and 4th April, 2012
(lecture 32 was on IBM model 1 by Anoop)
Motivation

- \(Ram_p \text{ saw himself}_p \text{ in the mirror} \)
- \(*Ram_p \text{ saw himself}_q \text{ in the mirror} \)
- \(Ram_p \text{ saw him}_q \text{ in the mirror} \)
- \(*Ram_p \text{ saw him}_p \text{ in the mirror} \)
- \(\text{The grandmother}_p \text{ of Ram}_q \text{’s distant uncle}_r \text{ saw him}_s \text{ the mirror} \)
- \(*\text{The grandmother}_p \text{ of Ram}_q \text{’s distant uncle}_r \text{ saw him}_p \text{ the mirror} \)
- \(\text{The grandmother}_p \text{ of Ram}_q \text{’s distant uncle}_r \text{ saw herself}_p \text{ the mirror} \)
- \(*\text{The grandmother}_p \text{ of Ram}_q \text{’s distant uncle}_r \text{ saw himself}_p \text{ the mirror} \)
Perspective

Deep understanding level

Interlingual level

Logico-semantic level

Mixing levels

Syntactico-functional level

Syntagmatic level

Morpho-syntactic level

Graphemic level

Ontological interlingua

Semantico-linguistic interlingua

Conceptual transfer

Semantic transfer

Ascending transfer

Multilevel transfer

Syntactic transfer (deep)

Syntactic transfer (surface)

Semi-direct translation

Direct translation

Multilevel description

SPA-structures (semantic & predicate-argument)

F-structures (functional)

C-structures (constituent)

Tagged text

Text

Problem

Language

Parsing

Part of Speech Tagging

Morph Analysis

Hindi

Marathi

English

French

NLP Trinity

Algorithm

CRF

HMM

MEMM

CRE

MEMM

CRF

Algorithm

CRF

MEMM

HMM

NLP Trinity

1. Deep understanding level
2. Interlingual level
3. Logico-semantic level
4. Mixing levels
5. Syntactico-functional level
6. Syntagmatic level
7. Morpho-syntactic level
8. Graphemic level

- Ontological interlingua
- Semantico-linguistic interlingua
- Conceptual transfer
- Semantic transfer
- Ascending transfer
- Multilevel transfer
- Syntactic transfer (deep)
- Syntactic transfer (surface)
- Semi-direct translation
- Direct translation
- Multilevel description
- SPA-structures (semantic & predicate-argument)
- F-structures (functional)
- C-structures (constituent)
- Tagged text
- Text

NLP Trinity

CRF

HMM

MEMM

Problem

Language

Parsing

Part of Speech Tagging

Morph Analysis

Hindi

Marathi

English

French

3
R-Expressions

- Consider the sentence: *Ram found a blanket in the green bag*
 - *Ram, a key in the green bag* are called “Referring Expressions” or “R-expressions”

- Key Definition: An **R-expression** is an entity that gets its meaning by referring to an entity in the world
Not all NPs are R-Expressions

- Ram found himself a blanket in the green bag
 - Himself must refer back to Ram and not to something in the outside world.

- Key Definition: An Anaphor is an NP that obligatorily gets its meaning from another NP in the sentence.
Types of Anaphors

- Reflexive pronouns
 - *Himself, herself, themselves*

- Reciprocals
 - Each other, one another
 - *Ram and Shyam saw each other*
Pronouns

- Get the meaning not necessarily from the same sentence
 - Ram told Shyam that he should collect the blanket
Pronouns with forward reference

- *That he will succeed, was known a priori to Ram*
Anaphors have definite syntactic position

- * himself Ram found a blanket
Coindex and Antecedent

- Definition: An NP that gives its meaning to an anaphor (or pronoun) is called an **Antecedent**
- *Ram found himself a blanket*
 - *Ram*: antecedent
 - *Himself*: anaphor
- Coindexing convention:
 - \([Ram]_i \text{ found } [\text{himself}]_j \text{ a } [\text{blanket}]_k\)
 - \([Ram]_i \text{ told } [\text{Shyam}]_j \text{ that } [he]_k \text{ should collect the } [\text{blanket}]_l\)
- Definition: NPs with the same index are said to be **coindexed** with each other
- Definition: NPs with the same index are said to **corefer** (i.e., refer to the same object in the outside world)
Binding Theory
Binding

- The relation between an antecedent and an anaphor/pronoun is a pretty rigid structural relation

 - Ram_i found himself$_i$ a blanket
 - *Ram_i found himself$_j$ a blanket
 - *[The servant of Ram]$_i$ found himself$_i$ a blanket
 - *[The servant of Ram]$_j$ found himself$_j$ a blanket
Key Definitions
Domination

- Essentially the specification of a *tree* (very familiar to computer scientists!)
- Axioms of domination ($x \preceq_D y$ means x dominates y)
 - (a) $X \preceq_D X$
 - (b) if $X \preceq_D Y \preceq_D Z$ then $X \preceq_D Z$
 - (c) if $X \preceq_D Y \preceq_D X$ then $X = Y$
 - (d) if $X \preceq_D Z$ and $Y \preceq_D Z$ then either $X \preceq_D Y$ or $Y \preceq_D X$ (or both if $X = Y = Z$)
Immediate Domination and Exhaustive Domination

- **Immediate Domination**: Direct Parent Child relation
- **Exhaustive Domination**: Node A exhaustively dominates a set of nodes \{B, C, ..., D\}, if it immediately dominates all the members of the set and there is no node G immediately dominated by A that is not a member of this set.
Constituency

- **Constituent**: A set of nodes exhaustively dominated by a *single* node
- **Constituent-of**: B is a constituent of A iff A dominates B
- **Immediate-constituent-of**: B is an immediate-constituent-of A iff A immediately dominates B
Precedence ("said first" relation)

- S → NP VP
- S dominates NP and VP
- \{NP VP\} forms a constituent
- But NP precedes VP
- Definition: Node A precedes node B iff A is to the left of B and neither A dominates B nor B dominates A and every node dominating A either appears to the left of B or dominates B
No crossing branches constraint

- If one node X precedes another node Y then X and all nodes dominated by X must precede Y and all nodes dominated by Y
Axioms of Precedence

- Lets denote precedes by the symbol \sim
- (a) If $X \sim Y$ then $\neg (Y \sim X)$
- (b) If $X \sim Y \sim Z$ then $X \sim Z$
- (c) If $X \sim Y$ or $Y \sim X$ then $\neg (X \leq_D Y)$ and $\neg (Y \leq_D X)$
- (d) $X \sim Y$ iff for all terminals $U, V, X \leq_D U$ and $Y \leq_D V$ jointly imply $U \sim V$

No crossing of branch; no discontinuous constituent
Fundamental concept: \textit{c-command}

- (informal): A node \textbf{c-commands} its sisters and all the daughters (and granddaughters and great-granddaughters etc.) of its sisters.

- (formal): Node A \textbf{c-commands} node B if every branching node dominating A also dominates B, and neither A nor B dominate each other.
Example

What does A c-command? What does G c-command?
Example

What does A c-command? What does G c-command?

Ans: A c-commands B and C,D,E,F,G,H,I,J
G c-commands only H
Symmetric C-command and Asymmetric c-command

- A symmetrically c-commands B, if A c-commands B and B c-commands A
- A asymmetrically c-commands B, if A c-commands B and B does not c-command A
Exercise

1. What nodes dominate *grocer*
2. What nodes immediately dominate
 D3 *the*
3. Do *will* and *buy* form a constituent?
4. What nodes does N₁ *boy* c-command?
5. What nodes does NP₁ c-command?
6. What is V’s mother?
7. What nodes does *will* precede?
8. List all the sets of sisters in the tree.
9. What is PP’s mother?
10. Do NP₁ and VP symmetrically or asymmetrically c-command one another?
11. List all the nodes c-commanded by V

12. What is the subject of the sentence?
13. What is the object of the sentence?
14. What is the object of the preposition?
15. Is NP₃ a constituent of VP?

16. What node(s) in NP₃ an immediate constituent of?
17. What node(s) does VP exhaustively dominate?
18. What is the root node?
19. List all the terminal nodes.
20. What immediately precedes *grocer*?
Correctness and incorrectness of binding

- $Sita_p$ saw herself$_p$ in the mirror.
- $[The\ mother\ of\ Sita_q]_p$ saw herself$_p$ in the mirror.
- *[The mother of Sita$_q$]$_p$ saw herself$_q$ in the mirror.*
From the tree

The mother of Sita saw herself in the mirror.
Case A

S

NP₁

D₁

N₁: The

P₁: mother

PP₁: of

NP₂: Sita

NP₃: N₃ (ANAphor) herself

V: saw

PP₂: in

NP₄: D₂: the

NP₅: N₄: mirror
Case A Observations

- $NP_{mother} \rightarrow$ herself
- $NP_{sita} \rightarrow$ herself
- $NP_{mother} \rightarrow$ her (meaning Sita)
Case B

S

NP₁

N₁ Sita

VP

V saw NP₂

PP₁

P₁ in NP₃

D₁ the N₃ mirror

N₂ (ANA) herself
Case B Observations

- $NP_{sita} \rightarrow$ herself
- $NP_{sita} \rightarrow$ her
Rules

- **Positive Rule of Binding for Anaphor**
 - Anaphor can be bound only to its c-commanding and preceding NP

- **Negative Rule of Binding for Pronoun**
 - Pronoun cannot be bound to a c-commanding NP
Definition of binding

- A binds B if
 - A c-commands B, and
 - A and B are coindexed

- Why is the following wrong?
 - *herself saw Sita in the mirror
Binding domain

- The syntactic space in which the anaphor must find its antecedent is called a *binding domain*.
- Usually the binding domain is the clause.
Significance of binding domain

- *Sita saw herself in the mirror*
- *Sita said that she saw the mirror*
- *Sita said that herself saw the mirror*
- *Sita said that she saw herself in the mirror*
From the tree

S

NP₁

N₁

Sita

VP

V

saw

NP₃

N₃

herself

PP₂

P₂

in

NP₄

N₄

the

mirror
From the tree

S
 VP
 S'
 NP
 V
 said
 NP
 she
 VP
 VP
 V
 saw
 NP
 D₂
 N
 mirror
NP
 N
 Sita
From the tree

S
 /
/
VP S'
 | |
 V VP
 said saw

NP
 |
 N
 Sita

NP
 |
 N
 herself

NP
 |
 D
 the

NP
 |
 N
 mirror
From the tree

S
 VP
 S'
 NP
 V
 said
 NP
 V
 saw
 NP
 P
 in
 NP
 N
 herself
 D_{2}
 N
 mirror
 NP
 N
 Sita
 NP
 N
 she
Binding principle A

- An anaphor must be bound in its binding domain
From the tree
From the tree

S
 VP
 S'
 NP
 N
 Sitap
 NP
 N
 N1
 Shepq
 NP
 V
 said
 VP
 S'
 NP
 V
 saw
 NP
 PP
 P
 in
 NP
 N
 herr
 NP
 D2
 N
 mirror
Binding principle B

- Definition: *Free*- not bound
- A pronoun must be free in its binding domain.
Binding principle C

- A R-expression (referring expression) must be free.
Which picture of himself does John like?
Merger
Language: Smaller to bigger Expression
Two word phrase
(example from “Linguistics” by Radford et al., Cambridge University Press, 1999)

- Speaker A: What is the Government planning to do?
- Speaker B: Reduce Taxes
- Composed of a verb and a noun, but the behaviour is that of verb
- Why?
 - The Government ought to resign
 - The Government ought to reduce taxes \((\text{substitutibility})\)
 - Taxes is the point of discussion
 - *Reduce taxes is the point of discussion (\text{wrong})
Head and Projection

- *Reduce Taxes*
- A projection of the verb *Reduce*
- Verb Phrase is called the *projection*
- \[[_{VP} [_{V} reduce] [_{N} taxes]] \]
Infinitive phrase

- Speaker A: What is the Government’s principal objective?
- Speaker B: \textit{to reduce taxes}
- \textit{To reduce taxes} is an \textit{Infinitive Phrase (IP)}

\[
\text{IP} \quad \text{VP} \quad \text{N}
\]

\[
\text{I} \quad \text{reduce} \quad \text{taxes}
\]

\[
\text{to} \quad \text{reduce} \quad \text{taxes}
\]
Head, Complement, Projection

Head

Complement

projection

[IP [I to]][VP [V reduce] [N taxes]]
Larger structures from merger

Striking conclusion: Potentially *Infinite number of sentences in any language*
Phrase to *clause*

- Speaker A: What will the Government do?
- Speaker B: *They will try to reduce taxes*

What is the structure of Speaker B’s reply?

Key question: what to do about *will*?
Similarity of behaviour with \textit{to}

- \textit{To} has similarity with
 - \textit{will/would}
 - \textit{shall/should}
 - \textit{can/could}
 - \textit{may/might}
- Positional similarity
 - \textit{We expect John would/to show some interest}
- Complementiser similarity
 - Need verb in infinitive form: \textit{to/will/would show to a dentist}
Dissimilarity 😞

- To see is to believe
- *Will see is will believe
- Speaker A: What is the Government’s objective?
- Speaker B: to try to reduce taxes
- *will try to reduce taxes
Hypothesis

- *To* produces a complete phrase
- *Will* produces an incomplete phrase
- *Will* needs a subject
- There are other factors playing their roles
Speaker A: What will the Government do?
Speaker B: They will try to reduce taxes
They will reduce taxes to try

 Auxiliaries like *will* produce an Incomplete inflection phrase
 We denote this by I-bar

*To, will etc. are given the label INFL
INFL stands for *Inflection*
Hindi *gaana*, Italian *cantare*
They will try to reduce taxes.