HyperLex: lexical cartography for information retrieval

Jean Veronis

Presented by:
Siddhanth Jain(113050015)
Samiulla Shaikh(113050032)
Motivation

- Human language is ambiguous. Many words can have multiple meanings depending on context, domain, region etc. Such instances of words are known as polysemous.

- It is very easy to disambiguate these words for humans but for machines its a difficult job.

- Task of disambiguating polysemous words is known as Word Sense Disambiguatio(WSD).

- WSD is one of the most fundamental problems in the field of NLP.
Motivation Contd...

- Supervised approaches to WSD give high accuracy.
- They need large amount of training data.
- Many languages and domains lack such kind of data.
- Hence semi-supervised and unsupervised approaches are also emerging as prominent options for WSD.
Various approaches to WSD

- Supervised
 - Naive Bayes
 - Decision List
 - Decision Tree
 - Neural Network
 - Exampler Based
 - SVM
 - Ensemble Method

- Unsupervised
 - Context Clustering
 - Word Clustering
 - Co-Occurrence Graph Based (Hyperlex)

- Knowledge Based
 - Overlap based
 - Selectional Preferences
HyperLex

- Hyperlex is one of the most famous unsupervised approach for Word Sense Disambiguation.
- HyperLex is capable of auto-matically determining the uses of a word in a textbase without recourse to a dictionary.
- Despite of being unsupervised it has been found to be comparable to state-of-the-art supervised approaches.
Terminology

- Co-occurrence Graphs

 For each target word we take all the words that co-occure with it and treat them as nodes.

- We create an edged between two nodes, A and B if their corresponding words co-occur with each other.
Small World Graph

A small-world graph is a type of mathematical graph in which most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of hops or steps.

Milgram (1967), was the first who proposed the term “small world”: any individual on the planet is only “six degrees away” from any other individual in the graph of social relations, even though there are several billion inhabitants.
Assigning weights to edges

- The weight that we assign to each edge reflects the magnitude of the 'semantic distance' between words:

- When $w=0$, the words always co-occurred
- When $w=1$, the words never co-occurred
Assigning Weights

- Each edge is assigned a weight that decreases as the association frequency of the words increases:

\[W_{AB} = 1 - \max[p(A|B), p(B|A)] \]

- Where \(p(A|B) \) is the conditional probability of observing A in a given context, knowing that context contains B and vice versa.
Example

<table>
<thead>
<tr>
<th></th>
<th>Dam</th>
<th>~Dam</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>183</td>
<td>296</td>
<td>479</td>
</tr>
<tr>
<td>~Water</td>
<td>874</td>
<td>5556</td>
<td>6430</td>
</tr>
<tr>
<td>Total</td>
<td>1057</td>
<td>5852</td>
<td>6909</td>
</tr>
</tbody>
</table>

\[
p(dam|water) = \frac{183}{479} = 0.38 \quad \quad \quad \quad w = 1 - 0.38 = 0.62
\]

\[
p(water|dam) = \frac{183}{1057} = 0.17
\]
Co-Occurrence Graph
Detecting the different uses of a word thus amounts to isolating the high-density components in its cooccurrence graph. Unfortunately, most exact graph-partitioning techniques are NP-hard.

The author has given an approximate algorithm which gives fairly good results.
In every high-density component, one of the nodes has a higher degree than the others; it is called the component’s root hub.

For example, for the most frequent use of *bank*, the root hub is the word *money*.

It is easy to find, since it is the hub with the highest degree in the graph (and it is also the most frequent word).
Detecting Root Hubs

- First find the highest degree node and call it the first root hub.
- Now delete the selected root hub along with all its neighbours.
- Repeat this process until either all nodes have been covered or there is no eligible vertex for a root hub.
- A vertex is considered to be eligible for being a root hub if the 6 most frequent neighbours have weights less than 0.8 (found experimentally).
Co-Occurrence Graph

elect.
water
dam
silt
pebbles

world
Soccer
team
victory
cup
game
First Root Hub Detected

- water
- silt
- pebbles
- Dam

- elect.
- team
- victory
- cup
- game
- world
- Soccer
Neighbours Identified

- water
- silt
- pebbles
- Dam
- elect.
- world
- team
- victory
- cup
- game
- Soccer
Second Root Hub Identified from remaining graph
Neighbours Identified
Delineating Components

- Once all the root hubs have been found connect all of them with the target word with 0 edge weight in co-occurrence graph.

- Now find the MST (Minimum Spanning Tree) for this graph.
MST

- Target word is assigned a level 0.
- All root hubs are assigned a level 1.
- All nodes at level 1 represent different senses of the target word and each one of them represents a component.
Assigning Scores

- Each node in the tree is assigned a score vector of the size of the number of components.

- \(s_i = \frac{1}{1 + d(h_i, v)} \) If v belongs to component i

- \(s_i = 0 \) Otherwise

- Now for each node in the tree we have a score vector. For example \(S(\text{water}) = (0, x) \quad x \geq 0 \).
Disambiguation

- Now we add the score vectors of all vertices present in the context.
- The target word is assigned the sense corresponding to the winning root hub.
Testing Results

<table>
<thead>
<tr>
<th>Test word</th>
<th>Precision</th>
<th>Baseline</th>
<th>Error reduc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARRAGE</td>
<td>1.00</td>
<td>0.77</td>
<td>100.0%</td>
</tr>
<tr>
<td>DETENTION</td>
<td>1.00</td>
<td>0.87</td>
<td>100.0%</td>
</tr>
<tr>
<td>FORMATION</td>
<td>1.00</td>
<td>1.00</td>
<td>n/a</td>
</tr>
<tr>
<td>LANCEMENT</td>
<td>1.00</td>
<td>0.99</td>
<td>100.0%</td>
</tr>
<tr>
<td>ORGANE</td>
<td>0.88</td>
<td>0.40</td>
<td>80.0%</td>
</tr>
<tr>
<td>PASSAGE</td>
<td>0.88</td>
<td>0.52</td>
<td>75.0%</td>
</tr>
<tr>
<td>RESTAURATION</td>
<td>1.00</td>
<td>0.44</td>
<td>100.0%</td>
</tr>
<tr>
<td>SOLUTION</td>
<td>0.98</td>
<td>0.84</td>
<td>87.5%</td>
</tr>
<tr>
<td>STATION</td>
<td>1.00</td>
<td>0.84</td>
<td>100.0%</td>
</tr>
<tr>
<td>VOL</td>
<td>1.00</td>
<td>0.62</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total</td>
<td>0.97</td>
<td>0.73</td>
<td>90.4%</td>
</tr>
</tbody>
</table>
Conclusion

- Hyperlex in one of the most successful unsupervised approach for WSD.
- It doesn't need any external lexical resource for disambiguation.
- Its accuracy with small number of words is comparable to state-of-the-art supervised WSD approaches.
References
