CS626: Speech, Natural Language Processing and the Web

Introduction

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay 28th July, 2022

Sequel Course

 CS772- Deep Learning for Natural Language Processing

• NLP concepts covered in CS626 will see their realization on Deep Neural Nets

 These two courses create a solid platform for launching substantial research and development in NLP

Ode to Scientists and Engineers

Scientists ask WHY Engineers ask WHY NOT Scientists wonder at WHAT-IS Engineers wonder WHAT-COULD-BE World couldn't do without either.

Scientists STUDY Engineers MAKE And ever the twain shall meet.

What is "Language"

Oxford English Dictionary

1. the principal method of human *communication*, consisting of words used in a structured and conventional way and conveyed by speech, writing, or gesture.

"a study of the way children learn Language"

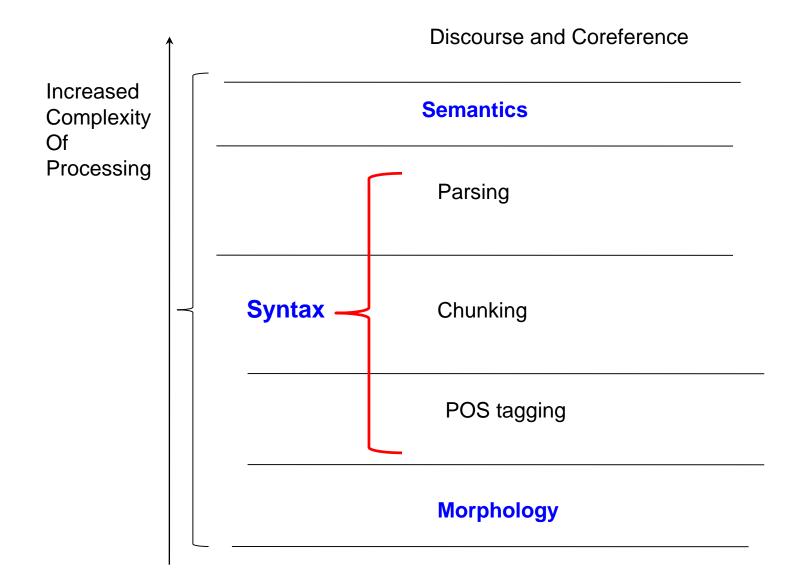
2. a system of communication used by a particular country or community.

"the book was translated into twenty-five languages" George Yule, "Study of Language", 1998)

- **Displacement** (Indicators that change with time and place: I saw him yesterday at the market; I will see him tomorrow in the school)
- Arbitrariness (name \rightarrow Meaning; water, chair)
- Productivity/creativity (potentially infinite no. of sentences)
- **Cultural Transmission** (child acquires parent's language)
- Discreteness (sound and meaning units separated)
- **Duality** (Surface structure, deep structure)

What is "Linguistics"

- Scientific study of language, its underlying and governing rules
- **Descriptive**: describe the language objects, language phenomena AS THEY ARE
- Prescriptive: prescribe what is allowed and not allowed, e.g. disallow double negative- "I did not see nobody in the hall"; control language behaviour


What is NLP

NLP= Language + Computation

(due to ML)

= Linguistics + Probability

NLP Layers

Linguistic Strata vs. Languages

	Hindi	Swahili	Tamil	etc.
Sound: Phonetics, Phonology				
Structure: Morphology, Syntax				
Meaning: Semantic, Pragmatics				

Speech-NLP Stack vs. Languages

	Hindi	Swahili	Tamil	etc.
Sound: ASR, TTS				
Structure: MA, POS, NE, Chunker, Parser				
Meaning: SRL, Knowledge Nets, SA-EA-OM, QA, Summarizer				

Language Typology

Classification according to structural features

Proto-Language (Wikipedia)

Meaning:	Sanskrit	Latin:		
"three"	trayas	tres		
"seven"	sapta	septem		
"eight"	ashta	octo		
"nine"	nava	novem		
"snake"	sarpa	serpens		
"king"	raja	regem		
"god"	devas	divus ("divine")		

One of the indications that languages descended from a single source

Word order based

- Object–subject–verb (OSV)
- Object–verb–subject (OVS)
- Subject-verb-object (SVO): English
- Subject–object–verb (SOV): Most Indian Languages
- Verb–subject–object (VSO)
- Verb–object–subject (VOS)

Dominant Word Order Distribution Across Languages (Wikipedia)

Туре	Languages	%	Families	%
SOV (Hindi)	2,275	43,3%	239	65.3%
SVO (English)	2,117	40.3%	55	15%
VSO (tagalog in phillipines)	503	9.5%	27	7.4%
VOS (Malagasy in Madagaskar)	174	3.3%	15	4.1%
NODOM (Sanskrit)	124	2.3%	26	7.1%
OVS (Korean and Japanese, many times)	40	0.7%	3	0.8%
OSV (Warao in Venezuela)	19	0.3%	1	0.3%

Some interesting cases

- German word order depends on the position of the main verb (MV)
 - I know the boy who lives in Berlin
 - Ich kenne den Jungen, der in Berlin lebt
- Hindi:
 - Mei us ladke ko jaantaa hu jo barlin me rahataa haai
 - Mei us ladke ko jo barlin me rahataa haai jaantaa hu

SOUTH ASIAN LANGUAGE FAMILIES Indo-Aryan Languages Iranian Languages Nuristani Languages Dravidian Languages Austro-Asiatic Languages Tibeto-Burman Languages Unclassified / Language Isolate India's linguistic map

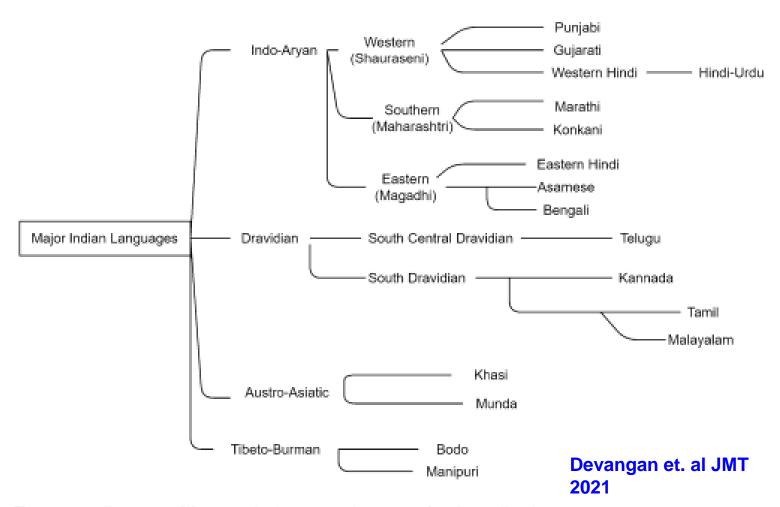
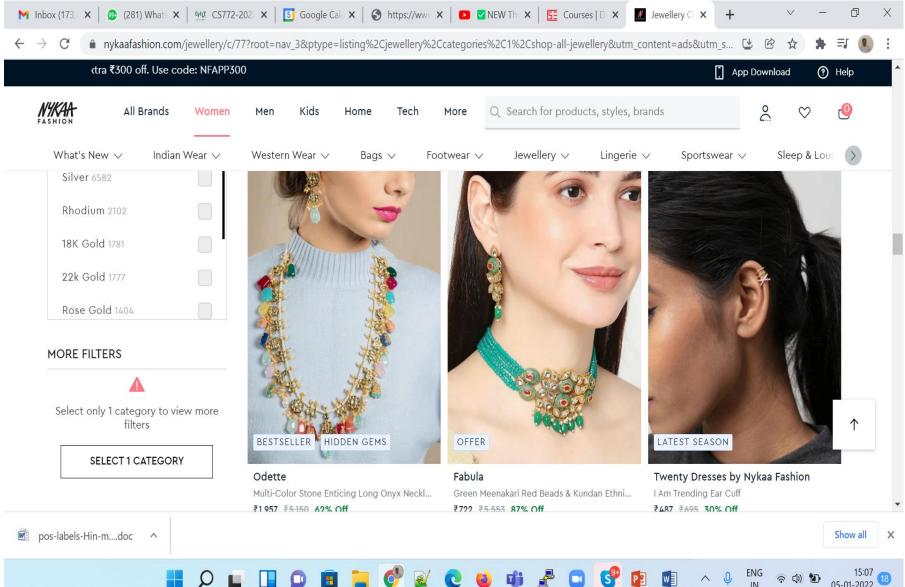


Fig. 1 Tree diagram to illustrate the language closeness of major Indian languages

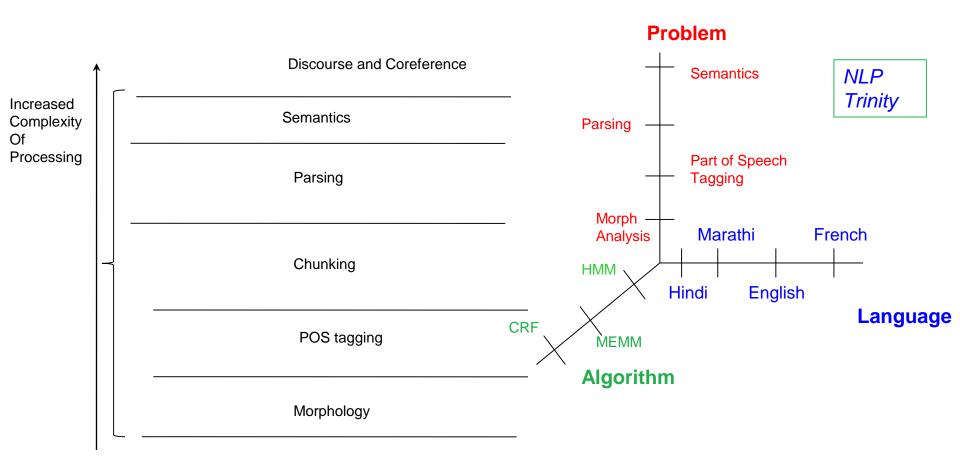
Main Challenge of NLP: AMBIGUITY


An interesting whatsapp conversation (English and Bengali)

- Lady A: Yesterday you told me about shop that sells artificial jewellery
-

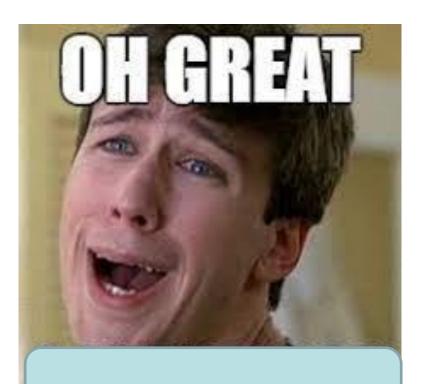
ki naam jeno?</br></where (what did you say was the name?)
- Lady B: nykaa
- Lady A (offended): What do you mean Madam? Is this the way to talk?
- Lady B:

 happened?)
 - Lady A did not renly: she was ananyll


Root cause of the problem: Ambiguity!

- NE-non NE ambiguity (proper nouncommon noun)
- Aggravated by code mixing
- "Nykaa": name of the shop
- Sounds similar to "ন্যাকা" (nyaakaa), meaning somebody "who feigns ignorance/innocence" in a derogatory sense
- An offensive word

NYKAA Fashion



Ambiguity at every layer, for every language, for every mode

Role of Multimodality

- Signals from other modes
- E.g., Sarcasm

Frequent Observation: Data + Classifier > Human decision maker !!

Case for ML-NLP

LEARN from Data with Probability Based Scoring

- With LOTs of data, learn with
 - High precision (small possibility of error of commission)
 - High recall (small possibility of error of omission)
- But depends on human engineered features, i.e., capturing essential properties

Modern Modus Operandi: End to End DL-NLP

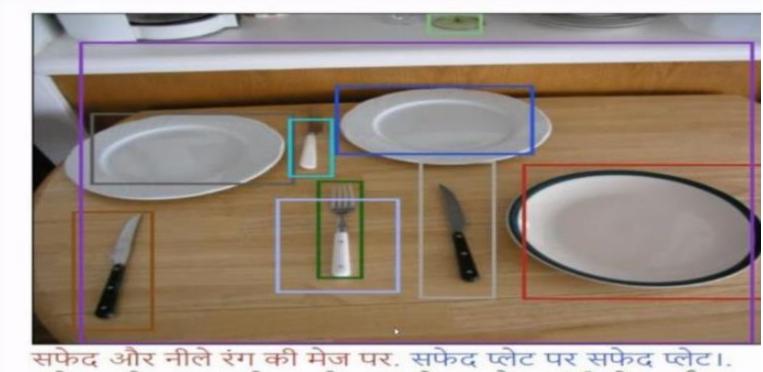
author identification

Problem Knowledge and Deep Learning

- Large number of parameter in DL-NLP: Why?
- Fixing large number parameter values need large amounts of data (text for NLP).
- If we know underlying distribution then we can make predictions.

IMP: The number of needed parameters can be reduced by using knowledge.

NLP is Important


Cutting edge applications

Large Applications to reduce the problem of scale

- (A) Machine Translation (demo)
- (B) Information Extraction
- (C) Sentiment and Emotion Analysis

 Complexity and applicability increases by requirement and introduction of Multilinguality, Multimodality

Dense Image Captioning

सफेद और नीले रंग की मेज पर. सफेद प्लेट पर सफेद प्लेट।. सफेद प्लेट <u>पर सफेद प्लेट।. सफेद और चांदी के</u> बर्तन।. काला और काला चाकू।. एक लकड़ी की मेज पर है. काला और काला चाकू।. में हरा और हरा <unk>. सफेद और चांदी के साथ एक चाक। सफेद और सफेद रंग का होता है।

OCR-MT-TTS

- Input image:
- English transcription: Take the risk or loose the chance
- Hindi Translation: जोखिम लें या मौका गंवा दें।
- Hindi speech

Take the risk or lose the chance

Course Logistics

Venue

 First Introductory Lecture: F.C.Kohli Auditorium, Thursday 28th July, 10.30AM

 After that in new CSE building, 101 (first floor)

Course Logistics- MS teams

- Join the MS Teams using the code jun37pk
 - Login to MS teams using the LDAP credentails
 - Select Join or create a team
 - Choose Join a team with a code
 - Join using the code above
 - You will be added to the team CS626-2022
 - General channel: For notifications
 - Live lectures channel: For live lectures

Course website

Website: https://www.cse.iitb.ac.in/~cs626/2022/ #about

Visit the above website for course related information.

For more information about the research in NLP visit CFILT website. https://www.cfilt.iitb.ac.in/

Class Schedule

- Monday: 8:30 AM to 9:25 AM
- Tuesday: 9:30 AM to 10:25 AM
- Thursday: 10:30 PM to 11:25 AM

Moodle

Login to Moodle with LDAP credentials. - Select the course CS626

All course related notifications will be notified via Moodle also.

Course TAs

 <u>Nihar Ranjan Sahoo</u>, PhD CSE (nihar@cse.iitb.ac.in)

- Sandeep Singamsetty, M.Tech CSE) (213050064@iitb.ac.in)
- NVS Abhishek, M.Tech CSE (213050019@iitb.ac.in)

Evaluation Scheme (tentative)

- 50%: Reading, Thinking, Comprehending
 - Quizzes (15)
 - Midsem (15)
 - Endsem (20)
- 50%: Doing things, Hands on
 - Assignments (25%)
 - Reading ONE paper and doing a preliminary implementation of the same (25%)

-Quiz every last Thursday of the month

Course Content: Task vs. Technique Matrix

Task (row) vs. Technique (col) Matrix	Rules Based/Kn owledge- Based	Classical ML				Deep Learning		
		Perceptron	Logistic Regression	SVM	Graphical Models (HMM, MEMM, CRF)	Dense FF with BP and softmax	RNN- LSTM	CNN
Morphology								
POS								
Chunking								
Parsing								
NER, MWE								
Coref								
WSD								
Machine Translation								
Semantic Role Labeling								
Sentiment								
Question Answering								

Books

1. Dan Jurafsky and James Martin, Speech and Language Processing, 3 rd Edition, 2019.

2. Christopher Manning and Heinrich Schutze, Foundations of Statistical NaturalLanguage Processing, MIT Press, 1999.

3. Pushpak Bhattacharyya, Machine Translation, CRC Press, 2017.

4. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.

Journals and Conferences

 Journals: Computational Linguistics, Natural Language Engineering, Journal of Machine Learning Research (JMLR), Neural Computation, IEEE Transactions on Neural Networks

• Conferences: ACL, EMNLP, NAACL, EACL, AACL, NeuriPS, ICML

Useful NLP, ML, DL libraries

- NLTK
- Scikit-Learn
- Pytorch
- Tensorflow (Keras)
- Huggingface
- Spacy
- Stanford Core NLP