CS626: Speech, Natural Language Processing and the Web

Part of Speech Tagging Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Week 3 of 8th August, 2022

NLP Layers

Illustration of Viterbi Decoding for POS tagging

From upcoming book:

Pushpak Bhattacharyya and Aditya Joshi, *Natural Language Processing*, Wiley Eastern, 2022.

Sentence: "People Dance"

- 'people' and 'dance' can both be both nouns and verbs, as in
 - "old_JJ people_NNS" ('people' as noun)
 - "township_NN peopled_VBN with soldiers_NNS" ('people' as verb)
- as well as
 - "rules_NNS of_IN classical_JJ dance_NN" ('dance' as noun)
 - "will_VAUX dance_VB well_RB" ('dance' as verb)

Possible Tags: "^ people dance ."

 for simplicity we take single letter tags-N: noun, V: verb:

- ^ N N .

- $^{NV}.$

- ^ V N .
 - ^ V V .
- We know that out of these, the second option ^ N V. is the correct one. How do we get this sequence?

Step-1: Trellis

Columns of tags on each input word with transition arcs going from tags (states) to tags in consecutive columns and output arcs going from tags to words (observations)

Aim: select the highest probability path

From 4 possibilities; As and Bs are accumulated probabilities

Some numerical values: hypothetical but not unrealistic

- Calculations:
- When it comes to the start of the sentence, most sentences start with a noun. So lets have

 $P(N|^{)=0.8}, P(V|^{)=0.2}$ and of course $P('^{'}|^{)=1.0}$

• Then

 $A_1 = 0.8, A_2 = 0.2$

Encounter "people": more probabilities (1/2)

- Transition from *N* to *N* is less common than to *V*.
- Transition from V to V- as in auxiliary verb to main verb- is quite common (e.g., *is going*).
- V to N too is common-as in case of a nominal object following the verb (going home).
- Following plausible transition probabilities:
 P(N|N)=0.2, P(V|N)=0.8, P(V|V)=0.4, P(N|V)=0.6
- We also need lexical probabilities. 'people' appearing as verb is much less common than its appearing as noun. So let us have

Encounter "people": more probabilities (2/2)

 We also need lexical probabilities. 'people' appearing as verb is much less common than its appearing as noun. So let us have

- P('people'|N)=0.01, P('people'|V)=0.001

- Note: N N: golf club, cricket bat, town peopleambiguity "The town people visited was deserted"/"town people will not be able to live here"
- V V combination: Hindi- *has padaa* (laughed suddenly), Bengali- *chole gelo* (went away)

Calculate Bs

- $B_1 = 0.8.0.2.0.01 = 0.0016$ (approx.)
- $B_2 = 0.8.0.8.0.01 = 0.064$ (approx.)
- $B_3 = 0.2.0.6.0.001 = 0.00012$
- $B_4 = 0.2.0.4.0.001 = 0.00008$

- **Reduced Viterbi Configuration**
- Heart of Decoding \rightarrow linear time

Next word: 'dance'

More probabilities needed

 We can give equal probabilities to sentences ending in noun and verb. Also, 'dance' as verb is more common than noun.

> P(.|N)=0.5=P(.|V) P('dance'|N)=0.001 P('dance'|V)=0.01

Best Path: ^ N V .

 $C_1 = 0.0016.0.5.0.001 = 0.0000008$ $C_2 = 0.064.0.5.0.01 = 0.00032$

What does POS tagging Facilitate

Facilitates Chunking: small phrases called **Chunks**

- given the sentence
 The brown fox sat in front of the fence
- POS tagged sequence as *The_DT brown_JJ fox_NN sat_VBD in_IN front_NN of_IN the_DT fence_NN*
 Chunked sequence as

The_DT_B_{NC} brown_JJ_ I_{NC} fox_NN_ I_{NC} sat_VBD_B_{VC} in_IN_B_{PC} front_NN_ I_{PC} of_IN_ I_{PC} the_DT_B_{NC} fence_NN_ I_{NC}

Deep Parse Tree of the brown fox sat in front of the fence

Grammar rules

- S \rightarrow NP VP
- NP \rightarrow DT NP | ADJP NP | PP NP | NNS | NN
- ADJP \rightarrow ADJP JJ | JJ
- PP \rightarrow PG NP | P NP
- PG → 'in front of' | 'in lieu of' | 'with respect to' | ...
- $P \rightarrow \text{`in'} | \text{`with'} | \text{`by'} | \dots$
- NN → 'fox' | 'fence' | ...
- JJ \rightarrow 'brown' | ...
- DT \rightarrow 'a' | 'an' | 'the' | ...

- $VP \rightarrow VT NP | VINT PP$
- $VT \rightarrow VXG VF | VF$
- VINT \rightarrow VXG VF | VF
- $VXG \rightarrow VXG VX | VX$
- $VF \rightarrow VB \mid VBD \mid \dots$
- VX \rightarrow 'am' | 'is' | 'shall' | ...
- VB → 'go' | 'see' | ...
- VBD \rightarrow 'sat' | 'went' | ...
- NN → 'fox' | 'fence' | ...

Discriminative Labelling

Motivation

- HMM based POS tagging cannot handle "free word order" and "agglutination" well
- If adjective after noun is equally likely as adjective before noun, the transition probability is no better than uniform probability which has high entropy and is uninformative.
- When the words are long strings of many morphemes, POS tagging w/o morph features is highly inaccuarte.

Modelling

$\prod_{i=0}^{n+1} \left[P(t_i \mid F_i) \right]$

Feature Engineering

• A. Word-based features

 f_{21} – dictionary index of the current word ('foxes'): integer

 f_{22} – -do- of the previous word ('brown'): integer

 f_{23} - -do- of the next word ('jumped'): integer

B. Part of Speech (POS) tag-based feature
 f₂₄ – index of POS of previous word (here JJ): integer

Feature engineering cntd.

- C. Morphology-based features
 - f_{25} does the current word ('foxes') have a noun suffix, like 's', 'es', 'ies', etc.: 1/0- here the value is
 - f_{26} does the current word ('foxes') have a verbal suffix, like 'd', 'ed', 't', etc.: 1/0- 0
 - f_{27} and f_{28} for 'brown' like for 'foxes
 - f_{29} and $f_{2,10}$ for 'jumped' like for 'foxes; here $f_{2,10}$ is 1 (jumped has 'ed' as suffix)

A note of morph features (1/2)

- Morphology features can be fairly open ended, large in number and complex depending on the language under consideration.
- Dravidian languages, Tibeto-Burman languages, Arabic, Hungarian, Turkish, Finnish and so on are morphologically complex.

A note of morph features (1/2)

 Used with dexterity, they can disambiguate POS tags with very high degree of certainty.

 For example, the 'unnu' suffix in the Malayalam word 'ceyy-unnu': English-'does, is doing' is a sure-shot identifier of verb POS (VBS).