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Sentence: “People Dance”

• ‘people’ and ‘dance’ can both be both 

nouns and verbs, as in 
– “old_JJ people_NNS” (‘people’ as noun)

– “township_NN peopled_VBN with soldiers_NNS” 

(‘people’ as verb)

• as well as 
– “rules_NNS of_IN classical_JJ dance_NN” (‘dance’ 

as noun)

– “will_VAUX dance_VB well_RB”

(‘dance’ as verb)



Possible Tags: “^ people dance .”

• for simplicity we take single letter tags-

N: noun, V: verb:
– ^ N N .

– ^ N V .

– ^ V N .

– ^ V V .

• We know that out of these, the second 

option ^ N V. is the correct one. How do 

we get this sequence? 



Step-1: Trellis 

Columns of tags on each input word with transition 

arcs going from tags (states) to tags in consecutive 

columns and output arcs going from tags to words 

(observations)



Aim: select the highest probability path

From 4 possibilities; As and Bs are accumulated 

probabilities 



Some numerical values: hypothetical 

but not unrealistic

• Calculations:

• When it comes to the start of the 

sentence, most sentences start with a 

noun. So lets have

P(N|^)=0.8, P(V|^)=0.2 and of course 

P(‘^’|^)=1.0

• Then

A1=0.8, A2=0.2



Encounter “people”: more probabilities (1/2)

• Transition from N to N is less common than to 

V. 

• Transition from V to V- as in auxiliary verb to 

main verb- is quite common (e.g., is going). 

• V to N too is common- as in case of a nominal 

object following the verb (going home).

• Following plausible transition probabilities:
– P(N|N)=0.2, P(V|N)=0.8, P(V|V)=0.4, P(N|V)=0.6

• We also need lexical probabilities. ‘people’ 

appearing as verb is much less common than 

its appearing as noun. So let us have



Encounter “people”: more probabilities (2/2)

• We also need lexical probabilities. ‘people’ 

appearing as verb is much less common than 

its appearing as noun. So let us have

– P(‘people’|N)=0.01, P(‘people’|V)=0.001

• Note: N N: golf club, cricket bat, town people-

ambiguity “The town people visited was 

deserted”/”town people will not be able to live here”

• V V combination: Hindi- has padaa (laughed 

suddenly), Bengali- chole gelo (went away)



Calculate Bs

• B1=0.8.0.2.0.01=0.0016 (approx.)

• B2=0.8.0.8.0.01=0.064 (approx.)

• B3=0.2.0.6.0.001=0.00012

• B4=0.2.0.4.0.001=0.00008



Reduced Viterbi Configuration

• Heart of Decoding  linear time



Next word: ‘dance’



More probabilities needed

• We can give equal probabilities to 

sentences ending in noun and verb. 

Also, ‘dance’ as verb is more common 

than noun.

P(.|N)=0.5=P(.|V)

P(‘dance’|N)=0.001

P(‘dance’|V)=0.01



Best Path: ^ N V .

C1=0.0016.0.5.0.001=0.0000008

C2=0.064.0.5.0.01=0.00032



What does POS tagging 

Facilitate  



Facilitates Chunking: small phrases 

called Chunks

• given the sentence 

The brown fox sat in front of the fence 

• POS tagged sequence as

The_DT brown_JJ fox_NN sat_VBD

in_IN front_NN of_IN the_DT fence_NN

Chunked sequence as

The_DT_BNC brown_JJ_INC fox_NN_INC

sat_VBD_BVC in_IN_BPC front_NN_IPC

of_IN_IPC the_DT_BNC fence_NN_INC



Deep Parse Tree of the brown fox sat in front of the fence
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Grammar rules

• S  NP VP

• NP  DT NP | ADJP NP | PP NP | 

NNS | NN

• ADJP  ADJP JJ | JJ

• PP  PG NP | P NP 

• PG  ‘in front of’ | ‘in lieu of’ | ‘with 

respect to’ | …

• P  ‘in’ | ‘with’ | ‘by’ | …

• NN  ‘fox’ | ‘fence’ | …

• JJ  ‘brown’ | …

• DT  ‘a’ | ‘an’ | ‘the’ | …

• VP  VT NP | VINT PP

• VT  VXG VF | VF

• VINT  VXG VF | VF

• VXG  VXG VX | VX

• VF  VB | VBD |  … 

• VX  ‘am’ | ‘is’ | ‘shall’ | …

• VB  ‘go’ | ‘see’ | …

• VBD  ‘sat’ | ‘went’ | …

• NN  ‘fox’ | ‘fence’ | …



Discriminative Labelling



Motivation

• HMM based POS tagging cannot handle 

“free word order” and “agglutination” well

• If adjective after noun is equally likely as 

adjective before noun, the transition 

probability is no better than uniform 

probability which has high entropy and is 

uninformative.

• When the words are long strings of many 

morphemes, POS tagging w/o morph 

features is highly inaccuarte.
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Feature Engineering
• A. Word-based features

f21 – dictionary index of the current word 

(‘foxes’): integer

f22 – -do- of the previous word (‘brown’): 

integer

f23 – -do- of the next word (‘jumped’): integer

• B. Part of Speech (POS) tag-based feature 

f24 – index of POS of previous word (here 

JJ): integer 



Feature engineering cntd.

• C. Morphology-based features

– f25– does the current word (‘foxes’) have a noun 

suffix, like ‘s’, ‘es’, ‘ies’, etc.: 1/0- here the value is 

– f26– does the current word (‘foxes’) have a verbal 

suffix, like ‘d’, ‘ed’, ‘t’, etc.: 1/0- 0

– f27 and f28 for ‘brown’ like for ‘foxes

– f29 and f2,10 for ‘jumped’ like for ‘foxes; here f2,10 is 1 

(jumped has ‘ed’ as suffix)



A note of morph features (1/2)

• Morphology features can be fairly open 

ended, large in number and complex 

depending on the language under 

consideration. 

• Dravidian languages, Tibeto-Burman 

languages, Arabic, Hungarian, Turkish, 

Finnish and so on are morphologically 

complex. 



A note of morph features (1/2)

• Used with dexterity, they can 

disambiguate POS tags with very high 

degree of certainty. 

• For example, the ‘unnu’ suffix in the 

Malayalam word ‘ceyy-unnu’: English-

‘does, is doing’ is a sure-shot identifier of 

verb POS (VBS). 


