CS626: Speech, Natural Language Processing and the Web

Parsing

Pushpak Bhattacharyya
Computer Science and Engineering
Department
IIT Bombay
Week 6 of 29th August, 2022

Algorithmics of Parsing

Problem Statement

INPUT: (a) grammar rules, (b) input sentence

OUPUT: Parse Tree (Constituency/Dependency)

Top Down

- Start with the S symbol and draw its children: say, NP and VP, assuming the input to be a declarative sentence.
- Now the subtrees under *NP*, followed by that under the *VP* are developed.
- For example, NP → DT NN could be applied.
- After this, only POS tags will need to be resolved. DT will absorb, say, the word 'the' in the input and NN, 'man'.
- This will complete constructing the NP subtree.
- Similarly, VP subtree also will be constructed.

Bottom Up

- The words are resolved to their POS tags.
- Then POS tags are combined by constituency rules, e.g., NP→ DT NN. Generated non terminals are then attempted to be combined.
- For example, after generating JJP, NP they are combined to form a bigger NP, by applying NP→ JJP NP.

Main Operations

- Doing a left to right scan of the input sentence
- At every word, deciding if the word should

 (a) create a new constituent or (b) wait
 until more words get a look-in to create a
 constituent, and
- On creation of a new constituent, examining if the new constituent can be merged with an adjacent one to form a bigger constituent.

Shift Reduce (1/3)

Shift Reduce (2/3)

Shift Reduce (3/3)

⊅@rsing:pushpak

Grammar Rules

A segment of English

- $S \rightarrow NP VP$
- NP → DT NN
- NP \rightarrow NNS
- NP \rightarrow NP PP
- $PP \rightarrow P NP$
- $VP \rightarrow VP PP$
- VP → VBD NP

- DT \rightarrow the
- NN → gunman
- NN → building
- VBD → sprayed
- NNS → bullets

GENERATIVE GRAMMAR, due to Noam Chomsky

Foundational Question

- Grammar rules are context free grammar (CFG) rules
- Is CFG enough powerful to capture language?

- CFG cannot accept/generate aⁿbⁿcⁿ
- Corresponding language phenomenon: Jack, Mykel and Mohan play tennis, soccer and cricket respectively.

CYK Parsing: Start with (0,1)

To From	1	2	3	4	5	6	7
0	DT						
1							
2							
3							
4							
5							
6							

CYK: Keep filling diagonals

To From	1	2	3	4	5	6	7
0	DT						
1		NN					
2							
3							
4							
5							
6							

CYK: Try getting higher level structures

To From	1	2	3	4	5	6	7
0	DT	NP					
1		NN					
2							
3							
4							
5							
6							

CYK: Diagonal continues

To From	1	2	3	4	5	6	7
0	DT	NP					
1		NN					
2			VBD				
3							
4							
5							
6							

To From	1	2	3	4	5	6	7
0	DT	NP					
1		NN					
2			VBD				
3							
4							
5							
6							

To From	1	2	3	4	5	6	7
0	DT	NP					
1		NN					
2			VBD				
3				DT			
4							
5							
6							

To From	1	2	3	4	5	6	7
0 ->	DT	NP					
1		NN					
2			VBD				
3				DT			
4					NN		
5							
6							

CYK: starts filling the 5th column

To From	1	2	3	4	5	6	7
0	DT	NP					
1		NN					
2			VBD				
3				DT	NP		
4					NN		
5							
6							

To From	1	2	3	4	5	6	7
0	DT	NP					
1		NN					
2			VBD		VP		
3				DT	NP		
4					NN		
5							
6							

To From	1	2	3	4	5	6	7
0	DT	NP					
1		NN					
2			VBD		VP		
3				DT	NP		
4					NN		
5							
6							

CYK: S found, but NO termination!

To From	1	2	3	4	5	6	7
0	DT	NP			S		
1		NN					
2			VBD		VP		
3				DT	NP		
4					NN		
5							
6							

To From	1	2	3	4	5	6	7
0	DT	NP			S		
1		NN					
2			VBD		VP		
3				DT	NP		
4					NN		
5						Р	
6							

To From	1	2	3	4	5	6	7
0	DT	NP			S		
1		NN					
2			VBD		VP		
3				DT	NP		
4					NN		
5						Р	
6							

CYK: Control moves to last column

To From	1	2	3	4	5	6	7
0	DT	NP			S		
1		NN					
2			VBD		VP		
3				DT	NP		
4					NN		
5						Р	
6							NP NNS

To From	1	2	3	4	5	6	7
0	DT	NP			S		
1		NN					
2			VBD		VP		
3				DT	NP		
4					NN		
5						P	PP
6							NP NNS

To From	1	2	3	4	5	6	7
0	DT	NP			S		
1		NN					
2			VBD		VP		
3				DT	NP		NP
4					NN		
5						Р	PP
6							NP NNS

To From	1	2	3	4	5	6	7
0	DT	NP			S		
1		NN					
2			VBD		VP		VP
3				DT	NP		NP
4					NN		
5						P	PP
6							NP NNS

CYK: filling the last column

To From	1	2	3	4	5	6	7
0	DT	NP			S		
1		NN					
2			VBD		VP		VP
3				DT	NP		NP
4					NN		
5						Р	PP
6							NP NNS

CYK: terminates with S in (0,7)

To From	1	2	3	4	5	6	7
0	DT	NP			S		S
1		NN					
2			VBD		VP		VP
3				DT	NP		NP
4					NN		
5						P	PP
6							NP NNS

CYK: Extracting the Parse Tree

 The parse tree is obtained by keeping back pointers.

Parse Tree #1

Parse Tree #2

Notion of Domination

 A sentence is dominated by the symbol S through domination of segments by phrases

Analogy

- The capital of a country dominates the whole country.
- The capital of a state dominates the whole state.
- The district headquarter dominates the district.

Domination: Example

- Dominations
 - NP dominates "a telescope"
 - VP dominates "saw a boy with a telescope
 - S dominates the whole sentence
- Domination is composed of many sub-domination.
- I saw a boy with a telescope
 - Meaning: I used the telescope to see the boy

βarsing:pushpak

Probabilistic parsing

Main source:

Christopher Manning and Heinrich Schutze, *Foundations of Statistical Natural Language Processing*, MIT Press, 1999.

Noisy Channel Modeling


```
T^*= argmax [P(T|S)]
T
= argmax [P(T).P(S|T)]
T
= argmax [P(T)], since given the parse the <math>T sentence is completely determined and P(S|T)=1
```

"I saw...": CP and DP #1

Bracketed Structure #1

```
Parse #1 (meaning: I have the telescope)
        [saw]<sub>VBD</sub>
                [the boy]<sub>NP</sub>
                [with [a telescope]<sub>NP</sub>]<sub>PP</sub>
        ]<sub>VP</sub>
```

"I saw...": CP and DP #2

Bracketed Structure #2

```
Parse #2 (meaning: the boy has the telescope)
              [I]_{NP}
                   [saw]<sub>VBD</sub>
                        [the boy]<sub>NP</sub>
                        [with [a telescope]<sub>NP</sub>]<sub>PP</sub>
                   ]<sub>NP</sub>
              ]_{VP}
```

Formal Definition of PCFG

- A set of terminals {w_k}, k = 1,....,V
 {w_k} = { child, teddy, bear, played...}
- A set of non-terminals {Nⁱ}, i = 1,...,n
 {Nⁱ} = { NP, VP, DT...}
- A designated start symbol S (sometimes given the symbol N¹)
- A set of rules {Nⁱ → ζ^j}, where ζ^j is a sequence of terminals & non-terminals
 e.g., NP → DT NN
- A corresponding set of rule probabilities

Rule Probabilities

 Rule probabilities are such that for for the same non terminal all production rules sum to1.

E.g., P(NP
$$\rightarrow$$
 DT NN) = 0.2
P(NP \rightarrow NNS) = 0.5
P(NP \rightarrow NP PP) = 0.3

Meaning of P(NP → DT NN)= 0.2, 20% of the training data parses use the rule NP → DT NN

Probabilistic Context Free Grammars

0.3

1.0

- $S \rightarrow NP VP$
- NP \rightarrow DT NN 0.5
- NP \rightarrow NNS
- NP \rightarrow NP PP 0.2
- $PP \rightarrow P NP$
- $VP \rightarrow VP PP$ 0.6
- VP \rightarrow VBD NP 0.4

- 1.0 DT \rightarrow the 1.0
 - $NN \rightarrow gunman 0.5$
 - $NN \rightarrow building$ 0.5
 - VBD \rightarrow sprayed 1.0
 - NNS → bullets 1.0

Example Parse t₁

The gunman sprayed the building with bullets.

Another Parse t₂

The gunman sprayed the building with bullets.

Probability of a sentence (1/2)

Notation: (a,b etc. are BETWEEN-word indices)

- w_{ab} subsequence _aw....w_b
- N^{j} dominates $_{a}w....w_{b}$ or yield(N^{j}) = $_{a}w....w_{b}$

Probability of a sentence (2/2)

Probability of a sentence = $P(w_{0.l})$

(0 is the index before the first word and I the index after the last word. All other indices are between words)

$$= \Sigma_t(P(w_{0,l}, t))$$

$$= \Sigma_t(P(t). (P(w_{0,l}| t)))$$

$$= \Sigma_t P(t). 1$$

where t is a parse tree of the sentence If t is a parse tree for the sentence $w_{0,l}$, this will be 1!!

Assumptions of the PCFG model

Place invariance:

P(NP → DT NN) is same independent of location in the tree

Context-free:

$$P(NP \rightarrow DT NN | sisters of NP)$$

= $P(NP \rightarrow DT NN)$

Ancestor free:

Probability of a parse tree

Domination: we say the non-terminal N^i dominates from between-word indices k to l, symbolized as $N_{k,l}$, if $w_{k,l}$ is derived from N^i

P (tree | sentence)= P (tree | $S_{0,l}$), where $S_{0,l}$ means that the start symbol S dominates the word sequence $w_{0,l}$

P(t/s) approximately equals joint probability of constituent non-terminals dominating the sentence fragments (next slide)

Indexed sentence

₀The ₁ gunman ₂ sprayed ₃ the ₄

₄building ₅ with ₆ bullets ₇. ₈

Probability of a parse tree

Probability of a parse tree (cont.)

```
P(t|s) = P(t|S_{0.7})
     (NP<sub>0.2</sub>, DT<sub>0.1</sub>, "the":w<sub>0.1</sub>, NN<sub>1.2</sub>, "gunman":w<sub>1.2</sub>,
     VP<sub>2.7</sub>, VP<sub>2.5</sub>, VBD<sub>2.3</sub>, "sprayed":w<sub>2.3</sub>,
     NP<sub>3.5</sub>, DT<sub>3.4</sub>, "the":w<sub>3.4</sub>, NN<sub>4.5</sub>, "building":w<sub>4.5</sub>,
      PP<sub>5.7</sub>, P<sub>5.6</sub>, "with": w<sub>5.6</sub>, NP<sub>6.7</sub>, NNS<sub>6.7</sub>, "bullets": w<sub>6.7</sub>
            |S_{0.7}|
```

Probability of a parse tree (cont.)

```
= P(NP_{0,2}, VP_{2,7} | S_{0,7}) * P(DT_{0,1}, NN_{1,2} | NP_{0,2}, VP_{2,7}, S_{0,7}) * ....
= P(NP_{0,2}, VP_{2,7} | S_{0,7}) * P(DT_{0,1}, NN_{1,2} | NP_{0,2}) * ....
```

(Using Chain Rule, Context Freeness and Ancestor Freeness- VP_{2.7} is NP_{0.2}'s sister and S its ancestor)