
CS626: Speech, NLP and Web

POS Tagging cntd, Viterbi, evaluation

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week 3 of 12th August, 2024

(only one lecture done due to 15th Thursday
being a holiday)

1-slide recap of week of 5th Aug

 Covered NLP stack with

chatGPT’s performance at each

layer; chatGPT is an LLM based

CAI

 To bank, I bank on the bank on

the river bank

 POS tag definition and argmax

based formulation

• Should we apply Bayes theorem or

not- discriminative (LHS of

Argmax) vs. generative (RHS)

 HMM as the apt technique for POS

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Should I apply Bayes Rule?

Cancer Detection vs. Visa Granting

• P(B|A)=[P(B).P(A|B)]/P(A)

• Cancer, if P(Cancer) > P(~cancer), i.e.

P(cancer)>0.5

• Grant_Visa, if P(Grant_Visa) >

P(~Grant_Visa), i.e. P(Grant_Visa)>0.5

• Key consideration- which data is more

reliable for obtaining probabilities

Probabilities involved: cancer

• Posterior probability

P(Cancer|patient_parameters),
– Patient parameters: HBC count, weight, family

history etc.

• Prior probability P(cancer)

• Likelihood P(patient_parameters| Cancer)

Probabilities involved: visa

• Posterior probability

P(Grant_Visa|candidate_features)
– Candidate features: income, education, travel

history, etc.

• Prior probability P(Grant_Visa)

• Likelihood

P(candidate_features|Grant_Visa)

Part of Speech Tagging

week-of-17aug20cs626-pos:pushpak7

NLP Layers

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased

Complexity

Of

Processing

Syntax

argmax computation

T*= argmaxT[P(T|W)]

=argmaxT =[{P(T).P(W|T)}/P(W)]

=argmaxT [{P(T).P(W|T)}]

=argmaxT [P(T,W)]

• Choose that T (called T*) which has the highest

probability given W

• Computation with P(T|W) is called Discriminative

Modelling

• Computation with P(T,W) is called Generative

Modelling

Argmax computation (1/2)

Best tag sequence

= T*

= argmax P(T|W)

= argmax P(T)P(W|T) (by Baye’s Theorem)

P(T) = P(t0=^ t1t2 … tn+1=.)

= P(t0)P(t1|t0)P(t2|t1t0)P(t3|t2t1t0) …

P(tn|tn-1tn-2…t0)P(tn+1|tntn-1…t0)

= P(t0)P(t1|t0)P(t2|t1) … P(tn|tn-1)P(tn+1|tn)

= P(ti|ti-1) Bigram Assumption

∏

N+1

i = 0

week-of-17aug20cs626-pos:pushpak10

Argmax computation (2/2)

P(W|T) = P(w0|t0-tn+1)P(w1|w0t0-tn+1)P(w2|w1w0t0-tn+1) …

P(wn|w0-wn-1t0-tn+1)P(wn+1|w0-wnt0-tn+1)

Assumption: A word is determined completely by its tag. This is inspired by
speech recognition

= P(wo|to)P(w1|t1) … P(wn+1|tn+1)

= P(wi|ti)

= P(wi|ti) (Lexical Probability Assumption)

∏

n+1

i = 0

∏

n+1

i = 1

week-of-17aug20cs626-pos:pushpak11

Generative Model

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

R

.

Lexical

Probabilities

Bigram

Probabilities

This model is called Generative model.

Here words are observed from tags as states.

This is similar to HMM.

week-of-17aug20cs626-pos:pushpak12

An Explanatory Example

Urn 1

of Red = 30

of Green = 50

of Blue = 20

Urn 3

of Red =60

of Green =10

of Blue = 30

Urn 2

of Red = 10

of Green = 40

of Blue = 50

Colored Ball choosing

U1 U2 U3

U1 0.1 0.4 0.5

U2 0.6 0.2 0.2

U3 0.3 0.4 0.3

Probability of transition to another Urn after picking a ball:

Example (contd.)

U1 U2 U3

U1 0.1 0.4 0.5

U2 0.6 0.2 0.2

U3 0.3 0.4 0.3

Given :

Observation : RRGGBRGR

State Sequence : ??

Not so Easily Computable.

and

R G B

U1 0.3 0.5 0.2

U2 0.1 0.4 0.5

U3 0.6 0.1 0.3

There are also initial probabilities of starting

A particular urn: 3 probabilities

Diagrammatic representation (1/2)

U1

U2

U3

0.1

0.2

0.4

0.6

0.4

0.5

0.3

0.2

0.3

R, 0.6

G, 0.1

B, 0.3

R, 0.1

B, 0.5

G, 0.4

B, 0.2

R, 0.3 G, 0.5

Diagrammatic representation (2/2)

U1

U2

U3

R,0.02

G,0.08

B,0.10

R,0.24

G,0.04

B,0.12

R,0.06

G,0.24

B,0.30
R, 0.08

G, 0.20

B, 0.12

R,0.15

G,0.25

B,0.10

R,0.18

G,0.03

B,0.09

R,0.18

G,0.03

B,0.09

R,0.02

G,0.0

8

B,0.10

R,0.03

G,0.05

B,0.02

Computation of POS tags

DECODING

week-of-17aug20cs626-pos:pushpak17

W: ^ Brown foxes jumped over the fence .

T: ^ JJ NNS VBD NN DT NN .

NN VBS JJ IN VB

JJ

RB

NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over

NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over

Probability of a path (e.g. Top most path) = P(T) * P(W|T)

P(^) . P(NN|^) . P(NNS|NN) . P(VBD|NNS) . P(NN|VBD) .

P(DT|NN) . P(NN|DT) . P(.|NN) . P(.)

*

P(^|^) . P(brown|NN) . P(foxes|NNS) . P(jumped|VBD) .

P(over|NN) . P(the|DT) . P(fence|NN) . P(.|.)

Illustration of Viterbi Decoding for

POS tagging

From the book:

Pushpak Bhattacharyya and Aditya Joshi, Natural Language

Processing, Wiley Eastern, 2023.

Sentence: “People Dance”

• ‘people’ and ‘dance’ can both be both

nouns and verbs, as in
– “old_JJ people_NNS” (‘people’ as noun)

– “township_NN peopled_VBN with soldiers_NNS”

(‘people’ as verb)

• as well as
– “rules_NNS of_IN classical_JJ dance_NN” (‘dance’

as noun)

– “will_VAUX dance_VB well_RB”

(‘dance’ as verb)

Possible Tags: “^ people dance .”

• for simplicity we take single letter tags-

N: noun, V: verb:
– ^ N N .

– ^ N V .

– ^ V N .

– ^ V V .

• We know that out of these, the second

option ^ N V. is the correct one. How do

we get this sequence?

Step-1: Trellis

Columns of tags on each input word with transition

arcs going from tags (states) to tags in consecutive

columns and output arcs going from tags to words

(observations)

Aim: select the highest probability path

From 4 possibilities; As and Bs are accumulated

probabilities

Some numerical values: hypothetical

but not unrealistic

• Calculations:

• When it comes to the start of the

sentence, most sentences start with a

noun. So lets have

P(N|^)=0.8, P(V|^)=0.2 and of course

P(‘^’|^)=1.0

• Then

A1=0.8, A2=0.2

Encounter “people”: more probabilities (1/2)

• Transition from N to N is less common than to

V.

• Transition from V to V- as in auxiliary verb to

main verb- is quite common (e.g., is going).

• V to N too is common- as in case of a nominal

object following the verb (going home).

• Following plausible transition probabilities:
– P(N|N)=0.2, P(V|N)=0.8, P(V|V)=0.4, P(N|V)=0.6

• We also need lexical probabilities. ‘people’

appearing as verb is much less common than

its appearing as noun. So let us have

Encounter “people”: more probabilities (2/2)

• We also need lexical probabilities. ‘people’

appearing as verb is much less common than

its appearing as noun. So let us have

– P(‘people’|N)=0.01, P(‘people’|V)=0.001

• Note: N N: golf club, cricket bat, town people-

ambiguity “The town people visited was

deserted”/”town people will not be able to live here”

• V V combination: Hindi- has padaa (laughed

suddenly), Bengali- chole gelo (went away)

Calculate Bs

• B1=0.8.0.2.0.01=0.0016 (approx.)

• B2=0.8.0.8.0.01=0.064 (approx.)

• B3=0.2.0.6.0.001=0.00012

• B4=0.2.0.4.0.001=0.00008

Reduced Viterbi Configuration

• Heart of Decoding linear time

Next word: ‘dance’

More probabilities needed

• We can give equal probabilities to

sentences ending in noun and verb.

Also, ‘dance’ as verb is more common

than noun.

P(.|N)=0.5=P(.|V)

P(‘dance’|N)=0.001

P(‘dance’|V)=0.01

Best Path: ^ N V .

C1=0.0016.0.5.0.001=0.0000008

C2=0.064.0.5.0.01=0.00032

Computational Complexity

● If we have to get the probability of each

sequence and then find maximum among

them, we would run into exponential number

of computations.

● If |s| = #states (tags + ^ + .)

and |o| = length of sentence (words + ^ + .

)

Then, #sequences = s|o|-2

● But, a large number of partial computations

can be reused using Dynamic Programming.

Dynamic Programming

^

N V O

.3O2V1N .OVN5
.OVN4

.OVN .OVN

Є

people

laugh

0.6 x 1.0 = 0.6
0.2 0.2

0.6 x 0.1 x 10-

3 = 6 x 10-5

1 0.6 x 0.4 x 10-

3 = 2.4 x 10-4

2 0.6 x 0.3 x 10-3

= 1.8 x 10-4

3 0.6 x 0.2 x 10-3

= 1.2 x 10-4

No need to expand N4 and N5

because they will never be a

part of the winning

sequence.

Computational Complexity

● Retain only those N / V / O nodes which ends

in the highest sequence probability.

● Now, complexity reduces from |s||o| to

|s|.|o|

● Here, we followed the Markov assumption of

order 1.

Problems faced in HMM based POS

tagging

All problems are due to SPARSITY; following are

the kinds of sparsity

(a) unseen words (‘delay’ in training corpus,

but not ‘procrastination’)

(b) Different form of the word- morphology

(corpus has ‘predictable’, but not ‘unpredictable’)

(c) has code mixing (‘aap mujhe advice

dijiye’- ‘you give me advice)

(d) The corpus does not have the particular

word-tag combination (‘people’ as verb)

Three basic Tasks wrt HMM

• Problem 1: Likelihood of a sequence
– Forward Procedure

– Backward Procedure

• Problem 2: Best state sequence
– Viterbi Algorithm

• Problem 3: Re-estimation
– Baum-Welch (Forward-Backward Algorithm)

A note on Problem 1

Probability of observation

• Problem 1: Likelihood of a sequence
– Forward Procedure

– Backward Procedure

• If the observation is a word sequence, it

is called “Language Model (LM)”

• In that case, what does LLM mean?

Large Language Model

JJ NN

DT

Probability of a sequence of words

NN IN INNN NNS

Meaning of “Large Language Model”

NN

Paraphrase

Meaning of LLM: Probability of a “large” (long)

sequence of words; GPT4 context is 4000 words

Definition of Prob. of a sequence of words

Probability of a sequence of words

≡
Probability of occurrence in corpus

