CS626: Speech, NLP and Web

Probabilistic Parsing cntd, Dependency Parsing Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Week 7 of 9th September, 2024

1-slide recap of week of 2nd Sep

- Pre-modifier and post-modifier
- DP: Head-modifier expressed directly
- Ambiguity resolution by proximity: telescope example
- TD, BU, TDBY, CYK Parsing
- Notion of Domination: X[p:q], the phrase/POS X dominates (generates) text segment from position p to position q
- Probability of a CFG rule P(A→ B C) means P(B C|A)
- Independence of position, context and ancestry

Notion of Domination

- A sentence is dominated by the symbol S through domination of segments by phrases
- Analogy
 - The capital of a country dominates the whole country.
 - The capital of a state dominates the whole state.
 - The district headquarter dominates the district.

Parse Tree #1

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

Parse Tree #2

^o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

Domination: Example

- I saw a boy with a telescope
 - Meaning: I used the telescope to see the boy

- Dominations
 - NP dominates "a telescope"
 - VP dominates "saw a boy with a telescope
 - S dominates the whole sentence
- Domination is composed of many sub-domination.

parsing:pushpak

Probabilistic parsing

Main source:

Christopher Manning and Heinrich Schutze, *Foundations of Statistical Natural Language Processing*, MIT Press, 1999.

Noisy Channel Modeling

$$T^{*}= \operatorname{argmax} [P(T|S)]$$

$$T$$

$$= \operatorname{argmax} [P(T).P(S|T)]$$

$$T$$

$$= \operatorname{argmax} [P(T)], \text{ since given the parse the sentence is completely determined and } P(S|T)=1$$

"I saw....": CP and DP #1

"I saw...": CP and DP #2

Formal Definition of PCFG

- A set of terminals {w_k}, k = 1,...,V
 {w_k} = { child, teddy, bear, played...}
- A set of non-terminals {Nⁱ}, i = 1,...,n
 {Nⁱ} = { NP, VP, DT...}
- A designated start symbol S (sometimes given the symbol N¹)
- A set of rules $\{N^i \rightarrow \zeta^j\}$, where ζ^j is a sequence of terminals & non-terminals

e.g., NP \rightarrow DT NN

A corresponding set of rule probabilities

Rule Probabilities

 Rule probabilities are such that for for the same non terminal all production rules sum to1.

> *E.g.*, P(NP \rightarrow DT NN) = 0.2 P(NP \rightarrow NNS) = 0.5 P(NP \rightarrow NP PP) = 0.3

 Meaning of P(NP → DT NN)= 0.2, 20% of the training data parses use the rule NP → DT NN

Probabilistic Context Free Grammars

- $S \rightarrow NP VP$ 1.0
- NP \rightarrow DT NN 0.5
- NP \rightarrow NNS 0.3
- NP \rightarrow NP PP 0.2
- $PP \rightarrow P NP$ 1.0
- $VP \rightarrow VP PP$ 0.6
- $VP \rightarrow VBD NP 0.4$

- DT \rightarrow the 1.0
 - NN \rightarrow gunman 0.5
 - NN \rightarrow building 0.5
 - VBD \rightarrow sprayed 1.0
 - NNS \rightarrow bullets 1.0

Example Parse t₁

The gunman sprayed the building with bullets.

 $P(t_1) = 1.0 * 0.5 * 1.0$ * 0.5 * 0.6 * 0.4 * 1.0 * 0.5 * 1.0 * 0.5 * 1.0 * 1.0 * 0.3 * 1.0 = 0.00225 parsing:pushpak

Another Parse t₂

The gunman sprayed the building with bullets. <u>S</u>_{1.0} $P(t_2)$ $\dot{NP}_{0.5}$ $VP_{0.4}$ = 1.0 * 0.5 * 1.0 * 0.5* 0.4 * 1.0 * 0.2 * 0.5 NN_{0.5}VBD_{1.0} $\hat{N}P_{0.2}$ **DT**_{1.0} * 1.0 * 0.5 * 1.0 * 1.0 * 0.3 * 1.0 **PP**_{1.0} NP_{0.5} Thegunman sprayed = 0.0015DT_{1.0} NN_{0.5} P_{1.0} NP_{0.3} the building with NNS₁ bullets

þarsing:pushpak

Probability of a sentence (1/2)

Notation: (*a,b* etc. are BETWEEN-word indices)

w_{ab}- subsequence _aw....w_b
 N^j dominates _aw....w_b
 or yield(N^j) = _aw....w_b

Probability of a sentence (2/2)

Probability of a sentence = $P(w_{0,l})$

(0 is the index before the first word and I the index after the last word. All other indices are between words)

$$= \Sigma_t (P(w_{0,l}, t))$$
$$= \Sigma_t (P(t), (P(w_{0,l} | t)))$$
$$= \Sigma_t P(t), 1$$

where *t* is a parse tree of the sentence

If t is a parse tree for the sentence $w_{0,l}$, this will be 1 !!

Assumptions of the PCFG model

- Place invariance:
 P(NP → DT NN) is same independent of location in the tree
- Context-free:
 P(NP → DT NN | sisters of NP)
 = P(NP → DT NN)
- Ancestor free:

P(NP → DT NN| its ancestors) = P(NP → DT NN)

Probability of a parse tree **Domination**: we say the non-terminal N^{i} dominates from between-word indices k to I, symbolized as $N^{i}_{k,l}$, if $w_{k,l}$ is derived from N^{i}

P (tree |sentence)= P (tree | S_{0,1}), where $S_{0,1}$ means that the start symbol *S* dominates the word sequence $W_{0,1}$

P(t/s) approximately equals joint probability of constituent non-terminals dominating the sentence fragments (next slide)

Indexed sentence

 $_{0}$ The $_{1}$ gunman $_{2}$ sprayed $_{3}$ the $_{4}$ $_{4}$ building $_{5}$ with $_{6}$ bullets $_{7}$.

Probability of a parse tree

W_{6,7}

Ø4rsing:pushpak

Probability of a parse tree (cont.)

- $P(t|s) = P(t | S_{0,7})$
- = P(NP_{0.2}, DT_{0.1}, *"the"*:w_{0.1}, NN_{1.2}, *"gunman"*:w_{1.2}, VP_{2.7}, VP_{2.5}, VBD_{2.3}, *"sprayed":*w_{2.3}, NP_{3.5}, DT_{3.4}, "*the*":w_{3.4}, NN_{4.5}, "*building*":w_{4.5}, PP_{5.7}, P_{5.6}, *"with":*w_{5.6}, NP_{6.7}, NNS_{6.7}, *"bullets":*w_{6.7} $|S_{0,7})$

@ārsing:pushpak

Probability of a parse tree (cont.)

- $= P (NP_{0,2}, VP_{2,7} | S_{0,7}) * P(DT_{0,1}, NN_{1,2} | NP_{0,2}, VP_{2,7}, S_{0,7}) * \dots$
- = P (NP_{0,2} , VP_{2,7} | S_{0,7}) * P(DT_{0,1} , NN_{1,2} | NP_{0,2}) *

(Using Chain Rule, Context Freeness and Ancestor Freeness- $VP_{2,7}$ is $NP_{0,2}$'s sister and S its ancestor)

Illustration with "The man saw the boy with a telescope"

From Bhattacharyya and Joshi. 2023. Natural Language Processing. Wiley.

$\begin{array}{c} \textbf{CFG:}_{0} \textit{ the }_{1} \textit{ man }_{2} \textit{ saw }_{3} \textit{ the }_{4} \textit{ boy }_{5} \textit{ with }_{6} \textit{ a }_{7} \textit{ telescope }_{8} \\ \textbf{Syntax} \qquad \textbf{Lexicon} \end{array}$

S→ NP VP NP→ DT NN NP→ NP PP VP→ VBD VP→ VP NP VP→ VP NP PP→ P NP $DT \rightarrow the$ $DT \rightarrow a$ $NN \rightarrow man$ $NN \rightarrow boy$ $NN \rightarrow telescope$ $VBD \rightarrow saw$ $P \rightarrow with$

PCFG: CYK: $_0$ the $_1$ man $_2$ saw $_3$ the $_4$ boy $_5$ with $_6$ a $_7$ telescope $_8$

Syntax

Lexicon

1.0	$DT \rightarrow the$	0.5
0.5	DT→ a	0.5
0.5	NN <i>→ man</i>	0.33
0.2	$NN \rightarrow boy$	0.33
0.5	NN→ telescope	0.33
0.3	VBD → saw	1.0
1.0	$P \rightarrow with$	1.0
	1.0 0.5 0.5 0.2 0.5 0.3 1.0	1.0 $DT \rightarrow the$ 0.5 $DT \rightarrow a$ 0.5 $NN \rightarrow man$ 0.2 $NN \rightarrow boy$ 0.5 $NN \rightarrow telescope$ 0.3 $VBD \rightarrow saw$ 1.0 $P \rightarrow with$

$_{0}$ the $_{1}$ man $_{2}$ saw $_{3}$ the $_{4}$ boy $_{5}$ with $_{6}$ a $_{7}$ telescope $_{8}$

Positions (row-col)	1	2	3	4	5	6	7	8
0	$the_{01} \operatorname{DT}_{01}$	NP ₀₂	S ₀₃		S ₀₅			S ₀₈
1		man_{12} NN ₁₂						
2			saw ₂₃ VBD ₂₃ VP ₂₃	-	VP ₂₅			VP ₂₈ (VP ₂₅ PP ₅₈ /VP ₂₃ NP ₃₈)
3				<i>the</i> ₃₄ DT ₃₄	NP ₃₅			NP ₃₈
4					$boy_{45} NN_{45}$			
5						with $_{56}$ P $_{56}$		PP ₅₈
6							a ₆₇ DT ₆₇	NP ₆₈
7								telescope ₇₈ NN ₇₈

$_{0}$ the $_{1}$ man $_{2}$ saw $_{3}$ the $_{4}$ boy $_{5}$ with $_{6}$ a $_{7}$ telescope $_{8}$

Positions	1	2	3	4	5	6	7	8
(10W-COI)								
0	$the_{01} DT_{01}$	NP ₀₂	S ₀₃		S ₀₅			S ₀₈
	0.5	0.0825	1.0*0.08*0.2=0.01 65					0.0825*0.0002/0.825*0.00 4=0.0000165/0.00033
1		man_{12} NN ₁₂						
		0.33						
2			saw_{23} VBD ₂₃ VP ₂₃		VP ₂₅			VP ₂₈
			1.0*0.2=0.2		0.5*0.2*0.0825			VP ₂₅ PP ₅₈ /VP ₂₃ NP ₃₈
					=0.00825			0.3*0.00825*0.0825/0.5*0 .2*0.04125=0.0002/0.004
3				<i>the</i> ₃₄ DT ₃₄	NP ₃₅ 0.0825			NP ₃₈
				0.5				0.5*0.0825=0.04125
4					$boy_{45} NN_{45}$			
					0.33			
5						with ₅₆ P ₅₆ 1.0		PP ₅₈
								1.0*0.0.0825=0.0825
6							$a_{67} DT_{67}$	NP ₆₈
							0.5	0.5*0.165=0.0825
7								$telescope_{78}$ NN ₇₈
								0.33

Probability Computations

 $P(NP_{02}) = P(NP \rightarrow DT NN) \times P(DT_{01}) \times P(NN_{12}) = 0.5 \times 0.5 \times 0.33$ = 0.0825

 $P(VP_{28}) = P(VP \rightarrow VP PP) \times P(VP_{25}) \times P(PP_{58}) \text{ or}$ $= P(VP \rightarrow VP NP) \times P(VP_{23}) \times P(NP_{38})$

Now, $P(VP_{25}) = P(VP \rightarrow VP NP) \times P(VP_{23}) \times P(NP_{35}) = 0.5 \times P(VP_{23}) \times P(NP_{35})$

But, $P(VP_{23}) = P(VP \rightarrow VBD) \times P(VBD_{23}) = 0.2 \times P(VBD \rightarrow saw) = 0.2 \times 1.0 = 0.2$

 $P(NP_{35}) = P(NP \rightarrow * `the boy') = 0.0825 (\rightarrow * means chain of rule application)$

Positions (row-col)	1	2	3	4	5	6	7	8
	the DT	NPop	Soz		Sos			Sog
0	$me_{01} D1_{01}$	0.0825	-03 1 0*0 0825*0 2-0 01		-05 1 0*0 0825*0 00			~08 0 0825*0 0002 0 0825*0 000
	0.5	0.0825	65		825=0.0007			34=0.000017, 0.000028
1		man_{12} NN ₁₂						
		0.33						
2			saw_{23} VBD ₂₃ VP ₂₃		VP ₂₅			VP ₂₈
			1.0*0.2=0.2		0.5*0.2*0.0825 =			VP ₂₅ PP ₅₈ /VP ₂₃ NP ₃₈
					0.00825			0.3*0.00825*0.0825,0.5*0.2 *0.0034=0.0002/0.00034
3				$the_{34} \text{ DT}_{34} 0.5$	NP ₃₅ 0.0825			NP ₃₈
								0.5*0.0825*0.0825=0.0034
4					$boy_{45} NN_{45}$			
					0.33			
5						with ₅₆ P ₅₆ 1.0		PP ₅₈
								1.0*0.0.0825=0.0825
6							$a_{67} \mathrm{DT}_{67}$	NP ₆₈
							0.5	0.5*0.165=0.0825
7								telescope ₇₈ NN ₇₈
								0.33

Parse-1

Constituency parse tree of *"The man saw the boy with a telescope"*

Parse-2

Constituency parse tree of *"The man saw the boy with a telescope"*

Detailed constituency tree of "the man...": Parse Tree-1 (man has telescope) with probability

- * 0.5*0.5 * 0.33
- · 0.33
- *1.0*1.0
- * 0.5*0.5
- * 0.33
- $= 1.7 * 10^{-5}$

Detailed constituency tree of "the man...": Parse Tree-2 (boy has telescope) S₀₈ 1.0 (0.000028) VP₂₈ 0.5 (0.00034) NP₀₂ 0.5 (0.0825) NP₃₈ 0.5 (0.0034) VP₂₃ 0.2 (0.2) NN₁₂ 0.33 DT₀₁ 0.5 PP₅₈ 1.0 (0.0825) NP₃₅ 0.5 (0.0825) VBD₂₃ 1.0 NP₆₈ 0.5 (0.0825) P₅₆ 1.0 man the DT₃₄ 0.5 NN₄₅ 0.33 saw NN₇₈ 0.33 with DT₆₇ 0.5 boy the *P*(*tree-2*) =1.0*0.5*0.5*0.33 telescope а *0.5*0.2*1.0 *0.5*0.5*0.5 *0.33 *1.0*1.0 *0.5*0.5 *0.33 $= 2.8 \times 10^{-5}$
Detailed constituency tree of "the man...": Parse Tree-2 (boy has telescope)

Alpha and beta probabilities

$$\beta_j(p,q) = P(W_{pq} \mid N_{pq}^j)$$

$\beta_j(p,q)$ expansion

$$\beta_{j}(p,q) = P(W_{p-q} \mid N_{pq}^{j})$$

$$= \sum_{k,r,l} P(N^{j} \rightarrow N^{k} \mid N^{l}) \cdot P(W_{p-r} \mid N_{pr}^{k}) \cdot P(W_{r-q} \mid N_{rq}^{l})$$

$$= \sum_{k,r,l} P(N^{j} \rightarrow N^{k} \mid N^{l}) \cdot \beta_{k}(p,r) \cdot \beta_{l}(r,q)$$

 $\beta_{i}(k,k+1)$ expansion

$$\beta_j(k, k+1) = P(w_{k,k+1} \mid N_{k,k+1}^j)$$
$$= P(N^j \to w)$$

delta probability

$$\delta_i(p,q) = \max_{j,r,k} P(N^i \to N^j N^k) \cdot \delta_j(p,r) \cdot \delta_k(r,q)$$

Illustration of Parse Tree finding algo

$_{0}$ the $_{1}$ man $_{2}$ saw $_{3}$ the $_{4}$ boy $_{5}$ with $_{6}$ a $_{7}$ telescope $_{8}$

Positions	1	2	3	4	5	6	7	8
(10W-COI)								
0	$the_{01} DT_{01}$	NP ₀₂	S ₀₃		S ₀₅			S ₀₈
	0.5	0.0825	1.0*0.08*0.2=0.01 65					0.0825*0.0002/0.825*0.00 4=0.0000165/0.00033
1		man_{12} NN ₁₂						
		0.33						
2			saw_{23} VBD ₂₃ VP ₂₃		VP ₂₅			VP ₂₈
			1.0*0.2=0.2		0.5*0.2*0.0825			VP ₂₅ PP ₅₈ /VP ₂₃ NP ₃₈
					=0.00825			0.3*0.00825*0.0825/0.5*0 .2*0.04125=0.0002/0.004
3				<i>the</i> ₃₄ DT ₃₄	NP ₃₅ 0.0825			NP ₃₈
				0.5				0.5*0.0825=0.04125
4					$boy_{45} NN_{45}$			
					0.33			
5						with ₅₆ P ₅₆ 1.0		PP ₅₈
								1.0*0.0.0825=0.0825
6							$a_{67} DT_{67}$	NP ₆₈
							0.5	0.5*0.165=0.0825
7								$telescope_{78}$ NN ₇₈
								0.33

Illustration of the algo for finding the parse tree

- 'the' is reduced to DT; this is recorded in cell
 <0, 1> along with the probability 0.5
- Similarly for 'man' → NN along with the probability 0.33 at cell <1, 2>
- Cell <0, 2> gets NP₀₂ along with the probability 0.0825

Illustration of the algo for finding the parse tree

- This process continues normally, until we come to cell <2, 8>; VP28 has two parse trees one through VP → VP PP with probability 0.0002 and the other through VP → VP NP with probability 0.00034
- Here we choose the parse tree through VP NP which has the higher probability
- The process terminates with parse tree rooted at S, having probability 0.000028 (*PP* attached to *NP*, indicating the boy has the telescope)

Efficiency considerations

Catalan number

$$C_n = \frac{1}{n+1} {\binom{2n}{n}} = \prod_{k=2}^n \frac{k}{n+k}, \quad n \ge 0$$

which is exponential in n.

- It can be shown that the number of full binary trees with n + 1 leaves, or, equivalently, with a total of *n* internal nodes is C_n .
- Binary trees are obtained from X-bar grammars.
- They are also obtained when we apply CYK parsing since the grammar is in Chomsky normal form (CNF).
- Thus efficiency concern is a real one for parsing

58rsing:pushpak

Stress Test for Parsing: A very difficult parsing situation!

Repeated Word handling

parsing:pushpak

Sentence on Buffaloes!

Buffaloe buffaloes Buffaloe buffaloes buffaloe buffaloe Buffaloe buffaloes

Charniak

parsing:pushpak

Collins

Stanford

þārsing:pushpak

RASP

S: Buffalo buffaloes Buffalo buffaloes buffalo buffalo Buffalo buffaloes

Buffalo buffaloes Buffalo buffaloes buffalo *buffalo* Buffalo buffaloes

NP: Buffalo buffaloes Buffalo buffaloes buffalo

Buffalo buffaloes

Buffalo buffaloes buffalo

VP: buffalo Buffalo buffaloes

Buffalo buffaloes

NP: Buffalo buffaloes

S': Buffalo buffaloes buffalo

Buffalo buffaloes

Another similar sentence: Brown cows white cows cow cow black cows

Brown cows white cows cow

cow black cows

Observation

- Collins and Charniak come close to producing the correct parse.
- RASP tags all the words as nouns.

Another phenomenon: Garden pathing

e.g. The old man the boat.

Another example: The horse raced past the garden fell.

Expectation Maximization

From

Pushpak Bhattacharyya, *Machine Translation*, CRC Press, 2015

Maximum Likelihood of Observations

- Situation 1: Throw of a Single Coin
- The parameter is the probability p of getting heads in a single toss. Let N be the number of tosses. Then the observation X and the data or observation likelihood D respectively are:

$$X :< x_1, x_2, x_3, \dots, x_{N-1}, x_N >$$

$$D = \prod_{i=1}^{N} p^{x_i} (1-p)^{1-x_i}, \text{ s.t. } x_i = 1 \text{ or } 0, \text{ and } 0 \le p \le 1$$

where x_i is an indicator variable assuming values 1 or 0 depending on the *ith* observation being heads or tail. Since there are N identically and independently distributed (*i.i.d.*) observations, D is the product of probabilities of individual observations each of which is a Bernoulli trial.

Single coin

Since exponents are difficult to manipulate mathematically, we take log of *D*, also called log likelihood of data, and maximize with regard to *p*. This yields

$$p = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{M}{N}; M = \#Heads, N = \#tosses$$

Throw of 2 coins

- Three parameters: probabilities p₁ and p₂ of heads of the two coins and the probability p of choosing the first coin (automatically, 1-p is the probability of choosing the second coin).
- N tosses and observations of heads and tails. Only, we do not know which observation comes from which coin.
- Indicator variable z_i is introduced to capture coin choice (z_i=1 if coin 1 is chosen, else 0). This variable is hidden, *i.e.*, we do not know its values.
- However, without it the likelihood expression would have been very cumbersome.

Data Likelihood

Data Likelihood,

 $D = P_{<p1,p2,p>}(X) = P_{\theta}(X), \ \theta = <p,p_1,p_2>$ $= \sum_{Z} P_{\theta}(X,Z)$

 $X :< x_1, x_2, x_3, ..., x_{N-1}, x_N >$

$$Z: < z_1, z_2, z_3, ..., z_{N-1}, z_N >$$

$$P_{\theta}(X, Z) = \prod_{i=1}^{N} \left[\left(p p_1^{x_i} (1 - p_1)^{1 - x_i} \right)^{z_i} \left((1 - p) p_2^{x_i} (1 - p_2)^{1 - x_i} \right)^{1 - z_i} \right],$$

s.t. $z_i, x_i = 1 \text{ or } 0, \text{ and } 0 \le p, p_1, p_2 \le 1$

Invoke Jensen Inequality

We would like to work with $logP_{\theta}(X)$. However, there will be a Σ inside *log*. Fortunately, *log* is a concave function, so that

$$\log\left(\sum_{i=1}^{K} \lambda_{i} y_{i}\right) \geq \left(\sum_{i=1}^{K} \lambda_{i} \log(y_{i})\right); \sum_{i=1}^{K} \lambda_{i} = 1$$

Log likelihood of Data $LL(D) = \log$ likelihood of data $= log(P_{\theta}(X)) = log(\Sigma_{Z}P_{\theta}(X,Z)))$ $= log[\Sigma_{Z}\lambda_{Z}(P_{\theta}(X,Z)/\lambda_{Z})]; \Sigma_{Z}\lambda_{Z}=1$ $\ge \Sigma_{Z}[\lambda_{Z}log[(P_{\theta}(X,Z)/\lambda_{Z})])$

After a number of intricate mathematical steps

 $LL(D) >= E_{Z|X,\theta} \log(P_{\theta}(X,Z))$, where E(.) is the expectation function; note that the expectation is conditional on X.

Expectation of log likelihood

$$\begin{split} & E_{Z|X}[\log(P_{\theta}(X,Z)] \\ &= E_{Z|X}\left[\log\prod_{i=1}^{N}\left[\left(pp_{1}^{x_{i}}\left(1-p_{1}\right)^{1-x_{i}}\right)^{z_{i}}\left((1-p)p_{2}^{x_{i}}\left(1-p_{2}\right)^{1-x_{i}}\right)^{1-z_{i}}\right]\right] \\ &= E_{Z|X}\left[\sum_{i=1}^{N} z_{i}\left(\log p + x_{i}\log p_{1} + (1-x_{i})\log(1-p_{1})\right) + \left((1-z_{i})\left(\log(1-p) + x_{i}\log p_{2} + (1-x_{i})\log(1-p_{2})\right)\right)\right] \\ &= \sum_{i=1}^{N} \left[E(z_{i} \mid x_{i})\left(\log p + x_{i}\log p_{1} + (1-x_{i})\log(1-p_{1})\right) + \left((1-E(z_{i} \mid x_{i}))\left(\log(1-p) + x_{i}\log p_{2} + (1-x_{i})\log(1-p_{1})\right) + \left((1-E(z_{i} \mid x_{i}))\left(\log(1-p) + x_{i}\log p_{2} + (1-x_{i})\log(1-p_{2})\right)\right) \\ &\text{s.t. } z_{i}, x_{i} = 1 \text{ or } 0, \text{ and } 0 \le p, p_{1}, p_{2} \le 1 \end{split}$$

-

-

Derivation of E and M steps for 2 coin problem (1/2)- M step

Take partial derivative of $E_{Z|X,\theta}(.)$ (prev. slide) wrt p, p_1 , p_2 and equate to 0.

$$p = \frac{\sum_{i=1}^{N} E(z_i \mid x_i)}{N}$$

$$p_1 = \frac{\sum_{i=1}^{N} E(z_i \mid x_i)x_i}{\sum_{i=1}^{N} E(z_i \mid x_i)}$$

$$p_2 = \frac{M - \sum_{i=1}^{N} E(z_i \mid x_i)x_i}{N - \sum_{i=1}^{N} E(z_i \mid x_i)}; M = \# Heads, N = \# tosses$$
Derivation of E and M steps for 2 coin problem (2/2)- E step $E(z_i|x_i)=1.P(z_i=1|x_i)+0.P(z_i=0|x_i)$ $=P(z_i=1|x_i)$

$$P(z_{i} = 1 | x_{i}) = \frac{P(z_{i} - 1, x_{i})}{P(x_{i})}$$

$$= \frac{pp_{1}^{x_{i}}(1 - p_{1})^{1 - x_{i}}}{P(x_{i}, z_{i} = 1) + P(x_{i}, z_{i} = 0)}$$

$$= \frac{pp_{1}^{x_{i}}(1 - p_{1})^{1 - x_{i}}}{pp_{1}^{x_{i}}(1 - p_{1})^{1 - x_{i}} + (1 - p)p_{2}^{x_{i}}(1 - p_{2})^{1 - x_{i}}}$$