CS626: Speech, NLP and Web

Machine Translation- Intro and Paradigms
Pushpak Bhattacharyya and Sourabh
Deoghare
Computer Science and Engineering
Department
IIT Bombay
Week 8 of 23rd September, 2024

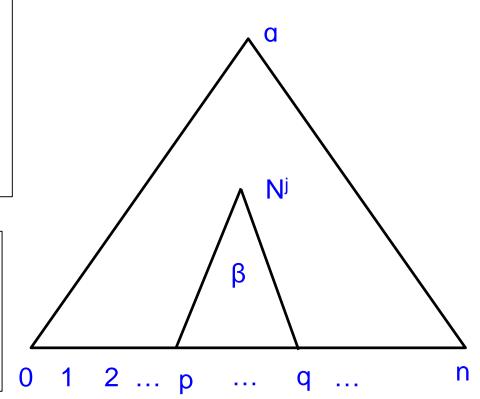
1-slide recap of week of 9th Sep

- Domination
- Probabilistic Parsing:
 - T*= argmax [P(T|S)]
- Probability of a sentence
 - $= P(wO, I) = \Sigma t P(t)$

$$\beta_{j}(p,q) = P(W_{p-q} | N_{pq}^{j})$$

$$= \sum_{k,r,l} P(N^{j} \to N^{k} N^{l}).P(W_{p-r} | N_{pr}^{k}).P(W_{r-q} | N_{rq}^{l})$$

$$= \sum_{k,r,l} P(N^{j} \to N^{k} N^{l}).\beta_{k}(p,r).\beta_{l}(r,q)$$



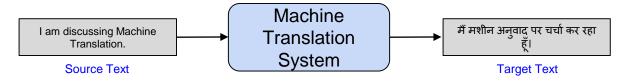
$$\delta_i(p,q) = \max_{i,r,k} P(N^i \to N^j N^k).\delta_i(p,r).\delta_k(r,q)$$

Stress Test for Parsing:
A very difficult parsing situation!-

$$C_n = \frac{1}{n+1} {2n \choose n} = \prod_{k=2}^n \frac{k}{n+k}, \quad n \ge 0$$

Introduction to Machine Translation (MT) (1/2)

- What is Machine Translation?
 - Translation of a piece of text in one language into another through a computer program.
 - The target text should convey the *exact* meaning as the source text.



- Why do we need Machine Translation?
 - To reduce/remove the language barrier.
- Who needs it?
 - Communication, Travel, Entertainment, Administration, Education, Industry, etc.

Introduction to Machine Translation (MT) (2/2)

- Why are we interested?
 - Any multilingual NLP system involves MT as some level
 - Challenging and old problem
 - Deals with Natural Language Understanding and Generation
 - MT theories and techniques has applicability in a range of other NLP problems
- Why is MT a difficult problem? Ambiguity
 - Different languages have different properties
 - Different word order
 - Polysemy and synonymy
 - Morphological Richness

What does MT need to do?

Deal with *Language Divergence*

Language Divergence

- Languages express meaning in divergent ways.
- Syntactic Divergence:
 - Arises because of the difference in structure
- Lexical-Semantic Divergence:
 - Arises because of difference in semantic properties of languages

Types of Syntactic Divergence

Constituent Order Divergence:

English: He is waiting for him. Hindi: वह उसके लिए इंतजार कर रहा है।

Subject	He	वह
Verb	waiting	इंतजार कर रहा है
Object	him	उसके

Adjunction Divergence:

English: Delhi, the capital of India, has many historical buildings.

Hindi: भारत की राजधानी दिल्ली में बहुत सी एतिहासिक इमारतें हैं

Null Subject Divergence:

English: I am going.

Hindi: जा रहा हूँ।।

Types of Lexical-Semantic Divergence

Conflational Divergence:

English: He stabbed him. Hindi: उसने उसे छुरे से मारा

Categorial Divergence (Lexical Category Change):

English: They are competing.

Hindi: वे प्रतिस्पर्धा कर रहे हैं

 Head-swapping Divergence (Promotion or Demotion of a Logical Modifier):

English: The play is on.

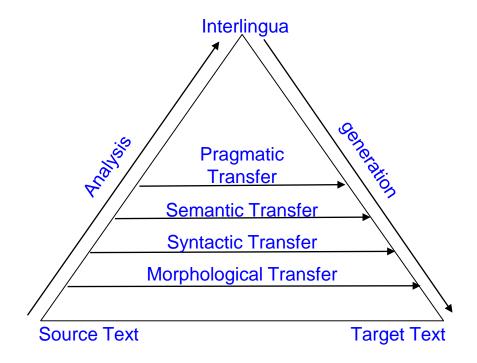
Hindi: खेल चल रहा है

Conceptual Model of MT: Vauquois Triangle

- Problems:
 - Word-level Transfer:

I am eating an apple.

में हूँ खा रहा एक सेब।

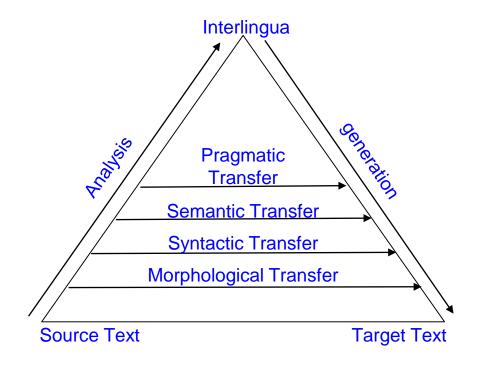


Conceptual Model of MT: Vauquois Triangle

- Problems:
 - Syntax-level Transfer:

I miss the bus every day.

मैं हर दिन बस को याद करता हूँ।

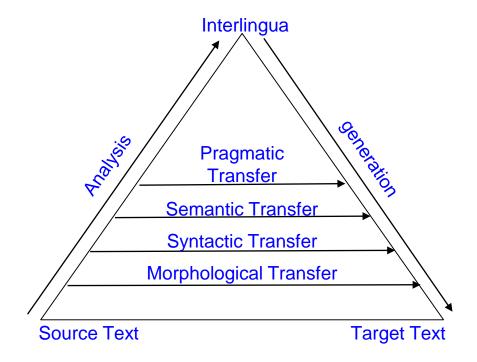


Conceptual Model of MT: Vauquois Triangle

- Problems:
 - Semantic-level Transfer:

His departure was for good.

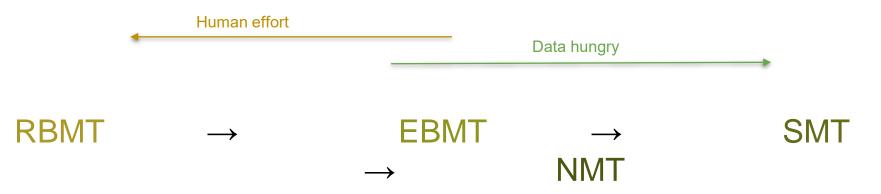
उसका प्रस्थान अच्छे के लिए था।



Approaches

- Rule-based and Knowledge-based MT:
 - Interlingua-based
 - Transfer-based
- Limitations:
 - Costly in terms of time and money
 - Highly complex
 - Adaptation is difficult
- Data Driven MT: Parallel Corpus contains tuples of (source, translation)
 - Example-based MT
 - Statistical MT
 - Neural MT

Paradigms of Machine Translation



(Rule based machine translation) (Example based machine translation) (Statistical machine translation) (Neural machine translation)

Rules handmade by human expert → Rules by learning from data

Topics To Be Discussed

- Machine Translation (MT)
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation
 - Evaluation

Problem Formulation

- Goal: Given a foreign sentence f, find the most likely English translation e.
- Probabilistic Model:
 - We would like to have a measure of confidence for the translations we learn.
 - We would like to model uncertainty in translation.
- Notations:
 - Source language (F)
 - Target language (E)
 - Target language sentence (f)
 - Source language sentence (e)

$$\bar{e} = \operatorname*{arg\,max}_{e} P(e|f)$$

Noisy Channel Model (1/2)

- Sees translation as a process of recovering the original sentence given the corrupted sentence.
- Decomposes P(e|f) into P(f|e) * P(e) / P(f)
- Steps:
 - Generate e using P(e)
 - Pass e through the channel
 - Get f, a corruption of e
- Why do we do it?
 - Makes it easier to mathematically represent translation and learn probabilities
 - Allows to separately model Adequacy and Fluency

Noisy Channel Model (2/2)

- Language Model:
 - How likely is e to be an English sentence?: P(e)
 - Monolingual data
- Translation Model:
 - How likely is f to be a translation of e: P(f|e)
 - Bilingual data
- Generative Modelling:
 - Generate e with probability P(e)
 - Pass e through noisy channel and get f with probability P(f|e)
 - Given f, what is the best translation e: argmax P(e|f)

Language Model

Given an English sentence e with words in order e₁, e₂,..., e_l:

$$P(e) = P(e_1, e_2,..., e_l)$$

= $P(e_1) * P(e_2|e_1) * ... * P(e_l|e_1, e_2,..., e_{l-1})$

- N-Gram Language Model:
 - Let's assume that $P(e_i)$ depends on previous N-1 words only.
 - $-P(e_i | e_1, e_2, ..., e_{i-1}) = P(e_i | e_{i-N}, e_{i-N+1}, ..., e_{i-1})$
- If N = 2, it is a Bigram model
 P(I am discussing Statistical Machine Translation)
 = P(I | START) * P(am | I) * * P(END | Translation)

Translation Model

- How do we learn P(f|e)?
- We first need to learn word-level translation probabilities to learn the sentencelevel translation probabilities.
- English sentence $e = e_1, e_2, ..., e_l$
- Foreign sentence $f = f_1, f_2, ..., f_m$

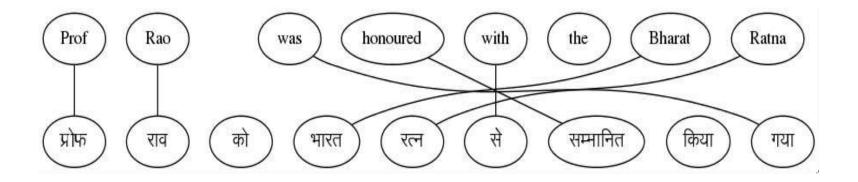
Translation Model: Co-occurrence

 Words which occur together in parallel sentence pairs are likely to be translations (higher P(f|e))

Parallel Corpus		
A boy is sitting in the kitchen	एक लडका रसोई में बैठा है	
A boy is playing tennis	एक लडका टेनिस खेल रहा है	
A boy is sitting on a round table	एक लडका एक गोल मेज पर बैठा है	
Some men are watching tennis	कुछ आदमी टेनिस देख रहे है	
A girl is holding a black book	एक लड़की ने एक काली किताब पकड़ी है	
Two men are watching a movie	दो आदमी चलचित्र देख रहे है	
A woman is reading a book	एक औरत एक किताब पढ़ रही है	
A man is sitting in a red car	एक आदमी एक काले कार मैं बैठा है	

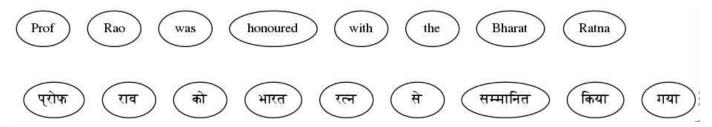
Translation Model: Alignment (1/6)

 A word in the source sentence can be aligned to a small number of words in the translation.

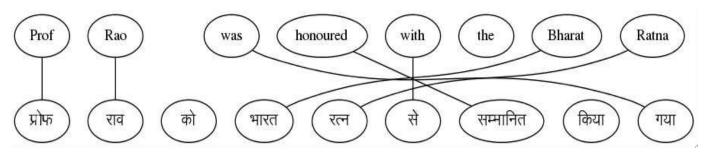


Translation Model: Alignment (2/6)

 Problem: Given a source sentence and its translation, find the word-level correspondences.



Alignments:

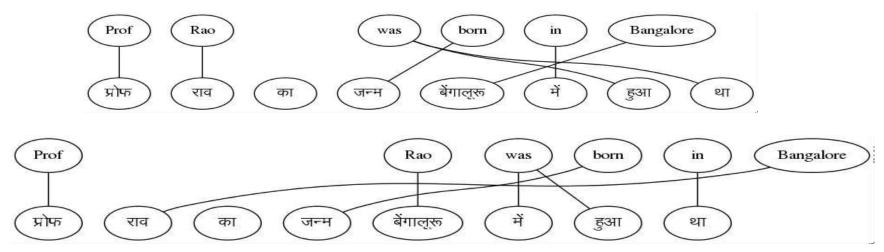


Translation Model: Alignments (3/6)

- How do we learn P(f|e)?
- We first need to learn word-level translation probabilities to learn the sentencelevel translation probabilities.
- English sentence $e = e_1, e_2, ..., e_l$
- Foreign sentence $f = f_1, f_2, ..., f_m$
- Alignment $A = \{a_1, a_2, ..., a_m\}$, where a_i belongs to $\{0, 1, ..., I\}$.

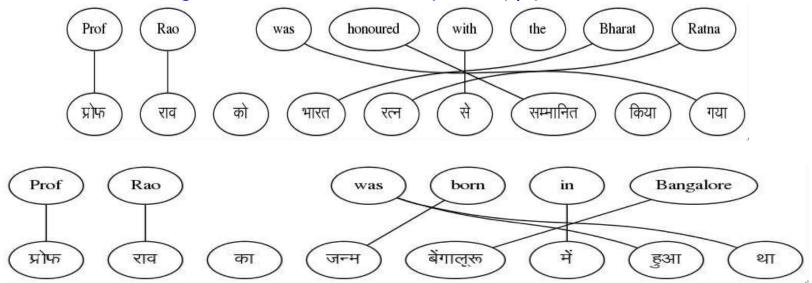
Translation Model: Alignment (4/6)

- Issue: There will be multiple possible alignments
- How many possible alignments between e of length I and f of length m?
- Can we find the correct alignments if we have multiple sentence pairs?



Translation Model: Alignments (5/6)

If we knew the alignments, we could compute P(f|e)



- P(f|e) = #(f, e) / #(*, e)
 - Where #(f, e) denotes number of times word f is aligned with word e
- P(Prof | प्रोफ) = 2/2

Translation Model: Alignments (6/6)

- Issue: We can find the best alignment only if we know the word-level translation probabilities.
- The best alignment a* is the one that maximizes the sentence translation probability.

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = P(a) \prod_{i=1}^{i=m} P(f_i | e_{a_i})$$

$$\mathbf{a}^* = \underset{\mathbf{a}}{\operatorname{argmax}} \prod_{i=1}^{i=m} P(f_i | e_{a_i})$$

Translation Model: Expectation Maximization (EM) (1/3)

- Randomly initialize word-level translation probabilities
- Two-step iterative Process:
 - Step 1: Estimate alignment probabilities using word translation probabilities
 - Step 2: Re-estimate word translation probabilities
- As we don't know the best alignment, we consider all alignments while estimating word translation probabilities.
- Instead of taking only the best alignment, we consider all alignments and weigh the word alignments with the alignment probabilities

$$P(f|e) = \frac{expected \#(f,e)}{expected \#(*,e)}$$

Translation Model: Expectation Maximization (EM) (2/2)

Probabilities:

P(house | घर) = 0.8

Alignments:

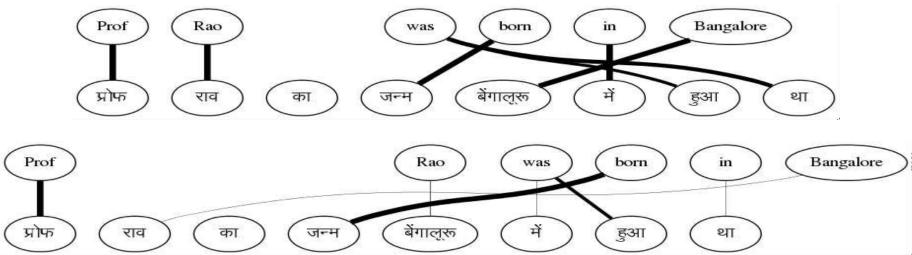
एक the एक the घर house घर house घर house
$$\frac{}{}$$
 the घर house $\frac{}{}$ the $\frac{}{$

Counts:

P(the | एक) =
$$0.824 + 0.052$$
 P(house | एक) = $0.052 + 0.007$ P(the | घर) = $0.118 + 0.007$ P(house | घर) = $0.824 + 0.118$

Translation Model: Expectation Maximization (EM) (3/3)

At the end of the process:



Note: Poor initialization may lead to convergence to local minima.

IBM Models

- IBM came up with a series of increasingly complex models
- Called IBM Models 1 to 5
- Differed in assumptions about alignment probability distributions
- Simpler models are used to initialize the more complex models
- This pipelined training helped ensure better solutions

Phrase-based SMT: Introduction

- Basic translation unit: Phrase (sequence of words), Not word
 - Note: Not necessarily linguistic phrases
- Advantages:
 - Local reordering (Intra-phrase reordering can be memorized)
 - Eg. The prime minister of India -> भारत के प्रधान मंत्री
 - Sense disambiguation based on local context (Neighbouring words help make the choice)
 - Eg. heads towards Pune → पुणे की और जा रहे है, heads the committee -> समिति की अध्यक्षता करते है
 - Institutionalized expressions, idioms can be learnt as a single unit
 - Eg. hung assembly –> त्रिशंकु विधानसभा
 - Improved fluency as a phrase could as long as an entire sentence.

Phrase-based SMT: Mathematical Model

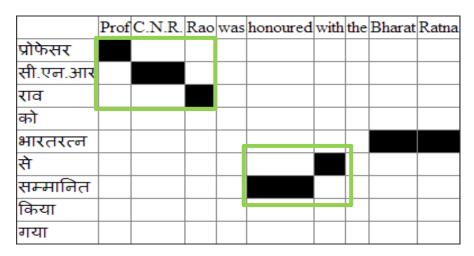
- Our goal is: arrgmax P(e|f)
- We decomposed P(e|f) into P(e) and P(f|e)
- Considering a source sentence has been segmented into I segments, we can further decompose the translation model P(fle) as follows:

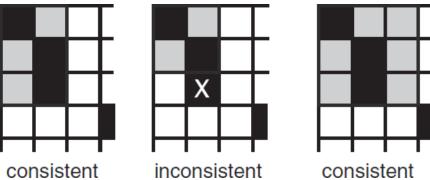
$$p(\bar{f}_1^I | \bar{e}_1^I) = \prod_{i=1}^I \phi(\bar{f}_i | \bar{e}_i) \ d(\text{start}_i - \text{end}_{i-1} - 1)$$

- start_i: start position in f of ith phrase of e
- end_i: end position in f of ith phrase of e
- \$\phi\$ is called as phrase-level
 translation probability; d is
 called as distortion probability

Phrase-based SMT: Phrase Tables

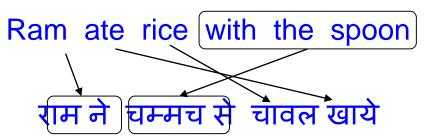
- Involves Structure + Parameter learning
 - Learn the phrase table
 - Learn the phrase-level translation probabilities
- Process:
 - Start with word alignment:
 reliable input for phrase table
 learning
 - A consecutive sequence of aligned words constitutes a 'phrase pair'
- Only 'consistent' phrase pairs should be added to the phrase table

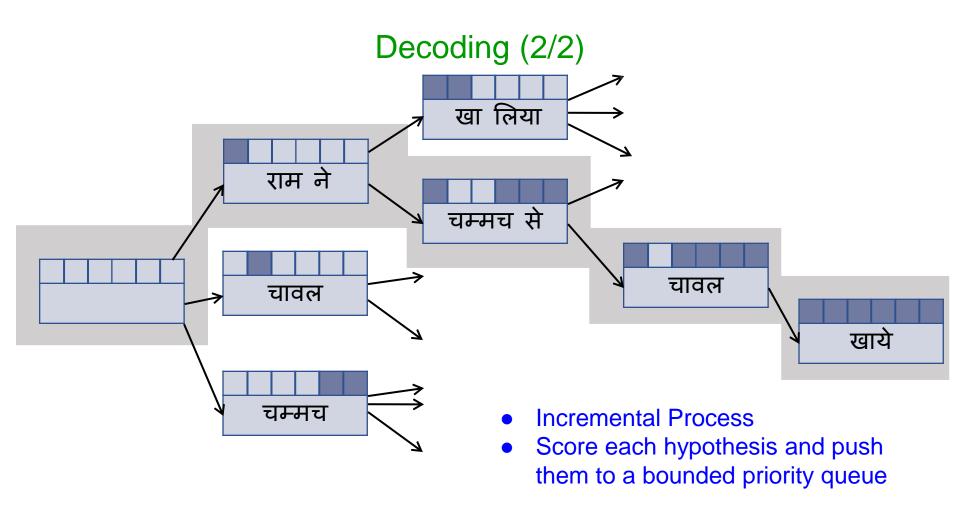




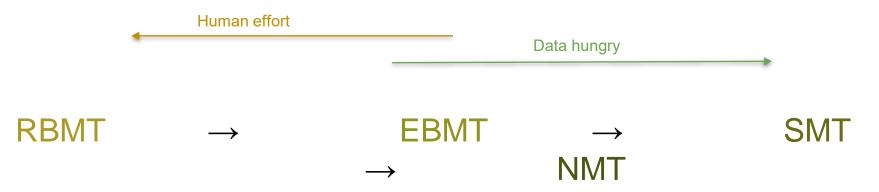
Decoding (1/2)

- Decoding: Searching the best translation in the space of all translations.
- The phrase table may give many options to translate the input sentence leading to multiple word orders.
- Decoding is a NP Complete search problem
 - Needs a heuristic search method





Paradigms of Machine Translation



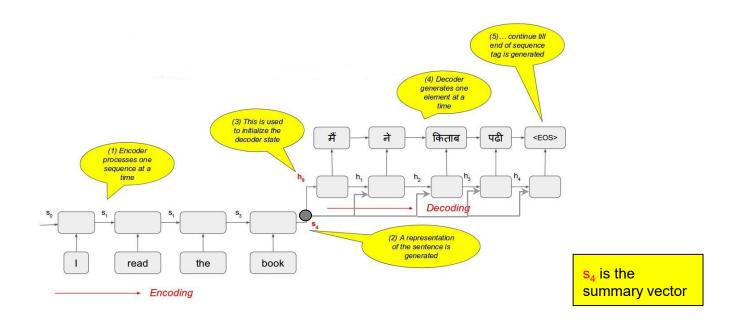
(Rule based machine translation) (Example based machine translation) (Statistical machine translation) (Neural machine translation)

Rules handmade by human expert → Rules by learning from data

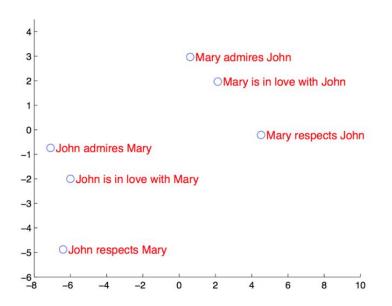
What is NMT?

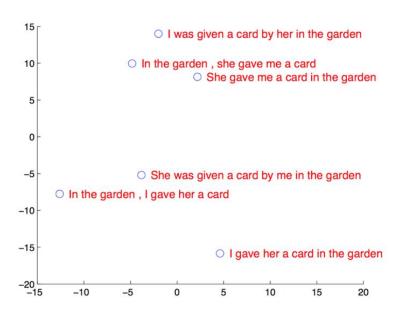
- The task of MT is a sequence-to-sequence problem.
- It uses an encoder-decoder NN architecture with attention mechanism.
- NMT requires large parallel corpus.
- Here, we will discuss RNN-based and Transformer-based encoder-decoder architectures.

Simple RNN-based Encoder-Decoder Architecture



Summary Vector Representation





Problems with Simple Encode-Decode Paradigm (1/2)

What happens in enc-dec architecture?

- Encoding transforms the entire sentence into a single vector.
- Decoding process uses this sentence representation for predicting the output.

Problems:

- Quality of prediction depends upon the quality of sentence embeddings.
- After few time-step, summary vector may lose information of initial words of input sentence.

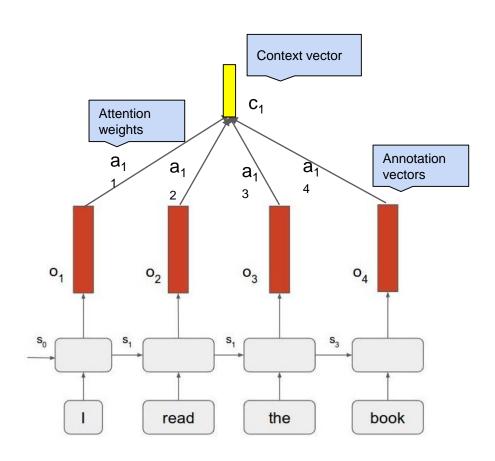
Problems with Simple Encode-Decode Paradigm (2/2)

Possible Solution:

 For prediction at each time step, present the representation of the relevant part of the source sentence only.

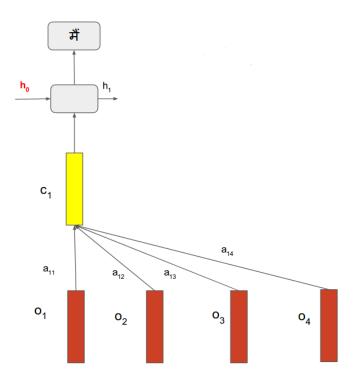
Attention-based encoder-decoder

Annotation Vectors and Context Vectors

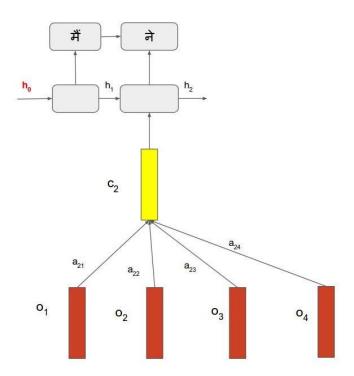


Attention weights are calculated from alignment scores which are output of another feed-forward NN which is trained jointly.

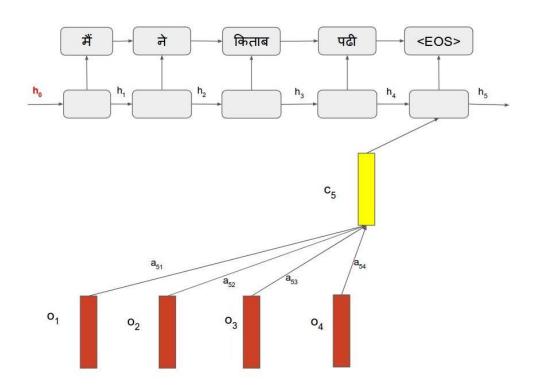
Attention-based Encoder-Decoder Architecture (1/3)



Attention-based Encoder-Decoder Architecture (2/3)



Attention-based Encoder-Decoder Architecture (3/3)



Main Challenge of MT: Language Divergence

Languages differ in expressing thoughts: Agglutination

- Finnish: "istahtaisinkohan"
- English: "I wonder if I should sit down for a while"

Analysis:

- ist + "sit", verb stem
- ahta + verb derivation morpheme,
 "to do something for a while"
- isi + conditional affix

Kinds of MT Systems

(point of entry from source to the target text)

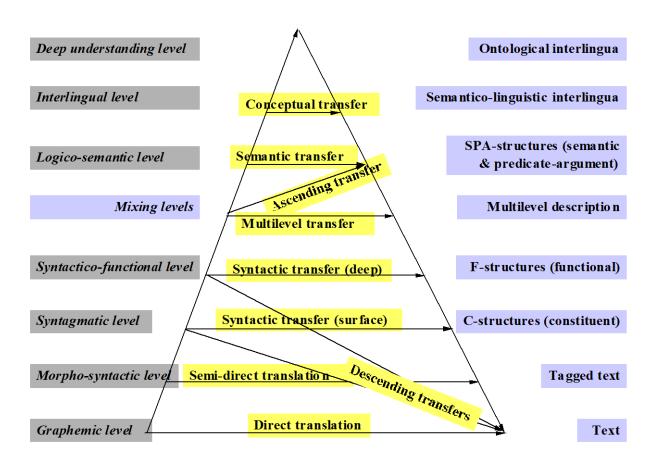


Illustration of transfer SVO→SOV

