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Some Useful mathematical
concepts

= Convex/ concave functions
= Jensen’s inequality
= Kullback-Leibler distance/divergen



A (%) + (L= A) F (%,)

F (%)
F(x)

F(Ax + 1=4)X,)

Z=Ax +(@-1)X,



Criteria for convexity

= A function f(x) is said to be convex in
the interval [a,b] iff

f (X +(L=A)%) < Af () + (L= A) F (x,)

X <X,
[Ix,, %, U[a,b]



Jensen’s inequality

= For any convex function f(x)

f(i/]ixi)si/]if(xi)

Where > 4,=1 and 0i,0<A <1



Proof of Jensen s inequality

= Method:- By induction on N
= Base case:-

N =1

f (AX) < Af (X)

Y A=1=2=1

[ f(X) < f(x),trivially true




Another base case

s N=2
T(AX +A%)
= f(Ax +1d-A)X%,) sinceA, +A1, =1
<AT(X)+@A-A)f(X) sincef(X) Isconvex




Hypothesis

Supposdruefor N =k

i.ef(i)lix)si/lif(x)



Induction Step

Show that

k+1 k+1

FQA%) <D Af(x)

given

f(Z/]x)_Zk:/] f(x)



Proof

f (Alxl + AZXZ + ASXS oo + Ak+1xk+1)

= (- /]k+1 /]k+1 +1
(( )Z @ /1k+1) Xcs1)
< (1_ k+1) (Z ( . )) T Ak+1f (Xk+1) By COﬂVGXlty
= (1_Ak+1) f (;M XI) +Ak+1f (Xk+1) Wher% = (1_Aik+1)



Continued...

= Examine each p,

__ A A As
= + +
(1_/]k+1) (1_/]k+1) (1_/]k+1)
A+A+A+.. . +A _ (1-A)
(1_Ak+1) (1_Ak+1)




Continued...

= [herefore,
@A) (4% + A T (%)
S @AY AT (%) + A T (%)

K
= Z AT (O6) + Ak T (Xear)
i=1

Finally at the induction step
k+1 k+1

OWEIEDIPRICS

Thus Jensen’sinequality is proved



KL -divergence

s We will do the discrete form of
probability distribution.

= Given two probability distribution P,Q
on the random variable
n X I Xy, X5, X300 Xy
= P:p;=p(Xy ), P2=P(X2); --- Pn=P(Xy)
» Qiq;=a(X; ), 92,=0(X3), --- G,=0(X;)



KLD definition

KL(P,Q)=D=Y p,log™:

DisassymmetaandD =0

alsowrittenas

KL(P,Q)=D
=E,(logP)-E_(logQ)

Zpi

lZQi =1



Proof: KLD>=0

KL(P,Q)= ZN: P, Iog& >0

Proof: -

Zp.log ! Zp.( 'ng,j

—logxisconvexn [0, o]

So-log px | <3:p(-logx)



Proof cntd.

= Apply Jensen’s inequality



Convexity of —log x

—log(Ax, +(1-4)x;) = A(=logx) + (1~ A)(-logx,)
e
log(Ax, + (1-1)Xx,) =2 Alogx, + (1-A)logXx,

A, 1-1

= A +A-A)X, 2 XX,

1-)
1-1-1

:A(ﬁj FA-N) 22— >1
X,

X

= }I[ﬁj + (1—)!)[&} >1
X5 X

:)Ayl_/] n (1_A) 21 y

A

y
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Interesting problem

= [ry to prove:-

Wlxl T WZX W1+W

X1 X
W, + W,



2nd definition of convexity

= Theorem:
If f(X)Istwicedifferentiablein|a,b]and

f (x) =00 x0[a,b], thenf(x) is convexin [a, b].
So-log xisconvex




Lemma 1

If f (x)=0in[a,b]
thenf (t)> f (9),

S, 1

t>sandt,s

[a, 0]



Mean Value Theorem

f(z2)-f(a)=(z-a)f (s) (z,a)
Foranyfunction f (x)

f(n)—-f(m=(m-m)f (p) wheran<p<n



Alternative form of z

z=dAxy +{1— A)x,

Add —Az to both sides
1—-A)z=Axy—z2)+{1—Ax,

(1—-Ax;—z) =z —xq)



Alternative form of convexity
fldxy+ (1 —Ax) = Afx)+ (1 = Ff(x2)

Add —Af(z) to both sides

= flz) —AF(z) = Aflx) + (1 - A)f(x) —Af(2)
= (1-)f(2) = Aflx)— F2)) + {1 = Df(xs)

= (1-2f(2) = A flx) - F2) + (1 = 2)f(xy)



Proof: second derivative >=0
implies convexity (1/2)

z 2Axy+ (1—21)x,
Flz) =2 Af(xy) + (1 — A)f(x,)

(1= Aflxs) = Flz)] = A[F(z) = Flxy)] (1)

(1— A)[xs— 2] = Az — x1) 2)



Second derivative >=0 implies
convexity (2/2)

(2) Is equivalent to
(1= DF(8).(xz— 2) = Af' (s)(z — xq)
For some sand ¢ where

¥ 5§ Z=lT0 <X,

Now since 7(x) >=0

fr(t)> f'(s)

Combining this with (1), the result is proved



Why all this

= In EM, we maximize the expectation of
log likelihood of the data

= Log is a concave function

= We have to take iterative steps to get
to the maximum

= There are two unknown values: 2
(unobserved data) and & (parameters)

= From 8, get new value of Z (E-step)
= From Z, get new value of 8 (M-step)



How to change &

= How to choose the next 6?
= Take
argmaxy(LL(X,Z:6) - LL(X,Z:6,))
Where,
X: observed data
Z: unobserved data
O. parameter

LL(X Z:8,): log likelihood of complete
aata with parameter value at 8,

This is in lieu of, for example, gradient
ascent

6, °

At every step LL(.) will
Increase, ultimately
reaching local/global
maximum




Why expectation of log
likelihood? (1/2)

P(X:8) may not be a convenient mathematical
expression

Deal with P(X Z:6), marginalized over Z

Log(2P(X,Z:6))is mathematically processed with
multiplying by P(Z/X: 6,) which for each Z is
between 0 and 1 and sums to 1

Then Jensen inequality will give
Log(2P(X,2:6))
>= Log(ZP(ZIX: 8,)PXZ:6)/P(ZIX: 6,))
=2 P(Z[X: 8 )Log(P(X,Z:68)/P(Z/X: 6,))



Why expectation of log
likelihood? (2/2)

LL(X:6) - LL(X:E,)
=Log(2,P(X,Z2:6)) - Log(P(X:6,))
>=Log(ZP(ZIX: 8,)PX.Z:6)/P(ZIX: 8,)) - Log(P(X:8,))
= 3 P(Z/X: 0. )Log(P(X,Z:6)/(P(Z|X: 8,) .P(X:6,))
since 2,P(Z[X: 8,)=1

= 2P(Z]X: 6,)Log(P(X.Z:6)/(P(X,Z2:6,))

So, argmax, (LL(X:6) — LL(X:6,))
=5P(ZIX: 6, )Log(P(X,.Z:6)

= EA(Log(P(X,Z:6)), where E,(.)is the expectation
of log likelihood of complete data wrt 2



Why expectation of 2?

= If the log likelihood is a linear function
of Z, then the expectation can be
carries inside of the log likelihood and
E(Z) is computed

= The above is true when the hidden
variables form a mixture of distributions
(e..g, in tosses of two coins), and

= Each distribution is an exponential
distribution like
multinomial/normal/poisson



