CS460/626: Natural Language Processing/Speech, NLP and the Web

Lecture 31-32: Expectation Maximisation

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay
5th and 6th Nov, 2012

Some Useful mathematical concepts

- Convex/ concave functions
- Jensen's inequality
- Kullback–Leibler distance/divergence

Criteria for convexity

 A function f(x) is said to be convex in the interval [a,b] iff

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

$$x_1 < x_2$$

$$\forall x_1, x_2 \in [a, b]$$

Jensen's inequality

For any convex function f(x)

$$f(\sum_{i=1}^{n} \lambda_i x_i) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

Where
$$\sum_{i=1}^{n} \lambda_i = 1$$
 and $\forall i, 0 \le \lambda_i \le 1$

Proof of Jensen's inequality

- Method:- By induction on N
- Base case:-

$$N = 1$$

 $f(\lambda x) \le \lambda f(x)$
 $\sum \lambda_i = 1 \Rightarrow \lambda = 1$
 $\therefore f(x) \le f(x)$, trivially true

Another base case

N = 2

$$f(\lambda_1 x_1 + \lambda_2 x_2)$$

$$= f(\lambda_1 x_1 + (1 - \lambda_1) x_2) \qquad \text{since } \lambda_1 + \lambda_2 = 1$$

$$\leq \lambda_1 f(x_1) + (1 - \lambda_1) f(x_2) \qquad \text{since } f(x) \text{ is convex}$$

Hypothesis

Suppose true for N = k

i.e
$$f(\sum_{i=1}^n \lambda_i x_i) \le \sum_{i=1}^n \lambda_i f(x_i)$$

Induction Step

Show that

$$f\left(\sum_{i=1}^{k+1} \lambda_i x_i\right) \le \sum_{i=1}^{k+1} \lambda_i f\left(x_i\right)$$

given

$$f\left(\sum_{i=1}^{k} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i} f\left(x_{i}\right)$$
$$\lambda_{1} + \lambda_{2} + \lambda_{3} + \dots + \lambda_{k} + \lambda_{k+1} = 1$$

Proof

$$f(\lambda_{1}x_{1} + \lambda_{2}x_{2} + \lambda_{3}x_{3} + \dots + \lambda_{k+1}x_{k+1})$$

$$= f((1 - \lambda_{k+1})\sum_{i=1}^{k} \frac{\lambda_{i}x_{i}}{(1 - \lambda_{k+1})} + \lambda_{k+1}x_{k+1})$$

$$\leq (1 - \lambda_{k+1})f(\sum_{i=1}^{k} \frac{\lambda_{i}x_{i}}{(1 - \lambda_{k+1})}) + \lambda_{k+1}f(x_{k+1}) \quad \text{By convexity}$$

$$= (1 - \lambda_{k+1})f(\sum_{i=1}^{k} \mu_{i}x_{i}) + \lambda_{k+1}f(x_{k+1}) \quad \text{where } \mu_{i} = \frac{\lambda_{i}}{(1 - \lambda_{k+1})}$$

Continued...

Examine each μ_i

$$\sum_{i=1}^{k} \mu_{i} = \mu_{1} + \mu_{2} + \mu_{3} + \dots + \mu_{k}$$

$$= \frac{\lambda_{1}}{(1 - \lambda_{k+1})} + \frac{\lambda_{2}}{(1 - \lambda_{k+1})} + \frac{\lambda_{3}}{(1 - \lambda_{k+1})} + \dots + \frac{\lambda_{k}}{(1 - \lambda_{k+1})}$$

$$= \frac{\lambda_{1} + \lambda_{2} + \lambda_{3} + \dots + \lambda_{k}}{(1 - \lambda_{k+1})} = \frac{(1 - \lambda_{k+1})}{(1 - \lambda_{k+1})}$$

Continued...

Therefore,

$$(1 - \lambda_{k+1}) f(\sum_{i=1}^{k} \mu_{i} x_{i}) + \lambda_{k+1} f(x_{k+1})$$

$$\leq (1 - \lambda_{k+1}) \sum_{i=1}^{k} \mu_{i} f(x_{i}) + \lambda_{k+1} f(x_{k+1})$$

$$= \sum_{i=1}^{k} \lambda_{i} f(x_{i}) + \lambda_{k+1} f(x_{k+1})$$

Finally at the induction step

$$f\left(\sum_{i=1}^{k+1} \lambda_i x_i\right) \le \sum_{i=1}^{k+1} \lambda_i f\left(x_i\right)$$

Thus Jensen's inequality is proved

KL -divergence

- We will do the discrete form of probability distribution.
- Given two probability distribution P,Q on the random variable
 - $X: X_1, X_2, X_3, ..., X_N$
 - P: $p_1=p(x_1)$, $p_2=p(x_2)$, ... $p_n=p(x_n)$
 - Q: $q_1 = q(x_1)$, $q_2 = q(x_2)$, ... $q_n = q(x_n)$

KLD definition

$$KL(P,Q) = D = \sum_{i=1}^{N} p_i \log \frac{p_i}{q_i}$$

 $\sum p_i = 1, \sum q_i = 1$

D is assymmetric and $D \ge 0$ also written as

$$KL(P,Q) = D$$
$$= E_p(\log P) - E_p(\log Q)$$

Proof: KLD>=0

$$KL(P,Q) = \sum_{i=1}^{N} p_i \log \frac{p_i}{q_i} \ge 0$$

Proof:-

$$\sum_{i=1}^{N} p_i \log \frac{p_i}{q_i} = \sum_{i=1}^{N} p_i \left(-\log \frac{q_i}{p_i} \right)$$

 $-\log x$ is convex in $[0, \infty]$

$$So - log\left(\sum_{i=1}^{N} p_i x_i\right) \le \sum_{i=1}^{N} p_i (-log x_i)$$

Proof cntd.

Apply Jensen's inequality

$$So -log\left(\sum_{i=1}^{N} p_i \frac{q_i}{p_i}\right) \leq \sum_{i=1}^{N} p_i (-log \frac{q_i}{p_i})$$

$$\Rightarrow -log\left(\sum_{i=1}^{N} q_i\right) \leq \sum_{i=1}^{N} p_i log \frac{p_i}{q_i}$$

$$\Rightarrow \sum_{i=1}^{N} p_i log \frac{p_i}{q_i} \geq 0$$

$$\sum_{i=1}^{N} q_i = 1$$

Convexity of -log x

$$-\log(\lambda x_1 + (1 - \lambda)x_2) \le \lambda(-\log x_1) + (1 - \lambda)(-\log x_2)$$
i.e.

$$\log(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda \log x_1 + (1 - \lambda)\log x_2$$

$$\Rightarrow \lambda x_1 + (1 - \lambda)x_2 \ge x_1^{\lambda} x_2^{1 - \lambda}$$

$$\Rightarrow \lambda \left(\frac{x_1}{x_2}\right)^{1 - \lambda} + (1 - \lambda)\frac{x_2^{1 - 1 - \lambda}}{x_1^{\lambda}} \ge 1$$

$$\Rightarrow \lambda \left(\frac{x_1}{x_2}\right)^{1 - \lambda} + (1 - \lambda)\left(\frac{x_2}{x_1}\right)^{\lambda} \ge 1$$

$$\Rightarrow \lambda y^{1 - \lambda} + \frac{(1 - \lambda)}{y^{\lambda}} \ge 1$$

$$y = \frac{x_1}{x_2} \le 1$$

Interesting problem

Try to prove:-

$$\frac{w_1 x_1 + w_2 x_2}{w_1 + w_2} \ge \sqrt[w_1 + w_2]{x_1^{w_1} x_2^{w_2}}$$

2nd definition of convexity

Theorem:

If f(x) is twice differentiable in [a,b] and $f''(x) \ge 0 \ \forall \ x \in [a,b]$, then f(x) is convex in [a,b]. So - log x is convex.

Lemma 1

If
$$f''(x) \ge 0$$
 in $[a,b]$
then $f'(t) > f'(s)$, $\forall s,t$ $t > s$ and $t,s \in [a,b]$

Mean Value Theorem

$$f(z) - f(a) = (z - a)f'(s) \quad \exists s \in (z, a)$$

For any function f(x)

$$f(n) - f(m) = (n - m)f'(p)$$
 where $m \le p \le n$

Alternative form of z

$$z = \lambda x_1 + (1 - \lambda)x_2$$

Add $-\lambda z$ to both sides

$$(1-\lambda)z = \lambda(x_1-z) + (1-\lambda)x_2$$

$$(1-\lambda)(x_2-z)=\lambda(z-x_1)$$

Alternative form of convexity

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Add $-\lambda f(z)$ to both sides

$$\Rightarrow f(z) - \lambda f(z) \le \lambda f(x_1) + (1 - \lambda) f(x_2) - \lambda f(z)$$

$$\Rightarrow (1-\lambda)f(z) \le \lambda \big(f(x_1) - f(z)\big) + (1-\lambda)f(x_2)$$

$$\Rightarrow (1-\lambda)f(z) \le \lambda \big(f(x_1) - f(z)\big) + (1-\lambda)f(x_2)$$

Proof: second derivative >=0 implies convexity (1/2)

We have that

$$z \triangleq \lambda x_1 + (1 - \lambda)x_2$$

$$f(z) \triangleq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

$$(1 - \lambda)[f(x_2) - f(z)] \ge \lambda[f(z) - f(x_1)] \tag{1}$$

$$(1-\lambda)[x_2-z] = \lambda(z-x_1) \tag{2}$$

Second derivative >=0 implies convexity (2/2)

(2) Is equivalent to

$$(1-\lambda)f'(t).(x_2-\lambda) \ge \lambda f'(s)(z-x_1)$$

For some *s* and *t*, where

$$x_1 < s < z < t < x_2$$

Now since f''(x) >=0

Combining this with (1), the result is proved

Why all this

- In EM, we maximize the expectation of log likelihood of the data
- Log is a concave function
- We have to take iterative steps to get to the maximum
- There are two unknown values: Z (unobserved data) and θ (parameters)
- From θ , get new value of Z (E-step)
- From Z, get new value of θ (M-step)

How to change θ

- How to choose the next θ ?
- Take

$$argmax_{\theta}(LL(X,Z:\theta) - LL(X,Z:\theta_n))$$

Where,

X: observed data

Z: unobserved data

Θ: parameter

 $LL(X,Z:\theta_n)$: log likelihood of complete data with parameter value at θ_n

This is in lieu of, for example, gradient ascent

At every step *LL(.)* will **Increase,** ultimately reaching local/global maximum

Why expectation of log likelihood? (1/2)

- P(X:θ) may not be a convenient mathematical expression
- Deal with $P(X,Z:\theta)$, marginalized over Z
- $Log(\Sigma_Z P(X,Z:\theta))$ is mathematically processed with multiplying by $P(Z|X:\theta_n)$ which for each Z is between 0 and 1 and sums to 1
- Then Jensen inequality will give

```
Log(\Sigma_{Z}P(X,Z:\theta))
>= Log(\Sigma_{Z}P(Z|X:\theta_{n})P(X,Z:\theta)/P(Z|X:\theta_{n}))
= \Sigma_{Z}P(Z|X:\theta_{n})Log(P(X,Z:\theta)/P(Z|X:\theta_{n}))
```

Why expectation of log likelihood? (2/2)

```
LL(X:\theta) - LL(X:\theta_n)
=Log(\Sigma_{z}P(X,Z:\theta)) - Log(P(X:\theta_{n}))
> = Log(\Sigma_{r}P(Z|X:\theta_{n})P(X,Z:\theta)/P(Z|X:\theta_{n})) - Log(P(X:\theta_{n}))
= \Sigma_{r}P(Z|X:\theta_{n})Log(P(X,Z:\theta)/(P(Z|X:\theta_{n}).P(X:\theta_{n}))
                                  since \Sigma_{P}(Z|X:\theta_{n})=1
= \Sigma_{r}P(Z|X:\theta_{n})Log((P(X,Z:\theta)/(P(X,Z:\theta_{n})))
So, argmax_{\theta} (LL(X:\theta) – LL(X:\theta_n))
       =\Sigma_{z}P(Z|X:\theta_{n})Log(P(X,Z:\theta))
        = E_{\pi}(Log(P(X,Z:\theta))), where E_{\pi}(.) is the expectation
    of log likelihood of complete data wrt Z
```

Why expectation of *Z*?

- If the log likelihood is a linear function of Z, then the expectation can be carries inside of the log likelihood and E(Z) is computed
- The above is true when the hidden variables form a mixture of distributions (e..g, in tosses of two coins), and
- Each distribution is an exponential distribution like multinomial/normal/poisson