
Handling Flash Crowds from your Garage

Jeremy Elson and Jon Howell
Microsoft Research

{jelson,howell}@microsoft.com

Abstract
The garage innovator creates new web applications

which may rocket to popular success – or sink when the
flash crowd that arrives melts the web server. In the web
context,utility computing provides a path by which the
innovator can, with minimal capital, prepare for over-
whelming popularity. Many components required for
web computing have recently become available as utili-
ties.

We analyze the design space of building a load-
balanced system in the context of garage innovation.
We present six experiments that inform this analysis by
highlighting limitations of each approach. We report our
experience with three services we deployed in “garage”
style, and with the flash crowds that each drew.

1 Introduction
For years, developers and researchers have refined ways
of scaling Internet services to larger and larger capac-
ities. Many well-known techniques are now available
[33, 17, 4, 19, 6, 36, 15, 13].

But capacity is expensive: racks full of web servers,
database replicas, and load balancing switches require a
significant up-front investment. For popular sites, where
load is consistently high, it is easy to justify this in-
vestment; the resources will not be idle. Less popular
sites can not justify the expense of large idle capacity.
But how can an unpopular site make the transition to
popular—when “flash crowds” often make that transi-
tion almost instantaneous and without warning?

In this paper, we consider the question of scaling
through the eyes of a character we call thegarage in-
novator. The garage innovator is creative, technically
savvy, and ambitious. She has a great idea for the Next
Big Thing on the web and implements it using some
spare servers sitting out in the garage. The service is
up and running, draws new visitors from time to time,
and makes some meager income from advertising and
subscriptions. Someday, perhaps, her site will hit the
jackpot. Maybe it will reach the front page of Slashdot
or Digg; maybe Valleywag or the New York Times will
mention it.

Our innovator may get only one shot at widespread
publicity. If and when that happens, tens of thousands
of people will visit her site. Since her idea is so novel,

many will become revenue-generating customers and re-
fer friends. But a flash crowd is notoriously fickle; the
outcome won’t be nearly as idyllic if the site crashes un-
der its load. Many people won’t bother to return if the
site doesn’t work the first time. Still, it is hard to jus-
tify paying tens of thousands of dollars for resources
just in case the site experiences a sudden load spike.
Flash crowds are both the garage innovator’s bane and
her goal.

One way out of this conundrum has been enabled
by contemporaryutility computing. More and more of
the basic building blocks of scalability—network band-
width, large-scale storage, and compute servers—are
now available in forms analogous to traditional utilities
like electricity and water. That is, a contract with a util-
ity has very little overhead, gives you access to vast re-
sources almost instantly, and only bills you for the re-
sources you use.

Over the past year, our research group created three
web sites that experienced sudden surges in popularity,
including one that was (literally) Slashdotted. Each was
implemented using publicly available computing utili-
ties and was able to withstand its flash crowd at low cost.

1.1 Contributions

In this paper, we contribute a detailed analysis of the
issues and tradeoffs a typical garage innovator will en-
counter when building low-cost, scalable Internet ser-
vices. We explain these tradeoffs in Section 3. Our
analysis draws heavily from both a series of controlled
micro-benchmark experiments, which we describe in
Section 4, and wisdom gleaned from our own deploy-
ment of three “garage-scalable” services, all of which
were subject to real flash crowds. These case studies,
found in Section 5, report our design and implementa-
tion decisions, how each service responded to a flash
crowd, and lessons learned from each experience.

Before diving into our analysis, however, we first lay
groundwork in Section 2, which describes the current
state of utility computing and briefly reviews the most
common strategies for building scalable Internet ser-
vices.

2 Contemporary Utility Computing
The past two years have seen a surge of tools that are
wonderfully useful for garage innovators. We describe
several of them in this section. First, we offer a list of
what we think are the properties essential for garage use:

Low overhead during the lean times.Cost should be
proportional to use, not to capacity. During long periods
of unpopularity, a garage budget can’t pay for the huge
capacity that might someday be needed.

Highly scalable. The garage-based service may only
need one server today, but when the flash crowd comes,
it might need 20 or 200. Worst-case flash crowd re-
sources have to be available: if a service is underpro-
visioned, there is no point in using it.

Quickly scalable. It’s not enough that large-scale re-
sources areavailable; they have to be availablequickly.
There’s no time to call customer service, ask for an up-
graded account, and start configuring machines. Flash
crowds are notoriously fickle. If a service can’t scale in
near-immediate response to a surge of interest, there is
no point in using it.

Services that meet these criteria are often referred to
asutility computing, a term coined by John McCarthy in
1961. Utility computing services rely onstatistical mul-
tiplexing: providing service to a large number of cus-
tomers whose load spikes are likely to be de-correlated.

An illustrative shift towards utility computing can be
found in the way large colocation centers sell bandwidth
to customers. It is common today to see it billed as a util-
ity: a customer gets a fast (say, 100Mbps) connection
to her servers. The entire 100Mbps is usable, and ac-
tual usage is metered. Using very little bandwidth costs
very little; a sudden usage surge is billed accordingly.
This contrasts with circuits installed to an individual cus-
tomer’s site, virtually all of which are billed according to
peak capacity regardless of actual usage.

2.1 Building Blocks
In this section, we lay the foundation for the rest of the
paper, describing some of the utility computing services
that have arisen in the past few years. Then, in Sec-
tion 2.2, we describe a few well-known scaling archi-
tectures and describe how a garage innovator can im-
plement them using the utility building blocks that are
available today.

2.1.1 Storage Delivery Networks
One great boon to the garage innovator has been the rise
of Storage Delivery Networks (SDNs), such as Ama-
zon’s S3 [26] and the Nirvanix platform [25]. SDNs
have interfaces that resemble a simple managed web
server. Developers can upload static files such as web
pages and images that the SDN will store and serve to
clients using standard HTTP.

Unlike traditional managed web hosting, often imple-
mented using a single machine, SDNs are large clusters
of tightly coupled machines. The implementation details
of data replication, distributed consensus, and load dis-
tribution are all hidden behind the simple static-content
interface. A single customer’s flash crowd can poten-
tially use the full power of the entire cluster.

This strategy should sound familiar: SDNs are sim-
ilar to Content Distribution Networks (CDNs) such as
Akamai [1] andLimelight Networks [21]. CDNs and
SDNs have a number of technical differences; for ex-
ample, SDNs are typically located in a single datacen-
ter, while CDNs minimize latency using thousands of
Internet points of presence. CDNs are far less attrac-
tive to garage innovators than SDNs, however—not for
technical reasons, but economic ones. The cost of en-
try into a CDNs is typically high, as well as frustratingly
opaque [29] (“contact a sales representative for more in-
formation!”). Large start-up costs and minimum band-
width commitments place most CDNs out of the reach
of garage innovators who don’t yet have the budget as-
sociated with a wide audience. S3 and Nirvanix have
no start-up or recurring costs; they are strictly fee-for-
service utilities. A customer who serves one gigabyte of
data in a month will literally be billed 20 cents for the
month. There may be no fundamental technical or eco-
nomic reason why CDNs cannot adopt a similar billing
model; perhaps some day they will.

SDNs thus fill a useful niche today for the garage
innovator. They are more quickly scalable than typ-
ical managed hosting servers; they do not carry the
significant expense of geo-distribution that is inherent
to CDNs; and their pricing models allow flash crowd-
capable content distribution without any significant in-
vestment until the flash crowd arrives.

2.1.2 Commodity Virtualization
We mentioned in the introduction of Section 2 that colo-
cation centers now charge for bandwidth in a utility-
computing, garage-friendly way. However, up until re-
cently, the only way to exploit utility bandwidth was to
buy or rent a server and pay a monthly fee (typically a
few hundred dollars) to host it. For the garage innova-
tor on a truly shoe-string budget, this can be prohibitive.
Dozens of hosting companies now offer virtual machines
for rent, typically starting at around 20 dollars a month.
There are dozens of examples (search the Internet for
“virtual private servers”). Setup usually takes about a
day. Developers can use these virtual machines to ex-
ploit the pay-per-use bandwidth of a colo facility with-
out the overhead of using an entire physical machine.

Garage innovators can also exploit the fact that vir-
tual servers are so widely available around the globe—
offered by hosting providers in dozens of locations

around the United States, Europe, Asia, and the Pacific
Rim. By renting several of them, a developer on a lim-
ited budget can achieve a level of geographic diversity
that was formerly only possible for large-scale Internet
services with large-scale budgets.

2.1.3 Compute Clouds
While the widespread availability of virtual servers has
been a boon, it did have an important limitation. The
flexibility of a virtual server was typically only in
burstable bandwidth. If an application is CPU or disk in-
tensive, a flash crowd doesn’t just need more bandwidth,
it needs more servers. Consequently, in the past year,
companies have begun to follow the utility computing
model for entire virtual machines, not just the bandwidth
they consume.

Amazon’s EC2 “elastic compute cloud” [2] and Flex-
iScale [35] stand out in this area. They allow developers
to configure and save a virtual machine image, then cre-
ate multiple running instances of that image. Images can
be instantiated in about one minute. Usage is billed by
the hour, rather than by the month. Virtual machines
can be started and stopped using a simple programmatic
API. This makes it possible for a garage innovator to cre-
ate an image of a machine running her Internet service,
monitor the load, and almost instantly increase the num-
ber of running instances if needed. As we will see in
Section 2.2, there are several ways of scalably distribut-
ing the load of an Internet service over multiple servers,
each with different advantages.

2.1.4 DNS Outsourcing
Another useful computing utility is outsourced Domain
Name System (DNS) hosting. DNS traffic usually ac-
counts for a small part of a site’s resource budget, but
outsourcing DNS is useful because it prevents DNS from
becoming a single point of failure for garage-based ser-
vices. (We will explore this further in Section 3.5.)

Typical services in this space are the highly redundant
and low-cost UltraDNS [24] and Granite Canyon’s free
Public DNS Service [14]. Their DNS servers replicate
and serve the DNS for customer domains. They auto-
matically copy the authoritative DNS configuration ev-
ery time they receive a change notification.

2.1.5 A missing piece: relational databases
Dynamic web services are often implemented as a col-
lection of stateless front-end servers that paint a user
interface over data stored in a relational database back
end. Relational databases’ powerful transactional model
provides idiot-proof concurrency management, and their
automatic indexing and query planning relieve program-
mers from the burden of designing efficient persistent
data structures [8]. However, implementing highly-

scalable databases that retain the full generality of the
relational model has proven elusive. Scalable databases
typically abandon full transactionality, arbitrary queries,
or both. Utility access to a scalable database is therefore
even further in the future.

There exist lightweight scalable utility databases,
such as S3 and Amazon’s SimpleDB [3]. Later in
the paper (Sections 5.2 and 5.3), we describe experi-
ences substituting the conventional relational database,
sometimes with a lightweight database, and other times
with alternate workarounds. Every approach incurs a
higher development cost over using a powerful relational
database, a cost of scalability we do not know how to
eliminate today.

2.2 Scaling Architectures
Before proceeding to our analysis (Section 3), we will
briefly review some of the common scaling architectures
used today for Internet services. This discussion focuses
purely on the Internet-facing part of the system: that is,
methods for rendezvous of a large number of Internet
clients to the large number of Internet-facing servers that
handle their sessions. We do not consider scalability of
back-end elements such as databases. (Our case studies
in Section 5 will revisit the scalable back-end issue.)

This section will describe each design, and briefly
touch on its main advantages and disadvantages.

2.2.1 Using the bare SDN
Most of the design alternatives we will consider assume
that an innovator’s web site has dynamic content, and
therefore requires a compute cluster that can run garage
code. However, some web sites rely heavily (or even ex-
clusively) on static content. For example, video sharing
sites typically show dynamic web pages that display the
latest comments and ratings, but the contained video is a
much larger static object.

In these cases, simply storing the static parts of a web
site on an SDN is near ideal for the garage innovator.
Using the SDN costs our innovator virtually nothing up-
front beyond the small fee for storage. Because of the
statistical multiplexing we described in Section 2.1.1,
the SDN is likely to be highly available even during the
arrival of a flash crowd.

The main disadvantage of using an SDN, of course, is
that it serves only static content.

2.2.2 DNS load-balanced cluster
We now turn our attention to clusters running custom
code designed by our garage innovator. One simple ap-
proach is to use the DNS protocol to balance load: A
collection of servers implement the custom web service,
and a DNS server maps a single name to the complete
list of IP addresses of the servers [5]. Standard DNS

servers will permute this list in round-robin fashion; if
clients try the addresses in order, then various clients
will be randomly spread across the servers. Clients
should also fail over to a second address if the first one
does not reply, affording fault tolerance. (In sections 4.3
and 4.4, we will show how these properties can fail.)

When a flash crowd arrives, new servers are brought
online, and the DNS record is updated to include their
addresses. Clients of ISPs that have cached the previ-
ous record won’t see the new servers until the old record
expires. Fortunately, the nature of a flash crowd means
that most of the traffic is new. On the other hand, record
expiration does reduce the responsiveness of DNS load
balancing to server failure.

A startup called RightScale offers a DNS load-
balancing management layer in front of EC2 [31].

2.2.3 HTTP Redirection
Another way to rendezvous clients with servers is
to use a front-end server whose only function is
HTTP redirection [11]. Microsoft’s “Live Mail” (for-
merly Hotmail) exemplifies this strategy. Users access
mail.live.com. If they have a login cookie, they are
given an HTTP redirect to a specific host in the Live Mail
farm, such asby120w.bay120.mail.live.com.
(Users who are not logged in are redirected to a login
page.) All interactions beyond the first redirection hap-
pen directly with that machine. The HTTP redirector,
of course, can base its redirection decisions on instanta-
neous load and availability information about the servers
in its farm.

This solution is attractive for two reasons. First, it
introduces very little overhead: the redirector is not in-
volved in the session other than providing the initial
redirect. Second, redirection doesn’t take much time;
a single redirection server can supply redirections to a
large number of clients very quickly. (URL forwarding
services such astinyurl.com andsnipurl.com
demonstrate of this: individual redirections take very lit-
tle time, so they can easily provide redirection service at
Internet scales.)

2.2.4 L4 or L7 Load Balancing
In both L4 and L7 load balancing, a machine answers
all requests on a single IP address, and spreads the re-
quest streams out to back-end servers to balance load.
The client appears to communicate with a single logical
host, so there is no dependency on client behavior. Faults
can be quickly mitigated because the load-balancing ma-
chine can route new requests away from a failed server
as soon as the failure is known.

L4 (layer 4) load balancing is also known as “re-
verse network address translation (NAT)”. An L4 bal-
ancer inspects only the source IP address and TCP port

of each incoming packet, forwarding each TCP stream
to one of the back-end servers. L4 balancing can run
at “router speeds” since the computational requirements
are so modest.

L7 (layer 7) load balancing is also known as “reverse
proxying.” An HTTP L7 load balancer acts as a TCP
endpoint, collects an entire HTTP request, parses and
examines the headers, and then forwards the entire re-
quest to one of the back-end servers. L7 balancing re-
quires deeper processing than L4, but provides the bal-
ancer the opportunity to make mapping decisions based
on HTTP-level variables (such as a session cookie), or
even application-specific variables.

One important disadvantage of load balancers is that
high-performance load balancing switches can be very
expensive (tens to hundreds of thousands of dollars),
difficult to fit into a garage budget. However, there
are lower-cost options. First, there is free software,
such as Linux Virtual Server [22], and commodity soft-
ware, such as Microsoft Internet Security and Acceler-
ation Server [32], that implement L4 and L7 load bal-
ancing, though they are less performant than dedicated
hardware. The second option is a service introduced in
October of 2007 by FlexiScale [35]. They combine on-
demand virtual machines with fractional (utility) access
to a high-performance L4/L7 load balancing switch. To
our knowledge, this is the only current offering of a load
balancing switch billed as a utility.

2.2.5 Hybrid Approaches
The techniques described above can be combined to off-
set their various limitations.

One example above (Section 2.2.1) splits a service,
such as a video sharing site, into a low-bandwidth active
component managed by a load-balanced cluster, and a
high-bandwidth static component served out of the SDN.

Alternatively, consider a DNS cluster of L4/L7 load
balancers: Each L4/L7 cluster is fault-tolerant mitigat-
ing DNS’ sluggishness to recover from back-end faults;
and the entire configuration can scale beyond the limits
of a single L4/L7 cluster.

3 Analysis of the Design Space
In this section, we analyze the tradeoffs a garage in-
novator is likely to encounter when building a scalable
service, using one of the design templates we reviewed
in Section 2.2, and implemented on top of the build-
ing blocks we reviewed in Section 2.1. Our analysis is
drawn from both a series of micro-benchmark experi-
ments, fleshed out in Section 4, and lessons learned from
our own implementations of garage-style services that
were subjected to real flash crowds, described in Sec-
tion 5.

The important design criteria are:

Design
Criterion Bare SDN HTTP Redir. L4/L7 Load Bal. DNS Load Bal.

§3.1: Application Scope Static HTTP HTTP All All
§3.2: Scale Limitation Very large Client arrival rate Total traffic rate Unlimited
§3.3: Client affinity N/A Consistent Consistent Inconsistent

§3.4: Scale-Up Time Immediate
VM Startup Time
(about a minute)

VM Startup Time
(about a minute)

VM Startup +
DNS TTL
(5-10 minutes)

§3.4: Scale-Down Time Immediate Session Length Session Length Days
§3.5: Front-End Node Failure:
Effect on New Sessions

N/A Total Failure Total Failure Major Failure

§3.5: Front-End Node Failure:
Effect on Estab. Sessions

N/A No effect Total Failure Rare effect

§3.5: Front-End Node Failure:
Effect on New Sessions
(m redundant front-ends)

Unlikely
long delay for
1/mth sessions?

long delay for
1/mth sessions?

Short delay (§4.2)

§3.5: Front-End Node Failure:
Effect on Estab. Sessions
(m redundant front-ends)

Unlikely No effect 1/mth sessions fail
A few sessions
see short delay

§3.6: Back-End Node Failure:
Effect on New Sessions

Unlikely No effect No effect
long delay for
1/nth of sessions

§3.6: Back-End Node Failure:
Effect on Estab. Sessions

Unlikely User-recoverable
failure

Transient failure
long delay for
1/nth of sessions

Table 1: A summary of the tradeoffs involved in different scaling architectures. Section 2.2 describes the four designs.
In this table, “Front-End” refers to the machine that dispatches clients to the server that will handle their request. (In
the case of DNS load balancing, this refers to the DNS server.) “Back-End” refers to one of then instances (for
example, of a web server) that can handle the client’s request. A full discussion of the criteria is in Section 3.

Application scope. Does this design work only for
the web, or for every kind of Internet service?

Scale limitations. What is the crucial scale-limiting
factor of the design?

Client affinity. Different load distribution strategies
have different effects on how consistently a client binds
to a particular server. What behavior must the garage
innovator expect?

Scale-up and Scale-down time.How long does it
take to expand and contract the server farm?

Response to failures. How many users do typical
failures affect? What’s the worst-case effect of a single
failure?

Table 1 has a concise summary of the discussion in
this section. Roughly speaking, the rows of Table 1 cor-
respond to paper sections§3.1–§3.6; the columns corre-
spond to§2.2.1–§2.2.4.

3.1 Application Scope
The first and most basic question of any scalability strat-
egy is:will it work with my application?

The Bare SDN has the most restrictive application
model. Services like S3 have a specific, narrow inter-

face: they serve static content via HTTP. Though many
sites contain large repositories of static content, most are
notexclusively static, so the bare SDN is rarely the com-
plete story.

The HTTP Redirector is slightly wider in scope.
Redirection only works with HTTP (and, perhaps, a very
small number of other protocols with a redirection prim-
itive). However, unlike with an SDN, clients can be redi-
rected to servers that can run user code, facilitating dy-
namic web services. However, this technique does not
work for protocols that have no redirection primitive,
such as FTP, SSH, SMTP and IRC.

L7 load balancersunderstand a specific application-
layer protocols such as HTTP and FTP, and thus are con-
strained by their vocabulary.

DNS load balancingand L4 load balancers work
with all applications. DNS works broadly because most
applications use a common resolver library that iterates
through DNS A-records until it finds one that works. L4
load balancers work broadly because they operate at the
IP layer, thus working with any application protocol run-
ning over IP without cooperation from the client.

3.2 Scale Limitation
A crucial consideration is scaling limits: what bottle-
neck will we first encounter as the load increases?

SDNs have implementation bottlenecks that are, to
put it simply, not our problem. The two main SDNs
today have service level agreements that make scaling
their responsibility. A garage innovator can pretend the
capacity is infinite.

HTTP redirection is involved only at the beginning
of each client’s session, and thus its scaling limit de-
pends on the typical duration of client sessions. Longer
sessions amortize the cost of doing the redirection dur-
ing session setup. Our experience is that redirection is
so cheap that, for typical applications, it scales to thou-
sands or more clients. To evaluate this hypothesis, we
built and measured a load-balancing, server-allocating
HTTP redirector, described in Section 4.1.

L4/L7 load balancing is limited by the forwarder’s
ability to process the entire volume of client traffic. How
this limit affects a web service depends on the service’s
ratio of bandwidth to computation. Sites that do very
little computation per unit of communication, such as
video sharing sites, are likely to be quickly bottlenecked
at the load balancer—especially a load balancer that is
built from commodity hardware. Conversely, sites that
compute-intensive and communication-light, such as a
search engine, will be able to use an L4 load balancer to
support far more users and back-end servers.

DNS load balancinghas virtually no scaling limit for
garage innovators. Our experiment described in Sec-
tion 4.5 suggests that thousands of back-end servers can
be named in a DNS record. A service that requires more
than several thousand servers is safely out of the garage
regime. One tangle is that the success of DNS-based
load balancing depends on sane client behavior. Most
clients behave well, selecting a random server from a
DNS record with multiple IP addresses. Unfortunately,
as we will see in Section 4.4, some client resolvers de-
feat load balancing by apparentlysorting the list of IP
addresses returned, and using the first!

3.3 Client Affinity
Consider a single client that issues a long series of re-
lated requests to a web service. For example, a user
might log into a web-based email service and send
dozens of separate requests as he reads and writes mail.
The implementation of many such applications is eas-
ier and more efficient if related requests are handled by
the same server. Some load balancing techniques can
enforce this property; others do not.

SDNs provide a simple contract: the client requests
an object by URI, and the SDN delivers the entire ob-
ject in a single transaction. The SDN is responsible for
fulfilling the request, regardless of where it arrives.

HTTP redirection provides strong client affinity be-
cause a user is sent to a specific machine at the begin-
ning of each session. The client will continue using that
server until the user explicitly navigates to a new URL.

L4 balancers, in principle, could map each client by
its source IP address. In practice, however, NAT may
hide a large population of clients behind a single IP ad-
dress, confounding the balancer’s ability to spread load.
Conversely, a user behind multiple proxies may send a
series of requests that appear to be from different IP ad-
dresses. Absent source address mapping, the L4 bal-
ancer can provide no affinity, and thus the back-end ser-
vice accepts the responsibility to bring the data to the
server (Section 5.3) or vice versa (Section 5.2).

L7 balancing works transparently for any client that
implements HTTP cookies or a service-specific session
protocol well enough to maintain the session when in-
teracting with a single server. Because it can identify
individual sessions, the L7 balancer can enforce client
affinity.

In the case ofDNS load balancing, however, clients
and proxies misbehave in interesting ways that confound
client affinity. DNS resolvers seem to cluster around
a particular address when we would rather they didn’t
(Section 4.4); and many browsers implement “DNS pin-
ning” to mitigate cross-site scripting attacks [18]. De-
spite these properties, client browsers cannot be relied
upon to show affinity for a particular server, as we de-
scribe in Section 4.6.

In summary, HTTP redirection and L7 balancing can
enforce client affinity. For L4 balancing and DNS bal-
ancing, we recommend that the service assume the front
end offers no client affinity.

3.4 Scale-Up and Scale-Down Time
Scale-up time of the server farm is a crucial concern: can
a farm grow quickly enough to meet the offered load of
a flash crowd? Scale-down time, on the other hand, does
not usually affect the user experience; it is important
only for efficiency’s sake. If the system can not quickly
scale back down after a period of high load, the service
is needlessly expensive: our innovator is paying for re-
sources she doesn’t need.

Bare SDNs have essentially instantaneous scale-up
and scale-down time. Services like S3 always have enor-
mous capacity to handle the aggregate load of all their
customers. The magic of statistical multiplexing hides
our garage innovator’s peak loads in the noise.

HTTP Redirectors andL4/L7 Load Balancershave
identical scale-up and scale-down behavior. Once the
decision to increase capacity has been made, these sys-
tems must first wait for a new virtual machine instance
to be created. Anecdotally, our experience with Ama-
zon EC2 has shown this usually happens in about one

minute. The moment the VM has been created, the load
balancers can start directing traffic to them.

Scale-down time is a bit more difficult to pin down
precisely. Once a scaling-down decision has been made,
the load balancers can immediately stop directing new
(incoming) sessions to the machines that are slated for
termination. However,existing sessions, such as slow
HTTP transfers or mail transactions, will likely be in
progress. To avoid user-visible disruption, these long-
lived sessions must be allowed to complete before shut-
ting down the machine. In many cases, transport-level
session terminations are hidden from the user by clients
that transparently re-establish connections. A pedant
might insist that the scale-down time is really theworst-
case session length. Chen et al. [7] explore how to min-
imize the number of disrupted long-lived sessions by bi-
asing the allocation of new sessions to servers even be-
fore the scale-down decision has been made.

DNS load balancing is the most problematic in its
control over load balancing. Recall that in this scheme,
back-end server selection is performed by theclient—it
selects a host from the multiplicity of DNS A-records it
receives. These records are cached in many places along
the path from the garage’s DNS server to the client appli-
cation. Unlike the situation with HTTP redirectors and
L4/L7 load balancers, the entity making the load balanc-
ing decision does not have a fresh view of the servers
that are available. This has a negative effect on scale-
up time. While the new DNS record can be published
immediately, many clients will still continue using the
cached record until after the DNS TTL expires. Fortu-
nately, the nature of a flash crowd means that most of
the traffic is new. New users are more likely to have cold
caches and thus see the new servers.

Scale-down time for DNS load balancing is even more
problematic. As the disheartening study by Pang et al.
showed [28], nearly half of clients inappropriately cache
DNS entries far beyond their TTL, sometimes for as long
as a day. Anecdotally, we have seen this effect in our
deployments—servers continue to receive a smattering
of requests for several days after they’re removed from
DNS. Therefore, to ensure no clients see failed servers,
we must wait not just for the worst-case session time,
but also the worst case DNS cache time.

3.5 Effects of Front-End Failure
Many distributed systems are vulnerable to major dis-
ruption if the nodes responsible for load balancing fail.
We call the first-encountered node in the load balancing
system the “front end.” What happens when front-end
nodes fail?

The SDN, being a large-scale and well-capitalized re-
source, typically has multiple, redundant, hot-spare load
balancers as its front end. Failure is unlikely.

L4 and L7 load balancersare highly susceptible to
failure; they forward every packet of every session. If
a single node provides load-balancing and fails, the sys-
tem experiences total failure—all new and existing ses-
sions stop. If there arem load balancers, the effect of a
failure depends on how the front-ends are, themselves,
load balanced. If they are fully redundant hot spares
(common with expensive dedicated hardware), there will
be no effect. Companies like FlexiScale do offer this ser-
vice, at utility pricing, as we mentioned in Section 2.2.4.

More commonly, redundant L4/L7 front-ends are
DNS load-balanced. In this case,1/mth of sessions ex-
perience up to a three minute delay (see our experiment
in Section 4.3) until they fail over to another front-end.
1/m is often large becausem is often small;m is small
because front-end redundancy is typically used for fail-
ure resilience, not scaling.

HTTP Redirectors fail in almost exactly the same
way as L4/L7 load balancers, with one exception:exist-
ing sessions are not affected. The redirector is no longer
in the critical path after a session begins.New sessions
have the same failure characteristics as in the L4/L7 bal-
ancer case.

DNS load balancingis also highly susceptible to fail-
ure if there is only one authoritative nameserver. Name-
server caches will be useful only in rare cases because
the TTLs must be kept low (so as to handle scale-up,
scale-down, and back-end node failures). Few new ses-
sions are likely to succeed. Existing TCP streams will
continue to work, however, since DNS is no longer in-
volved after session setup.

This gloomy-sounding scenario for DNS can, how-
ever, be easily overcome. As we mentioned in Sec-
tion 2.1.4, DNS replication services are plentiful and
cheap. Widespread replication of DNS is easy to
achieve, even on a garage budget. Furthermore, as
we demonstrated in one of our microbenchmarks (Sec-
tion 4.2), most DNS clients recover from DNS server
failuresextremely quickly—in our experiment, 100% of
DNS clients tested failed over to a secondary DNS server
within 2.5 seconds. This means that a front-end failure
has virtually no observable effect.

This scenario is the most compelling argument for
DNS load balancing: At very low cost, there is no single
point of complete failure.

3.6 Effects of Back-End Failure
We next consider how the load-balancing scheme affects
the nature of user-visible disruptions to the service when
a back-end node fails. Recall that by “back-end” node,
we mean a member of then-sized pool of machines
that can accept connections from clients. (Distinguish
this from the “front end” of the load balancing scheme,
which is the load balancer itself.)

The SDNis managed entirely by the service provider,
so its back-end failures are not a concern to the garage
innovator. The architecture of S3 is said to be highly re-
dundant at every layer. Our experience is that occasional
writes do fail (perhaps 1% of the time) but nearly always
work on the first retry.

HTTP redirector and L4/L7 load balancers offer
the best performance for garage-written services in the
case of back-end node failure.Newly arriving sessions
see no degradation at all: the redirector or load balancer
knows within moments that a back-end node has failed,
and immediately stops routing new requests to it.Ex-
isting sessions see only transient failures. Users of an
HTTP-redirected service who are stuck on a dead node
might need to intervene manually (that is, go back to the
dispatching URL, such asmail.live.com). Load-
balanced services potentially see only a transient failure.
If the client tries to re-establish the failed TCP connec-
tion to what it thinks is the same host, it will be transpar-
ently forwarded to an operational server.

DNS load balancingsuffers the worst performance in
the case of back-end failure. Unlike load balancers and
HTTP redirectors, which stop requests to a failed server
immediately, DNS load balancing can continue to feed
requests to a failed server for more than a day, as we
saw in the previous section. Ifn servers are deployed,
1/nth of sessions will be unlucky enough to pick the
failed server. Unfortunately, when this happens, our ex-
periments have shown that some combinations of client
and proxy take up to three minutes to give up and try a
different IP address; see Section 4.3.

4 Experimental Micro-Benchmarks
In this section, we flesh out the details of some of the
more complex experiments we performed in support of
our analysis in the previous section.

4.1 An EC2-Integrated HTTP Redirector
To better understand HTTP redirection performance,we
built and evaluated a load-balancing HTTP redirector. It
monitors the load on each running service instance, re-
sizes the farm in response to load, and routes new ses-
sions probabilistically to lightly loaded servers.

Servers send periodic heartbeats with load statistics
to the redirector. The redirector uses both the presence
of these heartbeats and the load information they carry
to evaluate the liveness of each server. Its redirections
are probabilistic: the redirector is twice as likely to send
a new session to one server whose run queue is half as
long as another’s. When the total CPU capacity available
on servers with short run queues is less than 50%, the
redirector launches a new server; when the total CPU
capacity is more than 150%, the redirector terminates a
server whose sessions are most stale.

Figure 1: HTTP redirect experiment (§4.1). As client load
spikes, the redirector launches new servers and directs newses-
sions to them.

The servers in the experiment run our Inkblot web ser-
vice (see Section 5.3). The client load is presented from
a separate machine. Each client simulates a user session
with a state machine: It logs into the service, accesses
random features for a random duration, and then logs
out. Each such client session first accesses the service by
the redirector’s URL. Each session is recorded as having
completed successfully or having been interrupted by a
failure such as an HTTP timeout.

The top line in Figure 1a shows how we varied the
number of simulated clients as the experiment evolved,
and the dotted line shows the number of servers allocated
by the redirector to handle the demand.

Figure 1b shows the 5th, 50th, and 95th percentiles
of client latency; the server run queues (not shown)
track these curves closely as Little’s result predicts [20].
Our simplistic redirector allocates one server at a time,
bounding its response rate to a slope of one server every
90–120 seconds. Around 2000 seconds, the load grows
quite rapidly, and client response time suffers badly, with
many sessions aborting (bottom curve in Figure 1a).

During these experiments, the redirector consumed
around 2% of its CPU when serving 150 clients. Thus,
for this application, we expect to be able to serve 7,500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

response time, ms

fr
a

c
ti

o
n

 o
f

re
s

p
o

n
s

e
s

experiment

control

Figure 2: DNS servers fail over very quickly when an up-
stream server fails (§4.2).

client sessions per redirector node. However, this ra-
tio is sensitive to our choice of client workload simu-
lation parameters. In an application where sessions are
longer and require only a single redirection during ini-
tialization, the overhead of the redirector will shrink.
The important observation is that the redirector is sim-
ple, cheap, and applies to many web-based applications.

4.2 DNS server failover behavior
To determine the delay associated with nameserver fail-
ure, we configured a DNS subdomain with two NS
records: one legitimate and the other pointing at an IP
address with no DNS server. As a control, we repeated
the same experiment with a fresh subdomain containing
only the NS record for the functioning server. In each
case, we sent recursive queries to 26 geographically-
distributed public DNS servers at seven ISPs. Figure 2
shows the cumulative distribution of response times.
The worst-case response time was less than 2.5s; of
course, this cost is incurred only on a DNS cache miss.

4.3 Web client DNS failover behavior
To determine the user-visible effect of DNS-based re-
covery from failed back-end servers, we set up the fol-
lowing experiment: A browser script resolves a series
of fresh hostnames, each of which resolves to two fresh
IP addresses. One IP address has a live web server; the
other does not. We vary the numerical order of the IPs to
avoid biasing misbehaving resolvers (Section 4.4). The
script repeats this experiment 20 times.

Often, the browser is lucky and tries the operational
IP address first. When it doesn’t, the user experiences
delays from 3 to n seconds, as shown in Table 2. The
delay appears to be coupled to the OS resolver library
rather than the browser. We repeated the experiments
with the browser behind a Squid 2.6.16 proxy running
on Linux 2.6.17, where the delay seemed to be defined
by the proxy.

The initial experiment used fresh names and IP ad-
dresses to ensure the client DNS resolvers always had
cold cache behavior: If resolvers cache knowledge of
failure, then the experiment would show no delay. Sur-
prisingly, in some configurations (both the unproxied
browsers on Linux and any browser using a Linux Squid
cache) the resolver behavedworse with a warm cache
than with a cold one. Queries that were slow in the first
run showed no change. However, on queries that were
fast in the first run exhibited delays of 20–190s. We are
unsure why these configurations exhibit different time-
out behavior for a cold request than for a warm one.

To summarize: Depending on operating system and
proxy cache configuration, using DNS to failover from
a non-responsive server causes clients experience delays
from 3 to 190 seconds.

4.4 Badly-behaved resolvers defeat load
balancing

This same experiment also revealed that in every con-
figuration except the two browsers running uncached on
Windows XP, the browser (or proxy) always tried the
lower-numbered IP address before the higher-numbered
one, regardless of the order they were returned by the
DNS server. This behavior has important implications
for using DNS as a load-balancing mechanism.

A conventional DNS server always returns the same
complete list of machines. With this approach, many
machines will flock to the lowest-numbered IP address
in the list. Ignoring proxies, the 8% of the desktop mar-
ket running MacOS X will cause significant problems
once the clients present 12 server’s worth (that is, 1/0.08)
of load.

Alternately, a custom DNS server might return only
a single IP address to each query, exchanging fault tol-
erance for load balancing. A further refinement re-
turnsk servers of the availablen. This provides fault-
tolerance againstk − 1 failures, but ensures that even
the badly-behaved resolvers spread themselves across
the firstn − k machines.

4.5 The maximum size of DNS replies
The scalability of DNS load balancing is potentially lim-
ited by the number of “A” (Address) records that can be
put into a single DNS reply. The DNS RFC only guaran-
tees transmission of a 512-byte reply when in UDP mode
[23][§2.3.4], and some past work has reported that DNS
clients do not always fall back to using TCP to retrieve
larger responses [16]. At 16 bytes per A-record, and
counting other overhead, a 512 byte DNS reply would
limit us to about 25 back-end servers—potentially a bot-
tleneck.

To test this limit in practice, we populated a single
name with over 2200 A records, and then probed it via

OS Browser no-proxy delay (s) proxied delay (s)

Windows XP Firefox 2.0.0.6 21 9–18
Windows XP IE 6.0 21 9–12
Linux 2.6.17 Firefox 2.0.0.3 3 9
Linux 2.6.17 Epiphany 2.16 3 not measured

MacOS X 10.4.10 Firefox 2.0.0.11 15–75 9–17
MacOS X 10.4.10 Safari 2.0.4 12–75 9–18

Table 2: DNS timeout test for web sites that have multiple A records. The table reports timeouts observed with
various browser and OS combinations before the client attempts to use a second IP address if no reply is received
from the first.

26 public DNS servers in seven ISPs. Every server cor-
rectly returned the entire list, indicating its client had
used TCP DNS transfers to fetch the complete reply
from our nameserver. We have not explored whether
some clients (e.g., web browsers) will fail to fetch large
replies. This result suggests that DNS implementations
pose no limit to the number of back-end servers served
by a DNS load balancing solution; indeed, other limits
of DNS behavior obviate including the entire server list
in DNS replies (Section 4.4).

4.6 Client affinity observations

One of our real services (Section 5.2) is equipped to tol-
erate client non-affinity, even though we expected affin-
ity to be the common case. We instrumented the service
to measure client affinity, and sampled for a period of
two months in a 2-server configuration. About 5% of
the requests received by our web service arrive at the
“wrong” server. From this, we infer that 10% of clients
exhibited no affinity, and half of the requests such clients
generate arrived at the “right” server by chance.

5 Application Design and Flash Crowd
Experiences

In this section, we report three case studies demon-
strating the design, implementation, and flash-crowd re-
sponse of “garage-scalable” web services. Over the past
year, our research group created three web sites that ex-
perienced sudden surges in popularity, including one that
was (literally) Slashdotted. For each web site, we de-
scribe our design and implementation decisions, report
how they responded to a flash crowd, and extract lessons
learned from the experience.

5.1 MapCruncher

In May of 2006, our research group developed
MapCruncher [10], a new web authoring tool that makes
it easy for non-experts to convert their own maps into
AJAX-style interactive maps.

The output of this tool is a set of static content (or-
dinary .png, .html and .js files) that require no special

server-side support. Serving an interactive map gener-
ated by MapCruncher requires nothing more from an
HTTP server than its most basic function: reading a file
off disk and returning it to a client in response to an
HTTP GET. All of the dynamic behavior of the appli-
cation is implemented in the client browser.

5.1.1 The Web Site
To show off MapCruncher’s functionality, we created a
gallery of sample maps: about 25 gigabytes of image
data spread across several hundred thousand files. We
put this archive on reasonably powerful web server: a
2005-vintage Dell PowerEdge 2650 with 1GB of RAM,
a 2.4 GHz Intel Xeon processor, and several SCSI disks,
running IIS 6.0. We did not anticipate performance
problems since IIS is performant and the content we
were serving was all static.

5.1.2 The Flash Crowd
After MapCruncher was released, Microsoft published a
press release describing it, which was picked up by vari-
ous bloggers and Internet publications. Crowds soon ar-
rived. Nearly all visitors viewed our map gallery, which
became unusably slow. Our server logs showed that, at
peak, we were serving about 100 files per second. (Far
more images were probably requested.)

We were surprised that our web server had failed to
keep up with the request stream until we realized the
dataset was many times larger than the machine’s mem-
ory cache. In addition, there was very little locality
of reference. Our sample maps were enormous, and
each visitor zoomed into a different, random part of one.
The resulting image requests were almost entirely cache
misses. We could not serve files any faster than the disk
could find them. Perhaps not coincidentally, the sum of
typical seek time, settling time, and rotational delay of
modern disks is about 10ms (100 requests per second).

The next day, we published our maps to Amazon S3,
and had no further performance problems. The lesson
we learned was the power of an SDN’s statistical multi-
plexing: Rather than one disk seeking, the SDN spread
files across huge numbers of disks, all of which can be

seeking in parallel. Rather than one buffer cache thrash-
ing during peak load, the SDN dedicated gigabytes of
buffer cache from dozens of machines to us.

S3’s utility-computing cost model was as compelling
to us as to a garage innovator. During a normal month,
we pay virtually nothing; the nominal cost of storing our
25GB gallery is under $4/month. In the case of a flash
crowd, we pay a one-time bandwidth charge of about
$200. Statistical multiplexing makes it economically vi-
able for Amazon to charge only for capacity used. This
is much more efficient than the traditional model of pay-
ing for a fixed reserve that remains idle before the flash
crowd, and yet may still be insufficiently provisioned
when a crowd finally arrives.

5.2 Asirra
In April of 2007, our research group designed a web ser-
vice called Asirra, a CAPTCHA that authenticates users
by asking them to identify photographs as being either
cats or dogs [9]. Our database has over 4 million images
and grows by about 10,000 every day. Images come to
us already classified (by humans) as either cat or dog,
thanks to our partnership with Petfinder.com, the world’s
largest web site devoted to finding homes for homeless
animals. Petfinder provides the Asirra project ongoing
access to their database as a way to increase the number
of adoptable pets seen by potential new owners.

5.2.1 The Web Site
Asirra’s metadata must remain secret to maintain the se-
curity of the CAPTCHA. Consequently, Asirra is im-
plemented as a web service rather than a distributable
code library. It has a simple API that allows webmasters
to integrate our CAPTCHA into their own web pages.
Webmasters include Asirra’s JavaScript in their HTML
forms, where it first creates the visual elements of the
challenge in the user’s browser. It then sends AJAX re-
quests to our web service to create a new Asirra ses-
sion, retrieve one or more challenges, and submit user
responses for scoring. If the response is correct, the
client earns a “service ticket” (an unguessable string)
and presents it to the webmaster in a special field of
the HTML form. Because the client is not trusted, the
webmaster’s back-end then verifies that the ticket pre-
sented is valid by checking it with a different interface
of Asirra’s web service. The web service is implemented
in Python and currently deployed at Amazon EC2.

There were several issues we considered in deciding
how to enable Asirra to scale. The first was how to
scalably store and serve the images themselves. The
CAPTCHA’s growing collection of 4 million JPEG im-
ages consumes about 100GB. Based on our experience
with MapCruncher, using Amazon’s S3 was an easy
choice.

The second consideration was how to enable scalable
access to all the metadata by every service instance.
The master copy of the metadata is stored in a SQL
Server database at our offices at Microsoft. How-
ever, as we discussed in Section 2.1.5, it is difficult
to make a fully relational database arbitrarily scalable.
We solved this in Asirra by observing that the web ser-
vice treats the image metadata as read-only. (The only
database writes occur off-line, when a nightly process
runs to import new images into the database.) In addi-
tion, the web service does not need complex SELECT
statements; when a CAPTCHA request arrives, Asirra
simply picks 12 image records at random. We therefore
decided to keep our fully relational (and relatively slow)
SQL Server database in-house. Every time our off-line
database update process runs, it also produces a reduced
BerkeleyDB [27] database, keyed only by record num-
ber, that contains the relevant information about each
image. (BerkeleyDB is essentially an efficient B-tree
implementation of a simple key-value store.) The Berke-
leyDB file is then pushed out to each running web ser-
vice instance, which does local database queries when it
needs to generate a CAPTCHA.

The third and most interesting design question was
how to maintain session state. In between the time a
user requests a CAPTCHA and the time the CAPTCHA
is scored, Asirra must keep state in order to recognize if
the answer was correct, and do other accounting. One
possibility was to keep each session’s state in its own
S3 object, but we found that S3’s write performance was
somewhat slow; requests could take up to several sec-
onds to complete. We next considered storing session
state locally—on individual servers’ disks. This led to
an interesting question: how does session state storage
interact with load balancing?

Client load is distributed across Asirra’s server farm
using the DNS load balancing technique described in
Section 2.2.2. The first action performed by a client is
session creation. Whichever machine is randomly se-
lected by the client to execute this action becomes the
permanent custodian of that session’s state. The custo-
dian stores the session state locally and returns a ses-
sion ID to the client. The session ID has the custodian
server’s ID embedded in it.

As we discussed in Section 4.6, one of the disadvan-
tages of DNS load balancing is that clients are not guar-
anteed to have affinity for back-end servers. Any ses-
sion operation after the first one may arrive at a server
other than the session’s custodian. We address this by
forwarding requests from their arrival server to the cus-
todian server, if the two servers are different. That is, the
arrival server finds the custodian server’s ID embedded
in the session ID, reissues the request it received to the
custodian, and forwards the response back to the client.

Since the client is not trusted, session IDs are unguess-
able strings; a forged session ID will fail to find a cor-
responding session. Forging the identity of the custo-
dian server will cause a request to be unnecessarily for-
warded, but no corresponding session state will be found
there. (As further protection, Asirra only forwards re-
quests to servers that appear in a list of valid custodians.)

Our forwarding scheme ensures that at most two ma-
chines are ever involved in servicing a single request: the
machine which receives the request from the client, and
the machine that owns the session state and receives the
sub-request. Asirra service is therefore readily scalable;
the overhead of parallelization will never be more than
2x regardless of the total size of the farm.

In practice, we have observed lower overhead for two
reasons. First, compared to satisfying a request, for-
warding one takes very little time and requires no disk
seeks. Even if every request required forwarding, the to-
tal overhead might not be more than 1.1x. Second, we
have found that request forwarding is not the common
case; as we described in Section 4.6, the rate of client
affinity “failures” is about 10%.

5.2.2 The Flash Crowd
Shortly after its release, Asirra was shown publicly at an
annual Microsoft Research technology showcase called
TechFest. It received significant coverage in the pop-
ular press which resulted in a load surge lasting about
24 hours. During this time we served about 75,000 real
challenges, plus about 30,000 requests that were part of
a denial-of-service attack. Over the next few months, we
saw a gradual increase in the traffic rate as sites began to
use the CAPTCHA.

We learned several interesting lessons from this de-
ployment. The first, as discussed in the previous section,
was that poor client-to-server affinity was not as much
of a problem for DNS-load-balanced services as we had
initially feared. Second, there were some pitfalls in us-
ing EC2 as a utility for providing web services. Most
problematic is that when EC2 nodes failed, as happens
from time to time, they also gave up their IP address
reservations. (This weakness of EC2’s service was later
corrected, in April 2008.) This is a problem when using
DNS load balancing. As we saw in Section 3.4, a failed
node can produce user-visible service degradation until
all DNS caches—even the badly behaved ones—are up-
dated. Also, recall that local storage on EC2 nodes is
fast, but not durable. Though data can be cached locally,
it is vital to keep anything valuable (e.g., user data, log
files, etc.) backed up elsewhere.

The denial-of-service attack provided what was, per-
haps, the most interesting lesson. In the short term, be-
fore a filtering strategy could be devised, the easiest de-
fense was simply to start more servers. The solution re-

quired no development time beyond the scalability work
we’d already done, and only cost us a few extra dollars
for the duration of the denial-of-service attack. Before
we had a chance to implement a denial-of-service fil-
ter, the attacker became bored (and, perhaps, frustrated
that his attack was no longer working) and stopped his
attack. We never actually got around to implementing
a denial-of-service filter—a fascinating success of “lazy
development.” (The Perl community has been preaching
laziness as a virtue for years!) As we will see shortly,
this lesson had a surprising influence on the design of
our next service.

5.3 InkblotPassword.com
In November 2007, our research group deployed
InkblotPassword.com [34], a website that helps users
generate and remember high-entropy passwords, using
Rorschach-like images as a memory cue. The site
lets users create accounts and associate passwords with
inkblot images. Our site is an OpenID [30] authenti-
cation provider; users can use their inkblot passwords
to log in to any web site that accepts OpenID creden-
tials. Note that Inkblot must store dynamically gener-
ated information (the user accounts) durably. This re-
quirement sets it apart from our previous two applica-
tions, which had static (pre-computed) databases and
ephemeral state.

5.3.1 The Web Site
Like Asirra, we implemented Inkblot in Python. How-
ever, unlike Asirra, we spent virtually no time optimiz-
ing its performance. The denial-of-service attack we suf-
fered taught us a valuable lesson: Now that it’s so cheap
to run lots of servers for a day or two, there is no need to
spend time on problems that can be solved that way. We
reasoned that if our goal was simply to handle a single
unexpected flash crowd, the best strategy was to forgo
careful code optimization and simply plan to start plenty
of extra servers for the duration of the load spike. Ifon-
going popularity and high nominal load followed, care-
ful code optimization would then be economical.

Another difference between Asirra and Inkblot was
our decision to store both the persistent user database
and the ephemeral session state in S3; nothing was
stored on the local disk. We chose S3 for the user
database, despite its slowness we observed in Asirra, be-
cause of the requirement for database persistence. For-
tunately, the particular write requirements of our appli-
cation permit write-behind without exposing security-
sensitive race conditions, hiding most of the write delay
from users. We stored ephemeral session state in S3 en-
tirely because of our new laziness philosophy: although
less efficient than using the local disk, reusing the user-
state storage code led to faster development.

Like Asirra, Inkblot was implemented and tested to
run on multiple servers. We deployed it with two servers,
to ensure that we were exercising cross-server interac-
tion as the common case. DNS A-records provided load
balancing among the servers. Updating our institutional
DNS service required interacting with a human operator,
so no automatic scaling was in place.

5.3.2 The Flash Crowd
Days after its release, Network World penned an article
covering Inkblot [12]. That coverage was propagated
to other tech magazines and blogs.

We had the very good fortune to be in a boring meet-
ing the next day, when one of us happened upon the arti-
cle about Inkblot moments after it appeared on the front
page of Slashdot. We tried clicking through the link,
and found our service unresponsive. Unfortunately, this
happened before we implemented the code described in
Section 4.1 that automatically expands the farm in re-
sponse to load. The one responsive server reported a run
queue length of 137; in a healthy system, it should be
below 1.

Within minutes, we spun up a dozen new servers. We
submitted a high-priority DNS change request to our in-
stitutional DNS provider which was fulfilled within half
an hour. The new servers saw load almost immediately
after the DNS update, and the original servers recovered
in another 20 minutes. (The DNS TTL was one hour at
the time of the Slashdotting.) For several hours, all 14
servers’ one-minute-averaged run queue lengths hovered
between 0.5 and 0.9. The site remained responsive. By
the end of the day, the Inkblot service had successfully
registered about 10,000 new users.

We kept the extra servers up for two days (just in case
of an “aftershock” such as Digg or Reddit coverage). We
then removed 10 out of the 14 entries from the DNS,
waited an extra day for rogue DNS caches to empty, and
shut the 10 servers down. The marginal cost of handling
this Slashdotting was less than $150.

We were fortunate to survive the flash crowd so well,
considering that our load-detection algorithm was “good
luck.” Indeed, this experience prompted us to carefully
examine the alternatives for filling in the missing piece
in that implementation; that examination led to the anal-
ysis and experiments that comprise this paper.

6 Conclusions
This paper surveys the contemporary state of utility
computing as it applies to the low-capital garage inno-
vator. It describes existing, utility-priced services. Our
analysis characterizes four approaches to balancing load
among back-end servers. We exhibit six experiments
that highlight benefits and limitations of each approach.
We report on our experiences deploying three innova-

tions in garage style, and how those various deployments
strategies fared the flash crowds that followed.

We conclude that all four load balancing strategies are
available to the garage innovator using utility resources,
and that no single strategy dominates. Rather, the choice
of strategy depends on the specific application and its
load and fault-tolerance requirements.

7 Acknowledgements
The authors wish to thank John Douceur for reviewing
drafts of this paper, and MSR’s technical support orga-
nization for deployment help.

References
[1] A KAMAI TECHNOLOGIES, INC. Edgeplatform.

http://www.akamai.com/.

[2] A MAZON WEB SERVICES. EC2 elastic compute
cloud. http://aws.amazon.com/ec2.

[3] A MAZON WEB SERVICES. SimpleDB.
http://aws.amazon.com/simpledb.

[4] BERRY, G., CHASE, J., COHEN, G., COX, L.,
AND VAHDAT, A. Toward automatic state man-
agement for replicated dynamic web services. In
Netstore Symposium (Oct. 1999).

[5] BRISCO, T. DNS Support for Load Balancing.
RFC 1794 (Informational), Apr. 1995.

[6] CHALLENGER, J., IYENGAR, A., WITTING , K.,
FERSTAT, C., AND REED, P. A publishing system
for efficiently creating dynamic web content. In
INFOCOM 2000 Conference (Mar. 2000).

[7] CHEN, G., HE, W., LIU , J., NATH , S., RIGAS,
L., X IAO , L., , AND ZHAO, F. Energy-
aware server provisioning and load dispatching for
connection-intensive internet services. Into ap-
pear, Networked Systems Design & Implementa-
tion (2008).

[8] DATE, C. J.An Introduction to Database Systems,
8th ed. Addison-Wesley, 2004.

[9] ELSON, J., DOUCEUR, J. R., HOWELL, J.,
AND SAUL , J. Asirra: a CAPTCHA that ex-
ploits interest-aligned manual image categoriza-
tion. In Proceedings of the 2007 ACM Confer-
ence on Computer and Communications Security
(CCS), Alexandria, Virginia, USA (2007), P. Ning,
S. D. C. di Vimercati, and P. F. Syverson, Eds.,
ACM, pp. 366–374.

[10] ELSON, J., HOWELL, J., AND DOUCEUR, J. R.
Mapcruncher: integrating the world’s geographic
information. Operating Systems Review 41, 2
(2007), 50–59.

[11] FIELDING , R., GETTYS, J., MOGUL, J.,
FRYSTYK, H., MASINTER, L., LEACH, P., AND

BERNERS-LEE, T. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616 (Draft Standard), June 1999.

[12] FONTANA , J. Forget sticky notes, mi-
crosoft using inkblots as password reminders.
http://www.networkworld.com/news/2007/120407-
microsoft-inkblots-passwords.html, Dec 2007.

[13] GOLDSZMIDT, G., AND HUNT, G. Scaling in-
ternet services by dynamic allocation of connec-
tions. In Proc. Integrated Management (IM 99)
(May 1999).

[14] GRANITE CANYON GROUP, LLC. Public DNS.
http://www.granitecanyon.com/.

[15] GRIBBLE, S. D., BREWER, E. A., HELLER-
STEIN, J. M., AND CULLER, D. Scalable, dis-
tributed data structures for internet service con-
struction. InFourth Operating Systems Design and
Implementation (Oct. 2000).

[16] GUDMUNDSSON, O. DNSSEC and IPv6 A6 aware
server/resolver message size requirements. draft-
ietf-dnsext-message-size-00, June 2000.

[17] HENDERSON, C. Building Scalable Web Sites.
O’Reilly Media, 2006.

[18] JACKSON, C., BARTH, A., BORTZ, A., SHAO,
W., AND BONEH, D. Protecting browsers from
DNS rebinding attacks. InComputer and Commu-
nications Security (October 2007).

[19] JUL , E., LEVY, H., HUTCHINSON, N., , AND

BLACK , A. Fine-grained mobility in the Emerald
system. ACM Transactions on Computer Systems
6, 1 (Feb. 1988), 109–133.

[20] KLEINROCK, L. Queueing Systems, vol. I. John
Wiley & Sons, Inc, 1975.

[21] L IMELIGHT COMMUNICATIONS INC. Limelight
networks. http://www.limelightnetworks.com/.

[22] L INUX V IRTUAL SERVER PROJECT.
http://www.linuxvirtualserver.org/.

[23] MOCKAPETRIS, P. Domain names - implementa-
tion and specification. RFC 1035 (Standard), Nov.
1987.

[24] NEUSTAR. UltraDNS.
http://www.neustarultraservices.biz/-
solutions/externaldns.html.

[25] NIRVANIX INC. Nirvanix Web Ser-
vices API developer’s guide v1.0.
http://developer.nirvanix.com/sitefiles/1000/API.html,
Dec. 2007.

[26] NOELDNER, C., AND CULVER, M. Scal-
able media hosting with Amazon S3. Ama-
zon Web Services Developer Connection,
http://developer.amazonwebservices.com/-
connect/entry.jspa?externalID=1073, Nov. 2007.

[27] ORACLE CORPORATION. Berkeley DB.
http://www.oracle.com/database/berkeley-db.html.

[28] PANG, J., AKELLA , A., SHAIKH , A., KRISHNA-
MURTHY, B., AND SESHAN, S. On the respon-
siveness of DNS-based network control. InInter-
net Measurment Conference (2004), A. Lombardo
and J. F. Kurose, Eds., ACM, pp. 21–26.

[29] RAYBURN , D. Cdn pricing data: What
the cdns are actually charging for delivery.
http://tinyurl.com/25muah.

[30] RECORDON, D., AND REED, D. OpenID 2.0:
a platform for user-centric identity management.
In Digital Identity Management (2006), A. Juels,
M. Winslett, and A. Goto, Eds., ACM, pp. 11–16.

[31] RIGHT SCALE LLC. Rightscale dashboard.
http://info.rightscale.com/.

[32] SCHINDER, T. ISA Server 2006 Migration Guide.
Elsevier, 2007.

[33] SCHLOSSNAGLE, T. Scalable Internet Architec-
tures. Sams Publishing, 2006.

[34] STUBBLEFIELD, A., AND SIMON , D. Inkblot au-
thentication. Technical report MSR-TR-2004-85,
Microsoft Research, Aug. 2004.

[35] XCALIBRE COMMUNICATIONS LTD. Flexiscale.
http://www.flexiscale.com/.

[36] YU, H., AND VAHDAT, A. Design and evalua-
tion of a continuous consistency model for repli-
cated services. InInternational Conference on Dis-
tributed Computing Systems (ICDCS) (Apr. 2001).

