
 
 

  
Abstract— This paper presents a new TCP variant, called 

CUBIC, for high-speed network environments. CUBIC is an 
enhanced version of BIC: it simplifies the BIC window control 
and improves its TCP-friendliness and RTT-fairness. The window 
growth function of CUBIC is governed by a cubic function in 
terms of the elapsed time since the last loss event. Our experience 
indicates that the cubic function provides a good stability and 
scalability. Furthermore, the real-time nature of the protocol 
keeps the window growth rate independent of RTT, which keeps 
the protocol TCP friendly under both short and long RTT paths. 
 

Index Terms—Congestion Control, High-Speed TCP, TCP 
Friendliness 
 

I. INTRODUCTION 
N the past few years, we have witnessed a surge of TCP 

variants [1] that address the under-utilization problem most 
notably due to the slow growth of TCP congestion window 
(e.g., FAST [2], HSTCP [3], STCP [4], HTCP [5], SQRT [6], 
Westwood [7], and BIC [8]) in a large bandwidth-delay product 
(BDP) network. Most of these protocols deal with modifying 
the window growth function of TCP in a more scalable fashion. 
While scaling the window growth rate to match large BDP is 
rather straightforward, tackling the fairness issues of new 
protocols has remained as a major challenge. These fairness 
issues include friendliness to existing TCP traffic (TCP 
friendliness), and fair bandwidth sharing with other competing 
high-speed flows running with same or different round-trip 
delays (Inter/intra protocol fairness, and RTT fairness).  

TCP-friendliness defines whether a protocol is being fair to 
TCP, and it is critical to the safety of the protocol. When a 
protocol is used, we need to make sure that its use does not 
unfairly affect the most common network flows (namely TCP). 
Many different definitions of this property are found in the 
literature. The most commonly cited one is by [3]: under high 
loss rate regions where TCP is well-behaving, the protocol 
must behave like TCP, and under low loss rate regions where 
TCP has a low utilization problem, it can use more bandwidth 
than TCP. Most high-speed TCP variant protocols achieve TCP 
friendliness by having some form of “TCP modes” during 
which they behave in the same way as TCP. HSTCP, STCP, 
and BIC enter their TCP modes when the window size is less 
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than some small cutoff constant (typically around 30 packets).  
However, our observation is that the regime where TCP 

performs well (called “TCP region”) should be defined by the 
congestion epoch time (not by the window size) – the real-time 
period between two consecutive loss events. Although BDP 
implies the network capacity by packet count (or window size), 
packet count is not adequate to characterize TCP performance 
because the growth rate of TCP depends on RTT. For instance, 
TCP can grow to 30 packets in 30 ms with 1 ms RTT while in 3 
seconds with 100 ms RTT.  Even in a network with the 
bottleneck bandwidth of 1 Gbps, TCP can grow the window up 
to the full utilization of the network within 100 ms, if RTT is 
1ms. A protocol like HSTCP, STCP, and BIC will operate 
mostly in a “scalable” mode in this network, possibly 
consuming bandwidth unfairly over other competing TCP 
traffic. Note that the scalability problem of TCP is often 
defined by real-time (recall quotes from many folks saying 
“TCP takes more than one hour to reach the full utilization of 
so-and-so networks”). Thus, it seems more appropriate (or 
better) to define the TCP region by real-time. While the exact 
time period of the TCP region is as debatable as the window 
size of the TCP region of the above high-speed protocols, we 
can still define a protocol that is amenable to the real-time 
definition of the TCP region.  

 
In this paper, we propose yet another variant of TCP, called 

CUBIC, that enhances the fairness properties of BIC while 
retaining its scalability and stability. The main feature of 
CUBIC is that its window growth function is defined in 
real-time so that its growth will be independent of RTT. Our 
work was partially inspired by HTCP [5], whose window 
growth function is also based on real time. The congestion 
epoch period of CUBIC is determined by the packet loss rate 
alone. As TCP’s throughput is defined by the packet loss rate as 
well as RTT, the throughput of CUBIC is defined by only the 
packet loss rate. Thus, when the loss rate is high and/or RTT is 
short, CUBIC can operate in a TCP mode. Moreover, since the 
growth function is independent of RTT, its RTT fairness is 
guaranteed as different RTT flows will still grow their windows 
at the same rate.  

II. CUBIC – A NEW TCP VARIANT 
CUBIC is an enhanced version of BIC. It simplifies the BIC 

window control and improves its TCP-friendliness and 
RTT-fairness. 
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A. BIC Window Growth Function 
Before delving into CUBIC, let us examine the features of 

BIC. The main feature of BIC is its unique window growth 
function. 

Fig. 1 shows the growth function of BIC. When it gets a 
packet loss event, BIC reduces its window by a multiplicative 
factor β. The window size just before the reduction is set to the 
maximum Wmax and the window size just after the reduction is 
set to the minimum Wmin. Then, BIC performs a binary search 
using these two parameters – by jumping to the “midpoint” 
between Wmax and Wmin.  Since packet losses have occurred at 
Wmax, the window size that the network can currently handle 
without loss must be somewhere between these two numbers.  

However, jumping to the midpoint could be too much 
increase within one RTT, so if the distance between the 
midpoint and the current minimum is larger than a fixed 
constant, called Smax, BIC increments the current window size 
by Smax (linear increase). If BIC does not get packet losses at the 
updated window size, that window size becomes the new 
minimum. If it gets a packet loss, that window size becomes the 
new maximum. This process continues until the window 
increment is less than some small constant called Smin at which 
point, the window is set to the current maximum. So the 
growing function after a window reduction will be most likely 
to be a linear one followed by a logarithmic one (marked as 
“additive increase” and “binary search” respectively in Fig. 1).  

If the window grows past the maximum, the equilibrium 
window size must be larger than the current maximum and a 
new maximum must be found. BIC enters a new phase called 
“max probing.” Max probing uses a window growth function 
exactly symmetric to those used in additive increase and binary 
search – only in a different order: it uses the inverse of binary 
search (which is logarithmic; its reciprocal will be exponential) 
and then additive increase. Fig. 1 shows the growth function 
during max probing. During max probing, the window grows 
slowly initially to find the new maximum nearby, and after 
some time of slow growth, if it does not find the new maximum 
(i.e., packet losses), then it guesses the new maximum is further 
away so it switches to a faster increase by switching to additive 
increase where the window size is incremented by a large fixed 
increment. 

 
The good performance of BIC comes from the slow increase 

around Wmax and linear increase during additive increase and 
max probing. 

 

B. CUBIC Window Growth Function 
Although BIC achieves pretty good scalability, fairness, and 

stability during the current high speed environments, the BIC’s 
growth function can still be too aggressive for TCP, especially 
under short RTT or low speed networks. Furthermore, the 
several different phases of window control add a lot of 
complexity in analyzing the protocol. We have been searching 
for a new window growth function that while retaining most of 
strengths of BIC (especially, its stability and scalability), 
simplifies the window control and enhances its TCP 
friendliness.  

In this paper, we introduce a new high-speed TCP variant: 
CUBIC. As the name of the new protocol represents, the 
window growth function of CUBIC is a cubic function, whose 
shape is very similar to the growth function of BIC. CUBIC is 
designed to simplify and enhance the window control of BIC. 
More specifically, the congestion window of CUBIC is 
determined by the following function: 

max
3)( WKtCWcubic +−=                       (1) 

where C is a scaling factor, t is the elapsed time from the last 
window reduction, Wmax is the window size just before the last 
window reduction, and 3

max CWK β= , where β is a constant 
multiplication decrease factor applied for window reduction at 
the time of loss event (i.e., the window reduces to  βWmax at the 
time of the last reduction). 

Fig. 2 shows the growth function of CUBIC with the origin 
at Wmax. The window grows very fast upon a window reduction, 
but as it gets closer to Wmax, it slows down its growth. Around 
Wmax, the window increment becomes almost zero. Above that, 
CUBIC starts probing for more bandwidth in which the 
window grows slowly initially, accelerating its growth as it 
moves away from Wmax. This slow growth around Wmax 
enhances the stability of the protocol, and increases the 
utilization of the network while the fast growth away from Wmax 
ensures the scalability of the protocol. 

The cubic function ensures the intra-protocol fairness among 
the competing flows of the same protocol. To see this, suppose 
that two flows are competing on the same end-to-end path. The 
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two flows converge to a fair share since they drop by the same 
multiplicative factor β – so a flow with larger Wmax will reduce 
more, and the growth function allows the flow with larger Wmax 
will increase more slowly – K is larger as Wmax is larger. Thus, 
the two flows eventually converge to the same window size. 

The function also offers a good RTT fairness property 
because the window growth rate is dominated by t, the elapsed 
time. This ensures linear RTT fairness since any competing 
flows with different RTT will have the same t after a 
synchronized packet loss (note that TCP and BIC offer square 
RTT fairness in terms of throughput ratio). 

To further enhance the fairness and stability, we clamp the 
window increment to be no more than Smax per second. This 
feature keeps the window to grow linearly when it is far away 
from Wmax, making  the growth function very much in line with 
BIC’s as BIC increases the window additively when the 
window increment per RTT becomes larger than some constant. 
The difference is that we ensure this linear increase of the 
CUBIC window to be real-time dependent— when under short 
RTTs, the linear increment per RTT is smaller although stays 
constant in real time. 

 

C. New TCP Mode 
The real-time increase of the window enormously enhances 

the TCP friendliness of the protocol. Note that the window 
growth function of other RTT dependent protocols (TCP being 
a good example), grows proportionally faster (in real time) in 
shorter RTT networks whereas CUBIC will grow 
independently of RTT. Since TCP gets more aggressively 
while CUBIC being unchanged, short RTT will make CUBIC 
more friendly to TCP. In short RTT networks, CUBIC’s 
window growth is slower than TCP.  

In order to keep the growth rate the same as TCP, we emulate 
the TCP window adjustment algorithm after a packet loss event.  
Since CUBIC reduces its window by a factor of β after a loss 
event, the TCP-fair additive increment would be 

( )3 (1 ) /(1 )β β− +  per RTT. This is because the average 

sending rate of an Additive Increase Multiplicative Decrease 
protocol (AIMD) is 

pRTT
1

1
1
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−
+

                              (2) 

 
 where α is the additive window increment, and p is the loss 

rate. For TCP, α=1 and β=1/2, so the average sending rate of 
TCP is.  

pRTT
1

2
31

                                       (3) 

To achieve the same average sending rate as TCP with an 
arbitrary β, we need α equal to ( )3 (1 ) /(1 )β β− + .  If we set β 

to 0.8, the additive increase factor is 0.5. Given this growth rate 
per RTT, the window size of emulated TCP at time t (after the 
last epoch) is  

RTT
tWWtcp β

ββ
+
−

+=
1
13max                (4) 

If Wtcp is larger than Wcubic (in eqn. 1), then we set the 
window size to Wtcp. Otherwise, Wcubic is the current congestion 
window size.  Our analysis, proof omitted, shows that if the 
congestion epoch duration is less than 1/ C RTT⋅ , or  if the 

packet loss rate is larger than 336.0 RTTC ⋅⋅ , then CUBIC 
is TCP-friendly. With C=0.4 and RTT=100ms, when the packet 
loss rate is larger than 0.000144, CUBIC is TCP friendly. 
Compared to HSTCP where it is TCP friendly when the loss 
rate is larger than 0.001, CUBIC has a larger area of the TCP 
friendly region. Further, when the RTT is very small, CUBIC is 
much more TCP friendly than HSTCP regardless of loss rates. 

 

D. CUBIC in Action 
Fig. 3 shows the window curve of CUBIC over the running 

time. This graph is obtained by running an NS simulation 
experiment on a dumbbell network configuration with 
significant background traffic in both directions to remove the 
phase effect. The bottleneck capacity is 500Mbps and the RTT 
is set to 100ms.  Drop Tail routers are used. There are two 
CUBIC flows and two TCP flows, and all flows have the same 
RTT and bottleneck. Note that the curves have plateaus around 
Wmax which is the window size at the time of the last packet loss 
event. 

Fig. 4 shows the same NS simulation but for a longer time. 
We observe that the two flows of CUBIC converge to a fair 
share nicely around 220 seconds. Their CWND curves are very 
smooth and do not cause much disturbance to competing TCP 
flows. In this experiment, the total network utilization is around 
98%: the two CUBIC flows take about 78% of the total 
bandwidth, the two TCP flows take 11%, and the background 
flows take up around 9%. 

 

Fig. 3: CUBIC window curves (NS simulation in a network with  
500Mbps and 100ms RTT), C = 0.4, β = 0.8. 



 
 

 

III. PERFORMANCE EVALUATION 
In this section, we present some performance results 

regarding the TCP friendliness and stability of CUBIC and 
other high-speed TCP variants. For CUBIC, we set β to 0.8, C 
to 0.4, and Smax to 160. We use NS-2 for simulation. The 
network topology is dumbbell. For each simulation run, we run 
four flows of a high-speed protocol and four flows of regular 
long-term TCP SACK over the same end-to-end paths for the 
entire duration of the simulation; their starting times and RTTs 
are slightly varied to reduce the phase effect. About 10% of 
background traffic is added in both forward and backward 
directions of the dumbbell setup. For all the experiments unless 
notes explicitly, the buffer size of Drop Tail routers is set to 
100% of BDP.  
 
Experiment 1: TCP Friendliness in Short-RTT Networks 
(Simulation script available in the BIC web site): 

 
We test five high speed TCP variants: CUBIC, BIC, HSTCP, 

Scalable TCP, and HTCP. We set RTT of the flows to be 
around 10 ms and vary the bottleneck bandwidth from 20 Mbps 
to 1 Gbps. Fig. 5 shows the throughput ratio of the long-term 
TCP flows over the high-speed flows (or TCP friendly ratio) 
measured from these runs.  

The surprising result is that BIC and STCP even show worse 
TCP friendliness over 20Mbps than over 100Mbps. However, 
we are still not sure the exact reason for this result. Over 100 
Mbps, all the high speed protocols show reasonable 
friendliness to TCP. As the bottleneck bandwidth increases 
from 100Mbps to 1Gbps, the ratios for BIC, HSTCP and STCP 
drop dramatically indicating unfair use of bandwidth with 
respect to TCP. Under all these environments, regular TCP can 
still use the full bandwidth. Scalable TCP shows the worst TCP 
friendliness in these tests followed by BIC and HSTCP.  
CUBIC and HTCP consistently give good TCP friendliness.  

 
Experiment 2: TCP Friendliness in Long-RTT Networks 
(Simulation script available in the BIC web site) 

 
Although the TCP mode improves the TCP friendliness of 

the protocol, it does so mostly for short RTT situations. When 
the BDP is very large with long RTT, the aggressiveness of the 
window growth function (more specifically, the congestion 
epoch length) has more decisive effect on the TCP friendliness. 
As the epoch gets longer, it gives more time for TCP flows to 
grow their windows.  

An important feature of BIC and CUBIC is that it keeps the 
epoch fairly long without losing scalability and network 
utilization. Generally, in AIMD, a longer congestion epoch 
means slower increase (or a smaller additive factor). However, 
this would reduce the scalability of the protocol, and also the 
network would be underutilized for a long time until the 
window becomes fully open (Note that it is true only if the 
multiplicative decrease factor is large; but we cannot keep the 
multiplicative factor too small since that implies much slower 
convergence to the equilibrium). Unlike AIMD, CUBIC 
increases the window to (or its vicinity of) Wmax very quickly 
and then holds the window there for a long time. This keeps the 
scalability of the protocol high, while keeping the epoch long 
and utilization high. This feature is unique both in BIC and 
CUBIC.  

In this experiment, we vary the bottleneck bandwidth from 
20Mbps to 1Gbps, and set RTT to 100ms. Fig. 6 shows the 
throughput ratio of long-term TCP over high-speed TCP 
variants. Over 20 Mbps, all the high speed protocols show 
reasonable friendliness to TCP. As the bandwidth gets larger 
than 20 Mbps, the ratio drops quite rapidly. Overall, CUBIC 
shows a better friendly ratio than the other protocols.  

 

 

 
Experiment 3: Stability (Simulation script available in the 

Fig. 5: TCP-Friendly Ratio in Short-RTT Networks 
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Fig. 4: CUBIC window curves with competing flows (NS simulation in 
a network with 500Mbps and 100ms RTT), C = 0.4, β = 0.8. 

Fig. 6: TCP-Friendly Ratio in Long-RTT Networks 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100050030010020

T
C

P
/H

ig
h-

S
pe

ed
 T

hr
ou

gh
pu

t R
at

io
 (

%
)

Link Speed (Mbps)

CUBIC
BIC

HSTCP
STCP
HTCP



 
 

BIC web site) 
 

We run four flows of a high-speed TCP variant over a 
long-RTT network path (~220ms) and four flows of long-term 
TCP-SACK flows over a short-RTT path (~20ms). These two 
paths share a bottleneck link of 2.5Gbps. In this experiment, to 
see how stable different protocols become as the buffer space 
of the bottleneck router varied, we vary the buffer space of the 
bottleneck router from 200% to 20% of the BDP of the 
bottleneck. The background TCP traffic is added to the 
bottleneck link. Fig. 7 illustrates our simulation setup (slightly 
modified for clarity). The actual simulation setup can be found 
in the script above. 

Below, we show the throughput graphs from experiments 
with 20% buffer in Fig. 8, and with 200% buffer in Fig. 9. By 
inspecting the raw data, we can tell that STCP and HTCP have 
some stability issues (this needs to be confirmed with the 
original authors of HTCP). The high oscillation occurs over 
various time scales. 

There is no well-defined metric of stability. Existing 
literature on congestion control often uses the smoothness in 
transmission rate variations (or smaller oscillations) to mean 
stability.  Control theory defines it somewhat differently: a 
stable protocol eventually converges to equilibrium (not 
necessarily a fair bandwidth share) regardless of the current 
state of the protocol. These two notions are somewhat 
connected since a protocol would have a very small oscillation 
once it converges to equilibrium, and they are not necessarily 
the same. Often the coefficients of variation (CoV) of 
transmission rates are used to depict stability as some artificial 
perturbations to the traffic are added to the network. However, 
since network environments constantly change, the 
transmission rate of a protocol always fluctuates at a short-term 
scale. Then, what would be an appropriate time scale to 
determine its stability? We are currently investigating 
techniques to measure the average fairness index (by Jain) at 
various time scales and compare those of various protocols. For 
a less satisfactory measure, we plotted the coefficients of 
variance (CoV) of throughput. This metric is also used in 
[9,10,11]. The results with 20% buffer are shown in Fig 10, and 
the results with 200% buffer are shown in Fig 11. We observe 
that CUBIC shows a good stability. 

 

 

 
Fig. 8: Throughput various protocols in stability test with 20% buffer 
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Fig.  7: Simulation setup for stability test. 
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Fig. 11: CoV in stability test with 200% buffer 
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Fig. 9: Throughput of various protocols in stability test with 200% buffer
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Fig. 10: CoV in stability test with 20% buffer 
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