

Abstract— This paper presents a new TCP variant, called

CUBIC, for high-speed network environments. CUBIC is an
enhanced version of BIC: it simplifies the BIC window control
and improves its TCP-friendliness and RTT-fairness. The window
growth function of CUBIC is governed by a cubic function in
terms of the elapsed time since the last loss event. Our experience
indicates that the cubic function provides a good stability and
scalability. Furthermore, the real-time nature of the protocol
keeps the window growth rate independent of RTT, which keeps
the protocol TCP friendly under both short and long RTT paths.

Index Terms—Congestion Control, High-Speed TCP, TCP
Friendliness

I. INTRODUCTION
N the past few years, we have witnessed a surge of TCP

variants [1] that address the under-utilization problem most
notably due to the slow growth of TCP congestion window
(e.g., FAST [2], HSTCP [3], STCP [4], HTCP [5], SQRT [6],
Westwood [7], and BIC [8]) in a large bandwidth-delay product
(BDP) network. Most of these protocols deal with modifying
the window growth function of TCP in a more scalable fashion.
While scaling the window growth rate to match large BDP is
rather straightforward, tackling the fairness issues of new
protocols has remained as a major challenge. These fairness
issues include friendliness to existing TCP traffic (TCP
friendliness), and fair bandwidth sharing with other competing
high-speed flows running with same or different round-trip
delays (Inter/intra protocol fairness, and RTT fairness).

TCP-friendliness defines whether a protocol is being fair to
TCP, and it is critical to the safety of the protocol. When a
protocol is used, we need to make sure that its use does not
unfairly affect the most common network flows (namely TCP).
Many different definitions of this property are found in the
literature. The most commonly cited one is by [3]: under high
loss rate regions where TCP is well-behaving, the protocol
must behave like TCP, and under low loss rate regions where
TCP has a low utilization problem, it can use more bandwidth
than TCP. Most high-speed TCP variant protocols achieve TCP
friendliness by having some form of “TCP modes” during
which they behave in the same way as TCP. HSTCP, STCP,
and BIC enter their TCP modes when the window size is less

Injong Rhee is with the Department of Computer Science, North Carolina

State University, Raleigh, NC 27695-7534 USA (corresponding author, phone:
919-515-3305; fax: 919-515-7925; e-mail: rhee@csc.ncsu.edu).

Lisong Xu is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588-0115 USA (e-mail:
xu@cse.unl.edu).

than some small cutoff constant (typically around 30 packets).
However, our observation is that the regime where TCP

performs well (called “TCP region”) should be defined by the
congestion epoch time (not by the window size) – the real-time
period between two consecutive loss events. Although BDP
implies the network capacity by packet count (or window size),
packet count is not adequate to characterize TCP performance
because the growth rate of TCP depends on RTT. For instance,
TCP can grow to 30 packets in 30 ms with 1 ms RTT while in 3
seconds with 100 ms RTT. Even in a network with the
bottleneck bandwidth of 1 Gbps, TCP can grow the window up
to the full utilization of the network within 100 ms, if RTT is
1ms. A protocol like HSTCP, STCP, and BIC will operate
mostly in a “scalable” mode in this network, possibly
consuming bandwidth unfairly over other competing TCP
traffic. Note that the scalability problem of TCP is often
defined by real-time (recall quotes from many folks saying
“TCP takes more than one hour to reach the full utilization of
so-and-so networks”). Thus, it seems more appropriate (or
better) to define the TCP region by real-time. While the exact
time period of the TCP region is as debatable as the window
size of the TCP region of the above high-speed protocols, we
can still define a protocol that is amenable to the real-time
definition of the TCP region.

In this paper, we propose yet another variant of TCP, called

CUBIC, that enhances the fairness properties of BIC while
retaining its scalability and stability. The main feature of
CUBIC is that its window growth function is defined in
real-time so that its growth will be independent of RTT. Our
work was partially inspired by HTCP [5], whose window
growth function is also based on real time. The congestion
epoch period of CUBIC is determined by the packet loss rate
alone. As TCP’s throughput is defined by the packet loss rate as
well as RTT, the throughput of CUBIC is defined by only the
packet loss rate. Thus, when the loss rate is high and/or RTT is
short, CUBIC can operate in a TCP mode. Moreover, since the
growth function is independent of RTT, its RTT fairness is
guaranteed as different RTT flows will still grow their windows
at the same rate.

II. CUBIC – A NEW TCP VARIANT
CUBIC is an enhanced version of BIC. It simplifies the BIC

window control and improves its TCP-friendliness and
RTT-fairness.

CUBIC: A New TCP-Friendly High-Speed TCP Variant

Injong Rhee, and Lisong Xu

I

A. BIC Window Growth Function
Before delving into CUBIC, let us examine the features of

BIC. The main feature of BIC is its unique window growth
function.

Fig. 1 shows the growth function of BIC. When it gets a
packet loss event, BIC reduces its window by a multiplicative
factor β. The window size just before the reduction is set to the
maximum Wmax and the window size just after the reduction is
set to the minimum Wmin. Then, BIC performs a binary search
using these two parameters – by jumping to the “midpoint”
between Wmax and Wmin. Since packet losses have occurred at
Wmax, the window size that the network can currently handle
without loss must be somewhere between these two numbers.

However, jumping to the midpoint could be too much
increase within one RTT, so if the distance between the
midpoint and the current minimum is larger than a fixed
constant, called Smax, BIC increments the current window size
by Smax (linear increase). If BIC does not get packet losses at the
updated window size, that window size becomes the new
minimum. If it gets a packet loss, that window size becomes the
new maximum. This process continues until the window
increment is less than some small constant called Smin at which
point, the window is set to the current maximum. So the
growing function after a window reduction will be most likely
to be a linear one followed by a logarithmic one (marked as
“additive increase” and “binary search” respectively in Fig. 1).

If the window grows past the maximum, the equilibrium
window size must be larger than the current maximum and a
new maximum must be found. BIC enters a new phase called
“max probing.” Max probing uses a window growth function
exactly symmetric to those used in additive increase and binary
search – only in a different order: it uses the inverse of binary
search (which is logarithmic; its reciprocal will be exponential)
and then additive increase. Fig. 1 shows the growth function
during max probing. During max probing, the window grows
slowly initially to find the new maximum nearby, and after
some time of slow growth, if it does not find the new maximum
(i.e., packet losses), then it guesses the new maximum is further
away so it switches to a faster increase by switching to additive
increase where the window size is incremented by a large fixed
increment.

The good performance of BIC comes from the slow increase

around Wmax and linear increase during additive increase and
max probing.

B. CUBIC Window Growth Function
Although BIC achieves pretty good scalability, fairness, and

stability during the current high speed environments, the BIC’s
growth function can still be too aggressive for TCP, especially
under short RTT or low speed networks. Furthermore, the
several different phases of window control add a lot of
complexity in analyzing the protocol. We have been searching
for a new window growth function that while retaining most of
strengths of BIC (especially, its stability and scalability),
simplifies the window control and enhances its TCP
friendliness.

In this paper, we introduce a new high-speed TCP variant:
CUBIC. As the name of the new protocol represents, the
window growth function of CUBIC is a cubic function, whose
shape is very similar to the growth function of BIC. CUBIC is
designed to simplify and enhance the window control of BIC.
More specifically, the congestion window of CUBIC is
determined by the following function:

max
3)(WKtCWcubic +−= (1)

where C is a scaling factor, t is the elapsed time from the last
window reduction, Wmax is the window size just before the last
window reduction, and 3

max CWK β= , where β is a constant
multiplication decrease factor applied for window reduction at
the time of loss event (i.e., the window reduces to βWmax at the
time of the last reduction).

Fig. 2 shows the growth function of CUBIC with the origin
at Wmax. The window grows very fast upon a window reduction,
but as it gets closer to Wmax, it slows down its growth. Around
Wmax, the window increment becomes almost zero. Above that,
CUBIC starts probing for more bandwidth in which the
window grows slowly initially, accelerating its growth as it
moves away from Wmax. This slow growth around Wmax
enhances the stability of the protocol, and increases the
utilization of the network while the fast growth away from Wmax
ensures the scalability of the protocol.

The cubic function ensures the intra-protocol fairness among
the competing flows of the same protocol. To see this, suppose
that two flows are competing on the same end-to-end path. The

Wmax

Steady State Behavior

Max Probing

Fig. 2: The Window Growth Function of CUBIC

Wmax

Additive Increase

Max Probing

Fig. 1: The Window Growth Function of BIC

Binary Search

two flows converge to a fair share since they drop by the same
multiplicative factor β – so a flow with larger Wmax will reduce
more, and the growth function allows the flow with larger Wmax
will increase more slowly – K is larger as Wmax is larger. Thus,
the two flows eventually converge to the same window size.

The function also offers a good RTT fairness property
because the window growth rate is dominated by t, the elapsed
time. This ensures linear RTT fairness since any competing
flows with different RTT will have the same t after a
synchronized packet loss (note that TCP and BIC offer square
RTT fairness in terms of throughput ratio).

To further enhance the fairness and stability, we clamp the
window increment to be no more than Smax per second. This
feature keeps the window to grow linearly when it is far away
from Wmax, making the growth function very much in line with
BIC’s as BIC increases the window additively when the
window increment per RTT becomes larger than some constant.
The difference is that we ensure this linear increase of the
CUBIC window to be real-time dependent— when under short
RTTs, the linear increment per RTT is smaller although stays
constant in real time.

C. New TCP Mode
The real-time increase of the window enormously enhances

the TCP friendliness of the protocol. Note that the window
growth function of other RTT dependent protocols (TCP being
a good example), grows proportionally faster (in real time) in
shorter RTT networks whereas CUBIC will grow
independently of RTT. Since TCP gets more aggressively
while CUBIC being unchanged, short RTT will make CUBIC
more friendly to TCP. In short RTT networks, CUBIC’s
window growth is slower than TCP.

In order to keep the growth rate the same as TCP, we emulate
the TCP window adjustment algorithm after a packet loss event.
Since CUBIC reduces its window by a factor of β after a loss
event, the TCP-fair additive increment would be

()3 (1) /(1)β β− + per RTT. This is because the average

sending rate of an Additive Increase Multiplicative Decrease
protocol (AIMD) is

pRTT
1

1
1

2
1

β
βα

−
+

 (2)

 where α is the additive window increment, and p is the loss

rate. For TCP, α=1 and β=1/2, so the average sending rate of
TCP is.

pRTT
1

2
31

 (3)

To achieve the same average sending rate as TCP with an
arbitrary β, we need α equal to ()3 (1) /(1)β β− + . If we set β

to 0.8, the additive increase factor is 0.5. Given this growth rate
per RTT, the window size of emulated TCP at time t (after the
last epoch) is

RTT
tWWtcp β

ββ
+
−

+=
1
13max (4)

If Wtcp is larger than Wcubic (in eqn. 1), then we set the
window size to Wtcp. Otherwise, Wcubic is the current congestion
window size. Our analysis, proof omitted, shows that if the
congestion epoch duration is less than 1/ C RTT⋅ , or if the

packet loss rate is larger than 336.0 RTTC ⋅⋅ , then CUBIC
is TCP-friendly. With C=0.4 and RTT=100ms, when the packet
loss rate is larger than 0.000144, CUBIC is TCP friendly.
Compared to HSTCP where it is TCP friendly when the loss
rate is larger than 0.001, CUBIC has a larger area of the TCP
friendly region. Further, when the RTT is very small, CUBIC is
much more TCP friendly than HSTCP regardless of loss rates.

D. CUBIC in Action
Fig. 3 shows the window curve of CUBIC over the running

time. This graph is obtained by running an NS simulation
experiment on a dumbbell network configuration with
significant background traffic in both directions to remove the
phase effect. The bottleneck capacity is 500Mbps and the RTT
is set to 100ms. Drop Tail routers are used. There are two
CUBIC flows and two TCP flows, and all flows have the same
RTT and bottleneck. Note that the curves have plateaus around
Wmax which is the window size at the time of the last packet loss
event.

Fig. 4 shows the same NS simulation but for a longer time.
We observe that the two flows of CUBIC converge to a fair
share nicely around 220 seconds. Their CWND curves are very
smooth and do not cause much disturbance to competing TCP
flows. In this experiment, the total network utilization is around
98%: the two CUBIC flows take about 78% of the total
bandwidth, the two TCP flows take 11%, and the background
flows take up around 9%.

Fig. 3: CUBIC window curves (NS simulation in a network with
500Mbps and 100ms RTT), C = 0.4, β = 0.8.

III. PERFORMANCE EVALUATION
In this section, we present some performance results

regarding the TCP friendliness and stability of CUBIC and
other high-speed TCP variants. For CUBIC, we set β to 0.8, C
to 0.4, and Smax to 160. We use NS-2 for simulation. The
network topology is dumbbell. For each simulation run, we run
four flows of a high-speed protocol and four flows of regular
long-term TCP SACK over the same end-to-end paths for the
entire duration of the simulation; their starting times and RTTs
are slightly varied to reduce the phase effect. About 10% of
background traffic is added in both forward and backward
directions of the dumbbell setup. For all the experiments unless
notes explicitly, the buffer size of Drop Tail routers is set to
100% of BDP.

Experiment 1: TCP Friendliness in Short-RTT Networks
(Simulation script available in the BIC web site):

We test five high speed TCP variants: CUBIC, BIC, HSTCP,

Scalable TCP, and HTCP. We set RTT of the flows to be
around 10 ms and vary the bottleneck bandwidth from 20 Mbps
to 1 Gbps. Fig. 5 shows the throughput ratio of the long-term
TCP flows over the high-speed flows (or TCP friendly ratio)
measured from these runs.

The surprising result is that BIC and STCP even show worse
TCP friendliness over 20Mbps than over 100Mbps. However,
we are still not sure the exact reason for this result. Over 100
Mbps, all the high speed protocols show reasonable
friendliness to TCP. As the bottleneck bandwidth increases
from 100Mbps to 1Gbps, the ratios for BIC, HSTCP and STCP
drop dramatically indicating unfair use of bandwidth with
respect to TCP. Under all these environments, regular TCP can
still use the full bandwidth. Scalable TCP shows the worst TCP
friendliness in these tests followed by BIC and HSTCP.
CUBIC and HTCP consistently give good TCP friendliness.

Experiment 2: TCP Friendliness in Long-RTT Networks
(Simulation script available in the BIC web site)

Although the TCP mode improves the TCP friendliness of

the protocol, it does so mostly for short RTT situations. When
the BDP is very large with long RTT, the aggressiveness of the
window growth function (more specifically, the congestion
epoch length) has more decisive effect on the TCP friendliness.
As the epoch gets longer, it gives more time for TCP flows to
grow their windows.

An important feature of BIC and CUBIC is that it keeps the
epoch fairly long without losing scalability and network
utilization. Generally, in AIMD, a longer congestion epoch
means slower increase (or a smaller additive factor). However,
this would reduce the scalability of the protocol, and also the
network would be underutilized for a long time until the
window becomes fully open (Note that it is true only if the
multiplicative decrease factor is large; but we cannot keep the
multiplicative factor too small since that implies much slower
convergence to the equilibrium). Unlike AIMD, CUBIC
increases the window to (or its vicinity of) Wmax very quickly
and then holds the window there for a long time. This keeps the
scalability of the protocol high, while keeping the epoch long
and utilization high. This feature is unique both in BIC and
CUBIC.

In this experiment, we vary the bottleneck bandwidth from
20Mbps to 1Gbps, and set RTT to 100ms. Fig. 6 shows the
throughput ratio of long-term TCP over high-speed TCP
variants. Over 20 Mbps, all the high speed protocols show
reasonable friendliness to TCP. As the bandwidth gets larger
than 20 Mbps, the ratio drops quite rapidly. Overall, CUBIC
shows a better friendly ratio than the other protocols.

Experiment 3: Stability (Simulation script available in the

Fig. 5: TCP-Friendly Ratio in Short-RTT Networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100050030010020

T
C

P
/H

ig
h-

S
pe

ed
 T

hr
ou

gh
pu

t R
at

io
 (

%
)

Link Speed (Mbps)

CUBIC
BIC

HSTCP
STCP
HTCP

Fig. 4: CUBIC window curves with competing flows (NS simulation in
a network with 500Mbps and 100ms RTT), C = 0.4, β = 0.8.

Fig. 6: TCP-Friendly Ratio in Long-RTT Networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100050030010020

T
C

P
/H

ig
h-

S
pe

ed
 T

hr
ou

gh
pu

t R
at

io
 (

%
)

Link Speed (Mbps)

CUBIC
BIC

HSTCP
STCP
HTCP

BIC web site)

We run four flows of a high-speed TCP variant over a
long-RTT network path (~220ms) and four flows of long-term
TCP-SACK flows over a short-RTT path (~20ms). These two
paths share a bottleneck link of 2.5Gbps. In this experiment, to
see how stable different protocols become as the buffer space
of the bottleneck router varied, we vary the buffer space of the
bottleneck router from 200% to 20% of the BDP of the
bottleneck. The background TCP traffic is added to the
bottleneck link. Fig. 7 illustrates our simulation setup (slightly
modified for clarity). The actual simulation setup can be found
in the script above.

Below, we show the throughput graphs from experiments
with 20% buffer in Fig. 8, and with 200% buffer in Fig. 9. By
inspecting the raw data, we can tell that STCP and HTCP have
some stability issues (this needs to be confirmed with the
original authors of HTCP). The high oscillation occurs over
various time scales.

There is no well-defined metric of stability. Existing
literature on congestion control often uses the smoothness in
transmission rate variations (or smaller oscillations) to mean
stability. Control theory defines it somewhat differently: a
stable protocol eventually converges to equilibrium (not
necessarily a fair bandwidth share) regardless of the current
state of the protocol. These two notions are somewhat
connected since a protocol would have a very small oscillation
once it converges to equilibrium, and they are not necessarily
the same. Often the coefficients of variation (CoV) of
transmission rates are used to depict stability as some artificial
perturbations to the traffic are added to the network. However,
since network environments constantly change, the
transmission rate of a protocol always fluctuates at a short-term
scale. Then, what would be an appropriate time scale to
determine its stability? We are currently investigating
techniques to measure the average fairness index (by Jain) at
various time scales and compare those of various protocols. For
a less satisfactory measure, we plotted the coefficients of
variance (CoV) of throughput. This metric is also used in
[9,10,11]. The results with 20% buffer are shown in Fig 10, and
the results with 200% buffer are shown in Fig 11. We observe
that CUBIC shows a good stability.

Fig. 8: Throughput various protocols in stability test with 20% buffer

CUBIC

BIC

HSTCP

STCP

HTCP

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

High-speed
protocol flows

High-speed
protocol flows

Regular
TCP flows

Regular
TCP flows

2.5Gbps/10ms
Drop Tail/bottleneck 10 Gbps/100ms

RTT 10Gbps/2ms

Fig. 7: Simulation setup for stability test.

REFERENCES
[1] H. Bullot, R. Les Cottrell, and R. Hughes-Jones, "Evaluation of Advanced

TCP Stacks on Fast Long-Distance Production Networks," Second
International Workshop on Protocols for Fast Long-Distance Networks,
February 16-17, 2004, Argonne, Illinois USA

[2] C. Jin, D. X. Wei and S. H. Low, "FAST TCP: Motivation, Architecture,
Algorithms, Performance," In Proceedings of IEEE INFOCOM 2004,
March 2004

[3] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649,
December 2003

[4] T. Kelly, “Scalable TCP: Improving Performance in High-Speed Wide
Area Networks,” ACM SIGCOMM Computer Communication Review,
Volume 33, Issue 2, pp. 83-91, April 2003

[5] R. Shorten, and D. Leith, "H-TCP: TCP for High-Speed and
Long-Distance Networks,” Second International Workshop on Protocols
for Fast Long-Distance Networks, February 16-17, 2004, Argonne,
Illinois USA

[6] T. Hatano, M. Fukuhara, H. Shigeno, and K. Okada, "TCP-friendly SQRT
TCP for High Speed Networks," in Proceedings of APSITT 2003,
pp455-460, Nov 2003.

[7] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, "TCP
Westwood: Bandwidth Estimation for Enhanced Transport over Wireless
Links," In Proceedings of ACM Mobicom 2001, pp 287-297, Rome, Italy,
July 16-21 2001

[8] L. Xu, K. Harfoush, and I. Rhee, "Binary Increase Congestion Control
(BIC) for Fast Long-Distance Networks," In Proceedings of IEEE
INFOCOM 2004, March 2004

[9] Cheng Jin, David X. Wei and Steven H. Low, “FAST TCP: motivation,
architecture, algorithms, performance,” Proceedings of IEEE INFOCOM
2004, March 2004

[10] Yunhong Gu, Xinwei Hong, and Robert Grossman, “Experiences in
Design and Implementation of a High Performance Transport Protocol,”
SC 2004, Nov 6 - 12, Pittsburgh, PA, USA

[11] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer,
“Equation-Based Congestion Control for Unicast Applications,”
SIGCOMM 2000.

Fig. 11: CoV in stability test with 200% buffer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

8040201051

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Time Scale (Second)

CUBIC
BIC

HSTCP
STCP
HTCP

Fig. 9: Throughput of various protocols in stability test with 200% buffer

CUBIC

BIC

HSTCP

STCP

HTCP

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

Fig. 10: CoV in stability test with 20% buffer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

8040201051

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Time Scale (Second)

CUBIC
BIC

HSTCP
STCP
HTCP

