
Copyright Hari Balakrishnan, 1998-2005, all rights reserved. Please do not redistribute
without permission.

LECTURE 10
Design of Big, Fast Routers

T
his lecture discusses why high-speed Internet routers are complex and briefly surveys
how they are designed. The main ideas to understand are: (1) the design constraints,

such as speed, size, and power consumption, (2) the components in a modern (early 2000s)
router (such as ports, line cards, packet buffers, forwarding engine, switch arbiter, switch
fabric, link scheduler, etc.), and (3) the need for efficient algorithms for lookups, packet
queueing, and switch arbitration. We will focus on the general ideas rather than on how a
specific router is implemented; these notes are best read together with specific case studies
such as BBN’s multi-gigabit router (which is a relatively old design) and the somewhat
more recent Stanford TinyTera system.

! 10.1 Introduction

In the first few lectures of this course, we looked at the architecture of packet-switched
networks and saw that the switch is a fundamental building block in such networks. In this
lecture, we will look at the problem of designing an packet switch for IP packet processing
that can support links of high speeds.1 Currently (early 2000s), high-speed Internet routers
that process IP packets have links whose speeds are in the range of 1 Gigabit/s to about
40 Gigabits/s per link. A typical high-end router might have between 500 and 1000 ports,
distributed across perhaps 64 or 128 line cards. The ports usually correspond to distinct
“next hops”.2

The conceptual model of a router is quite straightforward: a router has a data path and
a control path. The job of the data path is to move packets that arrive on input or ingress
ports to output or egress ports; from the outputs, these packets are sent on downstream to
the next switch on the path or to an end-host. The job of the control path is to implement
algorithms, which are typically distributed, that help the data path figure out the right
port to send the packet out on. In high-speed switches, the data path typically requires a
hardware implementation, while the control path is almost always done in software.

1A switch in the context of Internet datagram delivery is generally called a router, because it also runs rout-
ing protocol software to build forwarding tables. We will use the terms “switch” and “router” interchangeably
in this lecture.

2These numbers change every year or two.

1

2 LECTURE 10. DESIGN OF BIG, FAST ROUTERS

Routers are a great example of special-purpose computers built for a specific set of tasks.
Routers are big business: according to some market research firms, worldwide revenue
from enterprise and service provider router sales in 2003-2004 was about US $5.5 billion
(source: Infonetics Research Report, Q2 2004).

Most of this lecture will be concerned with the data path of a router, focusing on how
routers can implement the data path efficiently. There are three parts to this lecture. We will
start by looking at an abstract model of an Internet router, describing the key components
of a “bare-bones” (but functional) router, and giving a broad sense of how routers have
evolved over the past several years. Then, we will figure out how to make our bare-bones
IP router fast, a process that involves understanding hardware characteristics and trends,
some clever algorithms, and will give you a sense for why even simple IP routers are
complex. Finally, we will discuss “feature creep”—IP routers today implement much more
than our bare-bones router, leading to an daunting degree of complexity.

The earliest routers (until the mid-to-late 1980s) were built by having no packet buffer
memory on line cards and by attaching each line card to a shared bus backplane. Packet
buffer memory was also attached to the backplane, and all forwarding decisions were
made by a central processor also connnected to the backplane. As packets arrived, they
were stored in memory by moving the bits over the shared bus, after first passing the
packet (or the header) to the processor to determine the egress link for the packet.

This design, while conceptually simple, has a scaling bottleneck: the shared bus. Vari-
ous caching-based optimizations were developed to alleviate this bottleneck (e.g., caching
parts of the forwarding table).

Modern high-speed routers don’t use a shared bus: they use a crossbar, which is a hard-
ware component that permits more parallelism than a shared bus. Conceptually, a crossbar
has N input ports and N output ports (in general, every input port is also an output port).
The crossbar has a scheduler that typically works in units of time-slots. In each time-slot,
the crossbar can move some number of bits between ports across its fabric, subject to a
crossbar constraint. This constraint states that at any given time, if input i is connected to
output j, then no other output can be simultaneously connected to output j, and no other
input can be simultaneously connected to input i. In other words, one can think of the
crossbar as forming a bipartite graph with the input ports being one partition and the out-
put ports being the other, and an edge from i to j signifies that input i has a packet destined
for output j. Then, at any given time, the crossbar scheduler can pick some matching along
which bits can be moved concurrently across the crossbar.

! 10.2 High-Speed Routers are Complex

The fundamental problem in the design of high-speed routers is that the designer can’t
simply sit back and let Moore’s law take care of processing packets at the desired speeds.
They must solve a number of problems efficiently, and of these many problems, we survey
two: fast IP lookups and fast crossbar scheduling.

! 10.2.1 Fast Lookups

A router needs to implement a prefix match to check if the address being looked-up falls in
the range A/m for each entry in its forwarding table. A simple prefix match works when

SECTION 10.2. HIGH-SPEED ROUTERS ARE COMPLEX 3

the Internet topology is a tree and there’s only one shortest path between any two networks
in the Internet. The toplogy of the Internet is not a tree, however: many networks multi-
home with multiple other networks for redundancy and traffic load balancing (redundancy
is the most common reason today).

The consequence of having multiple possible paths is that a router needs to decide on its
forwarding path which of potentially several matching prefixes to use for an address being
looked-up. By definition, IP (CIDR) defines the correct lookup response as the longest prefix
that matches the sought address. As a result, each router must implement a longest prefix
match (LPM) algorithm on its forwarding path.

LPM is not a trivial operation to perform at high speeds of millions of packets (lookups)
per second. For several years, the best implementations used an old algorithm based on
PATRICIA trees, a trie (dictionary) data structure invented decades ago [?]. This algorithm,
while popular and useful at lower speeds, does not work in high-speed routers.

To understand the problem of high-speed lookups, let’s study what an example high-
speed Internet router has to do today. It needs to handle minimum-sized packets (e.g., 40
or 64 bytes depending on the type of link) at link speeds of between 10 Gbits/s (today) and
40 Gbits/s (soon), which gives the router a fleeting 32 ns (for 40-byte packets) or 51 ns (or
64-byte packets) to make a decision on what to do with the packet! (Divide those numbers
by 4 to get the 40 Gbits/s latencies.)

Furthermore, a high-speed Internet router today needs to be designed to handle on the
order of 250,000 forwarding table entries, and maybe more (today’s Internet backbones
appear to have around 120,000 routes, and this number has been growing; people expect a
commercial router to have a lifetime between five and ten years in the field).

30–50 nanoseconds per lookup is difficult to achieve without being clever. One can’t
really store the forwarding tables in DRAM since DRAM latencies are on the order of 50ns,
and unless one has a prohibitively large amount of memory, doing an LPM in one lookup
is impossible.

We are left with SRAM, which has latencies (on the order of 5 ns) that are workable for
our needs. Furthermore, over the past couple of years, SRAM densities have approached
DRAM densities, allowing router designers to use SRAM for largish forwarding tables.

We can formulate the forwarding table problem solved in Internet routers as follows.
Based on the link speed and minimum packet size, we can determine the number of
lookups per second. We can then use the latency of the forwarding table memory to de-
termine M, the maximum number of memory accesses allowed per lookup, such that the
egress link will remain fully utilized. At the same time, we want all the routes to fit into
whatever amount of memory (typically SRAM), S, we can afford for the router. The prob-
lem therefore is to maximize the number of routes that fit in S bytes, such that no lookup
exceeds M memory accesses.

This problem has been extensively studied by many researchers in the past few years
and dozens of papers have been published on the topic. The paper by Degermark et al. in
the optional readings describes one such scheme (now called the “Lulea” scheme), which
uses aggressive ompression to fit as many routes as possible into S bytes. Although their
paper was originally motivated by software routers, these are the same optimizations that
make sense in fast hardware implementations of the IP forwarding path.

The Lulea scheme observes that a forwarding table viewed as a prefix tree that is com-

4 LECTURE 10. DESIGN OF BIG, FAST ROUTERS

plete (each node with either 0 or 2 children) can be compressed well. The scheme works in
three stages; first, it matches on 16 bits in the IP address, and recursively applies the same
idea to the next 8 and the last 8 bits. See the paper for details.

! 10.2.2 High Throughput in a Crossbar-based Switch Fabric

The key problem is crossbar scheduling: finding a matching in the bipartite graph effi-
ciently.

This requires a number of optimizations, and many approaches have been proposed in
the literature (and several designs have been realized in practice).

The first important optimization is virtual output queueing. If there is only one queue
per input storing all packets regardless of their destination output port, then head-of-line
blocking ensues. In the presence of such blocking, the maximum throughput of the switch
does not exceed 2 −

√
2. All crossbar switches now implement virtual output queueing,

where each input has (at least) N separate queues, one for each output. (They may have
additional queues for each output if they implement QoS.)

Perhaps the earliest crossbar scheduler was the Wavefront arbiter, later implemented
in the BBN switch. The idea here is to produce a maximal matching by proceeding in a
“wavefront” across the matrix of input-output demands. The rows of the matrix corre-
spond to the inputs, and the columns to the outputs. Each element in the matrix is 0 if
there are no packets waiting on that pair, and non-zero otherwise. The wavefront arbiter
produces a matching by starting with the (0,0) entry, and moving diagonally across the
matrix. It can match all previously unmatched non-zero elements at the same time, be-
cause along any (minor) diagonal, there can be no contention for the same input or output.
Hence, by doing 2N − 1 such sweeps across the matrix, it produces a maximal matching.
To improve fairness, the order of the sweeps can be randomized.

Because the Wavefront might be too slow for some systems, other schemes were also
developed. An early switch scheduling scheme was Parallel Iterative Matching (PIM), pio-
neered in DEC’s AutoNet switch (Anderson, Owicki, et al.). PIM is a randomized matching
scheme that operates in three phases: request, grant, and accept.

In the request phase, each input port sends “requests” to all outputs for which it has
packets. In the grant phase, an output picks an input at random, and sends a grant to it.
At this stage, no output is committed to more than one input, but an input may receive a
grant from more than one output. Hence, in the final “accept” phase, an input picks one
of the granting outputs at random.

It is easy to see that this three-phase approach produces a matching, but the matching
is not maximal: i.e., there may an input and output that are each unmatched, and which
have packets for each other. To produce a more complete matching, PIM runs the above
three-phase procedure a number of times, eliminating at each stage all previously matched
nodes. They show that doing that about log N times results in maximal matchings most of
the time.

The problem with PIM is that it can lead to unfairness over short time scales. McKe-
own’s iSLIP algorithm overcomes this problem by removing the randomness. Each input
maintains a round-robin list of outputs, and each output maintains a round-robin list of
inputs. The request phase is the same as in PIM. In the grant phase, rather than pick at
random, each output picks the first input in the round-robin sequence from the previously

SECTION 10.3. DEATH BY A THOUSAND CUTS: FEATURE CREEP IN MODERN ROUTERS 5

matched input for that output, and updates this state only if this input is picked in the
accept phase. Similarly, in the accept phase, an input picks the first output in round-robin
sequence following the previously matched output for that input.

Simulations show that this scheme has good fairness properties. It is implemented in
many commercial routers.

For several years, it was not clear whether these simple schemes achieve 100% through-
put in a switch. Several complex scheduling schemes were shown to achieve 100%
throughput, but they were impossible to implement. Dai and Prabhakar showed a break-
through result a few years ago, proving that any maximal matching scheme running in
a crossbar switch with 2× speedup can achieve 100% throughput. (The speedup of a
switch is the relative speed of the internal links of the crossbar to the input and output
link speeds.)

! 10.3 Death by a Thousand Cuts: Feature Creep in Modern
Routers

The data path often does more than simply forward packets in the order in which they
came in. The following is a sampling of the “check-box” data-path functions that today’s
high-speed routers tend to have to support:

1. Packet classification, involving processing higher-layer protocol fields.

2. Various counters and statistics for measurement and debugging.

3. IPSec (security functions), especially at “edge” routers. More sophisticated security
services such as Virtual Private Networks (VPNs). Firewalls.

4. Quality-of-service, QoS (I): Rate guarantees and traffic class isolation.

5. Packet “shaping” and “policing” functions.

6. IPv6.

7. Denial-of-service remediation schemes (the simplest of which is access control based
on ingress filtering of packets that don’t have a valid source address for the incoming
interface that the packet came in on) and traceback (figuring out the Internet path
along which a given packet or stream of packets came).

8. IP multicast.

9. Packet-drop policies (“active queue management”) such as RED.

10. QoS: Differentiated Services (differentiating traffic classes using suitable scheduling).

11. QoS: Integrated Services (end-to-end delay/rate guarantees).

We won’t discuss these features in detail here, nor will we pass judgement on which of
these is actually a feature users care about and which are simply “check box” items. Some
of these features have been covered in previous lectures in the course, either because they
are intellectually interesting or because some users care about them.

6 LECTURE 10. DESIGN OF BIG, FAST ROUTERS

! Appendix A: A “cheat sheet” summarizing the main ideas in
the BBN 50 Gb/s router

! 10.3.1 Why bother?

• Trends

1. Faster and faster link bandwidths.

2. Larger and larger network size (hosts, routers, users).

3. Users want more and more (15% increase in per-user demand in 1 year!).

4. Not just because of Web: for example, Internet size has been growing at 80% per
year since at least 1984!

5. Conclusion: Unlike other areas in computer science that can rely on Moore’s
law to achieve progress, many aspects of networking cannot!

• Conventional “wisdom”: IP routers are inherently slow. They cannot possibly forward
packets fast enough, where “fast” refers to multi-gigabit (or higher) rates.

• This paper’s motivation, at least in part, was to refute this belief.

! 10.3.2 How does it work?

• Routers do two things: participate in routing protocols with their neighbors, and
forward packets. We are concerned primarily with the latter, since it’s the data path.

• At first sight, forwarding is straightforward:

1. Router gets packet.

2. Looks at packet header for destination.

3. Looks up routing table for output interface.

4. Modifies header (ttl, IP header checksum).

5. Passes packet to output interface.

• But there’s a lot of stuff to take care of: RFC 1812 is 175 pages long!

• Challenge. How to do all this fast. In particular, in the common case.

• Architecture. Consists of:

1. Multiple line cards.

2. Multiple forwarding engines.

3. High-speed switch fabric and processor.

4. Network processor.

• Salient features of architecture:

1. Separate forwarding engine from line card. From input line card, send only
header to engine. Engine returns modified header to input line card, after which
it gets vectored to output line card.

SECTION 10.3. DEATH BY A THOUSAND CUTS: FEATURE CREEP IN MODERN ROUTERS 7

2. Each forwarding engine has its own routing table (cache). Notice that only
a subset of the complete routing table, which gives prefix-to-output-interface
mapping is needed. This is therefore a forwarding table rather than complete
routing table.

3. Use a switched backplane rather than a shared bus. Custom-designed for IP
rather than an ATM switch. The big advantage of this is parallelism.

4. QoS processing in router (on output line card).

5. An abstract link-layer to handle different link technologies.

• Forwarding engines:

– Key design principle: optimize the common case.

– Not ASIC but based on Alpha 21164 at 415 MHz.

– 8 KB I and D caches: forwarding code.

– 96 KB L2 cache (Scache): cache of routing table. Only relevant table entries.
12000 routes (95% hit rate).

– 16 MB L3 cache (Bcache): complete forwarding table in 2 8 MB chunks. [Why is
it banked like this?]

– Why not an ASIC or embedded processor? Want software. And chip has a very
high clock speed and large Icache and Scache.

– Optimize common case in custom assembler. 85 instructions to forward a
packet.

– Note: Does not check IP header checksum. Q: is this a problematic drawback?

– Not-so-common cases deferred to network processor. This includes route cache
misses, multicast, IP options, packets requiring ICMP (uses templates), packets
needing fragmentation.

– Q: Do we need a route cache in the future? A: depends on what algorithm you
choose to forward.

• Switching fabric: (Draw pic. of switch)

– Advantage over bus? Parallelism.

– Disadvantage? Multicast is hard. Need scheduling machinery. (They call this
“allocation”).

– Input-queued switch. Q: what’s the problem with standard input-queued
switch? A: h-o-l blocking.

– How to fix this? Keep track of per-output port traffic. Each input port bids for
different outputs. In each epoch, match an input to output port.

– Allocator arbitrates amongst bids to do this. Maximize switch throughput
(rather than bounded latency).

– Scheduling is pipelined (4 stages): get bids, allocate schedule, notify pairings,
ship bits.

8 LECTURE 10. DESIGN OF BIG, FAST ROUTERS

– Q: What graph problem does this correspond to? A: bipartite matching.

– Flow control by destination ports. Prevents an input from hogging an output.

• Allocation algorithm:

– Heavily studied problem. Approaches include Parallel Iterative Matching (from
DEC), wavefront scheduling, etc.

– Use randomization to alleviate unfairness issues.

– Essentially a greedy algorithm that progresses along diagonal of allocation ma-
trix.

– Prioritize forwarding engine inputs over line cards (by skewing shuffling of
ports).

• Line cards:

– Input: simple, except for ATM (small cells) and multicast (copies have to be
made).

– Output: QoS processor for scheduling and queue management. A VLIW FPGA.

• Network processor:

– Alpha processor running NetBSD. (Another nice example in this architecture of
using off-the-shelf components.)

– Handles “not-so-common” cases of packet processing.

– Handles routing protocols (gated).

– Builds forwarding tables and populates table for each forwarding engine using
a subset of each entry.

– Using 2 banks in forwarding engines reduces disruptions and flapping effects;
allows network processor to upload a forwarding table while forwarding is still
in progress.

! 10.3.3 Fast lookups

• Two approaches from Sigcomm 97 papers (current state-of-the-art)

1. Make better use of caching via compression (Degermark et al.).

2. Constant-time lookups via clever data structures (Waldvogel et al.).

• Problem: Best-matching prefix.

• Basic idea: use hash tables for each prefix length. Then, apply binary search tech-
niques to get to the longest matching prefix to find output interface.

SECTION 10.3. DEATH BY A THOUSAND CUTS: FEATURE CREEP IN MODERN ROUTERS 9

! 10.3.4 Performance

• Peak performance of about 50 Gigabits/s, assuming 15 simultaneous transfers take
place through the switch in a single transfer cycle (called an epoch, equal to 16 clock
ticks). (Notice that it includes the line card to forwarding engine transfers too!)

• Note: this is only an estimate, not much deployment experience/measurements re-
ported in paper.

