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• A router consists
– A set of input interfaces at which packets arrive

– A se of output interfaces from which packets depart 

• Router implements two main functions
– Forward packet to corresponding output interface

– Manage congestion



Generic Router Architecture

• Input and output interfaces 
are connected through a 
backplane

• A backplane can be 
implemented by

input interface output interface

Inter-
connection
Medium
(Backplane)
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implemented by
– Shared memory 

• Low capacity routers (e.g., PC-
based routers)

– Shared bus

• Medium capacity routers

– Point-to-point (switched) bus 

• High capacity routers

(Backplane)



Speedup

• C – input/output link capacity

• RI – maximum rate at which an 
input interface can send data 
into backplane

• RO – maximum rate at which an 
output can read data from 

input interface output interface

Inter-
connection
Medium
(Backplane)
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output can read data from 
backplane

• B – maximum aggregate 
backplane transfer rate

• Back-plane speedup: B/C

• Input speedup: RI/C

• Output speedup: RO/C

(Backplane)

C CRI ROB



Function division

• Input interfaces:
– Must perform packet 
forwarding – need to 
know to which output 
interface to send 

input interface output interface

Inter-
connection
Medium
(Backplane)
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interface to send 
packets

– May enqueue packets 
and perform scheduling

• Output interfaces:
– May enqueue packets 
and perform scheduling

(Backplane)

C CRI ROB



Three Router Architectures

• Output queued

• Input queued 

• Combined Input-Output queued
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Output Queued (OQ) Routers

• Only output interfaces 
store packets

• Advantages
– Easy to design 

input interface output interface

Backplane
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– Easy to design 
algorithms: only one 
congestion point

• Disadvantages
– Requires an output 
speedup of N, where N 
is the number of 
interfaces � not 
feasible

CRO



Input Queueing (IQ) Routers

• Only input interfaces store packets
• Advantages

– Easy to built 
• Store packets at inputs if 
contention at outputs 

– Relatively easy to design algorithms
• Only one congestion point, but 
not output…

input interface output interface

Backplane
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not output…
• need to implement backpressure

• Disadvantages
– Hard to achieve utilization � 1 (due 

to output contention, head-of-line 
blocking)
• However, theoretical and 
simulation results show that for 
realistic traffic an input/output 
speedup of 2 is enough to achieve 
utilizations close to 1

CRO



Combined Input-Output 
Queueing (CIOQ) Routers

• Both input and output 
interfaces store packets

• Advantages
– Easy to built 

• Utilization 1 can be achieved 
with limited input/output 
speedup (<= 2)

input interface output interface

Backplane
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speedup (<= 2)

• Disadvantages
– Harder to design algorithms

• Two congestion points
• Need to design flow control

– Note: results show that with a 
input/output speedup of 2, a 
CIOQ can emulate any work-
conserving OQ [G+98,SZ98] 

CRO



Generic Architecture of a High 
Speed Router Today

• Combined Input-Output Queued Architecture
– Input/output speedup <= 2

• Input interface
– Perform packet forwarding (and classification)
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• Output interface
– Perform packet (classification and) scheduling

• Backplane
– Point-to-point (switched) bus; speedup N

– Schedule packet transfer from input to output 



Backplane 

• Point-to-point switch allows to simultaneously
transfer a packet between any two disjoint pairs of 
input-output interfaces

• Goal: come-up with a schedule that
– Meet flow QoS requirements
– Maximize router throughput
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– Maximize router throughput

• Challenges:
– Address head-of-line blocking at inputs
– Resolve input/output speedups contention
– Avoid packet dropping at output if possible

• Note: packets are fragmented in fix sized cells
(why?) at inputs and reassembled  at outputs 
– In Partridge et al, a cell is 64 B (what are the trade-offs?)



Head-of-line Blocking

• The cell at the head of an input queue 
cannot be transferred, thus blocking the 
following cells  
Cannot be transferred because 
is blocked by red cell 
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Cannot be
transferred 
because output 
buffer full

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3



Solution to Avoid Head-of-line 
Blocking

• Maintain at each input N virtual queues, 
i.e., one per output 

Output 1
Input 1
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Output 1

Output 2

Output 3
Input 2

Input 3



Cell transfer 

• Schedule:

– Ideally: find the maximum number of input-output pairs such that:

• Resolve input/output contentions

• Avoid packet drops at outputs

• Packets meet their time constraints (e.g., deadlines), if any

• Example
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• Example

– Assign cell preferences at inputs, e.g., their position in the input queue 

– Assign cell preferences at outputs, e.g., based on packet deadlines, or 
the order in which cells would depart in a OQ router

– Match inputs and outputs based on their preferences

• Problem:

– Achieving a high quality matching complex, i.e., hard to do in constant 
time



Routing vs. Forwarding

• Routing: control plane

– Computing paths the packets will follow

– Routers talking amongst themselves

– Individual router creating a forwarding table
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• Forwarding: data plane

– Directing a data packet to an outgoing link

– Individual router using a forwarding table



How the control and data planes 
work together (logical view)

RIB

Protocol daemon
Control
Plane

12.0.0.0/8
Update

FIB
IF 1

IF 2

RIB

Data
Plane

12.0.0.0/8 ���� IF 2

12.0.0.0/8 ���� IF 2

12.0.0.0/8
Data packet



Physical layout of a 
high-end router

Route 
Processordata plane

control 
plane
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Switching
Fabric

Line card

Line card

Line card

Line card

Line card

Line card



Routing vs. Forwarding

• Control plane’s jobs include
– Route calculation

– Maintenance of routing table

– Execution of routing protocols

• On commercial routers, 
handled by special-purpose 

Route
Processor

data plane

control 
plane

handled by special-purpose 
processor called “route 
processor”

• IP forwarding is per-packet 
processing
– On high-end commercial 

routers, IP forwarding is 
distributed

– Most work is done by interface 
cards

18

Switching
Fabric



Router Components

• On a PC router:
– Interconnection network is the PCI 

bus

– Interface cards are the NICs (e.g., 
Ethernet cards)

– All forwarding and routing is done – All forwarding and routing is done 
on a commodity CPU

• On commercial routers:
– Interconnection network and 

interface cards are sophisticated, 
special-purpose hardware 

– Packet forwarding oftend 
implemented in a custom ASIC

– Only routing (control plane) is done 
on the commodity CPU (route 
processor)



Slotted Chassis

• Large routers are built as a slotted chassis
– Interface cards are inserted in the slots

– Route processor is also inserted as a slot

• This simplifies repairs and upgrades of components
– E.g., “hot-swapping” of components



Evolution of router architectures

• Early routers were just general-purpose computers

• Today, high-performance routers resemble mini data 
centers
– Exploit parallelism

– Specialized hardware– Specialized hardware

• Until 1980s (1st generation):  standard computer

• Early 1990s (2nd generation): delegate packet 
processing to interfaces

• Late 1990s (3rd generation):  distributed architecture

• Today: distributed across multiple racks
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First generation routers

• This architecture is still used in 
low-end routers

• Arriving packets are copied to 
main memory via direct memory 
access (DMA)

• Interconnection network is a 
backplane (shared bus)

Off-chip buffer
memory

Shared
bus

CPU Buffer
Memory

DMA DMA DMA
backplane (shared bus)

• All IP forwarding functions are 
performed by a commodity CPU

• Routing cache at processor can 
accelerate the routing table 
lookup

• Drawbacks:

– Forwarding performance is 
limited by the CPU

– Capacity of shared bus limits the 
number of interface cards that 
can be connected

22

Typically <0.5Gb/s 
aggregate capacity

Line
Interface

DMA

MAC

Line
Interface

DMA

MAC

Line
Interface

DMA

MAC



Second generation routers

• Bypasses memory bus 
with direct transfer over 
bus between line cards

• Moves forwarding 

CPU Buffer
Memory

DMA DMA DMA• Moves forwarding 
decisions local to card 
to reduce CPU 
utilization

• Trap to CPU for “slow” 
operations
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Typically <5Gb/s aggregate capacity

Line
Card

DMA

MAC

Local
Buffer

Memory

Line
Card

DMA

MAC

Local
Buffer

Memory

Line
Card

DMA

MAC

Local
Buffer

Memory



Speeding up the common case 
with a “Fast path”

• IP packet forwarding is complex
– But, vast majority of packets can be forwarded with simple 

algorithm

– Main idea: put common-case forwarding in hardware, trap to 
software on exceptions

– Example: BBN router had 85 instructions for fast-path code, which – Example: BBN router had 85 instructions for fast-path code, which 
fits entirely in L1 cache

• Non-common cases handled by slow path:
– Route cache misses

– Errors (e.g., ICMP time exceeded)

– IP options

– Fragmented packets

– Multicast packets
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Improving upon second-
generation routers

• Control plane must remember lots of 
information (BGP attributes, etc.)

– But data plane only needs to know FIB

– Smaller, fixed-length attributes– Smaller, fixed-length attributes

– Idea: store FIB in hardware

• Going over the bus adds delay

– Idea: Cache FIB in line cards

– Send directly over bus to outbound line 
card 25



Improving upon second-
generation routers

• Shared bus is a big bottleneck

– E.g., modern PCI bus (PCIx16) is only 
32Gbit/sec (in theory)

– Almost-modern Cisco (XR 12416) is 320 – Almost-modern Cisco (XR 12416) is 320 
Gbit/sec

– Ow! How do we get there?

– Idea: put a “network” inside the router
• Switched backplane for larger cross-section 
bandwidths

26



Third generation routers

• Replace bus with 
interconnection network 
(e.g., a crossbar switch)

• Distributed architecture:
– Line cards operate 

independently of one another Line
Card

CPU
Card

Line
Card

independently of one another

– No centralized processing for IP 
forwarding

• These routers can be scaled 
to many hundreds of 
interface cards and capacity 
of > 1 Tbit/sec
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Switch Fabric: From Input to 
Output

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Lookup
Address

Update
Header

Header Processing

Queue
Packet

Buffer
Memory

Queue
Packet

Data Hdr

Data Hdr

1

2

1

2

Address Header

Address
Table
Address
Table

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Packet

Buffer
Memory

Queue
Packet

Buffer
Memory

Data Hdr N N



Crossbars

• N input ports, N output ports
– One per line card, usually

• Every line card has its own forwarding 
table/classifier/etc --- removes CPU bottleneck

• Scheduler• Scheduler
– Decides which input/output port pairs to connect in a given 

time slot

– Often forward fixed-sized “cells” to avoid variable-length 
time slots

– Crossbar constraint

• If input i is connected to output j, no other input connected to 
j, no other output connected to i

• Scheduling is a bipartite matching
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Data Plane Details: Checksum

• Takes too much time to verify checksum
– Increases forwarding time by 21%

• Take an optimistic approach: just 
incrementally update it

30

– Safe operation: if checksum was correct it remains 
correct

– If checksum bad, it will be anyway caught by end-
host

• Note: IPv6 does not include a header 
checksum anyway!



Multi-chassis routers

• Multi-chassis router
– A single router that is a distributed collection of racks

– Scales to 322 Tbps, can replace an entire PoP

31



Why multi-chassis routers?

• ~ 40 routers per PoP (easily) in today’s Intra-PoP 
architectures

• Connections between these routers require the 
same expensive line cards as inter-PoP connections
– Support forwarding tables, QoS, monitoring, 
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– Support forwarding tables, QoS, monitoring, 
configuration, MPLS

– Line cards are dominant cost of router, and racks often 
limited to sixteen 40 Gbps line cards

• Each connection appears as an adjacency in the 
routing protocol
– Increases IGP/iBGP control-plane overhead

– Increases complexity of scaling techniques such as route 
reflectors and summarization



Multi-chassis routers 
to the rescue

• Multi-chassis design: each line-card chassis has some fabric
interface cards
– Do not use line-card slots: instead uses a separate, smaller 

connection

– Do not need complex packet processing logic � much cheaper than 
line cards

• Multi-chassis router acts as one router to the outside world
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• Multi-chassis router acts as one router to the outside world
– Simplifies administration

– Reduces number of iBGP adjacencies and IGP nodes/links without 
resorting to complex scaling techniques

• However, now the multi-chassis router becomes a 
distributed system � Interesting research topics
– Needs rethinking of router software (distributed and parallel)

– Needs high resilience (no external backup routers)



Matching Algorithms



Administrivia

• Lecture topics+outlines due today

– Next step: slide-based outline by 2/16

– Put down the text for your slides (no 
graphics)graphics)

• Project topics due on 2/10

– Send me a 1 paragraph description of your 
project, names of people in your group
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What’s so hard about IP packet 
forwarding?

• Back-of-the-envelope numbers
– Line cards can be 40 Gbps today (OC-768)

• Getting faster every year!

– To handle minimum-sized packets (~40b)
• 125 Mpps, or 8ns per packet• 125 Mpps, or 8ns per packet

• Can use parallelism, but need to be careful about 
reordering

• For each packet, you must
– Do a routing lookup (where to send it)

– Schedule the crossbar

– Maybe buffer, maybe QoS, maybe ACLs,…

36



Routing lookups

• Routing tables: 
200,000 to 1M entries
– Router must be able to 

handle routing table loads 
5-10 years hence

• How can we store routing • How can we store routing 
state?

– What kind of memory to 
use?

• How can we quickly lookup 
with increasingly large 
routing tables?

37



Memory technologies

Technology Single chip 
density

$/MByte Access 
speed

Watts/ 
chip

Dynamic RAM (DRAM)
cheap, slow

64 MB $0.50-
$0.75

40-80ns 0.5-2W

Static RAM (SRAM)
expensive, fast, a bit higher 

4 MB $5-$8 4-8ns 1-3W

• Vendors moved from DRAM (1980s) to SRAM (1990s) 
to TCAM (2000s)

• Vendors are now moving back to SRAM and parallel 
banks of DRAM due to power/heat

38

heat/power

Ternary Content Addressable 
Memory (TCAM)
very expensive, very high 
heat/power, very fast (does 
parallel lookups in hardware)

1 MB $200-$250 4-8ns 15-30W



Fixed-Length 
Matching Algorithms



Ethernet Switch

• Lookup frame DA in forwarding table.
– If known, forward to correct port.

– If unknown, broadcast to all ports.

• Learn SA of incoming frame.

• Forward frame to outgoing interface.

• Transmit frame onto link.

• How to do this quickly?
– Need to determine next hop quickly

– Would like to do so without reducing line rates

40



Why Ethernet needs wire-speed 
forwarding

• Scenario:
– Bridge has a 500 packet 

buffer

– Link rate: 1 packet/ms

– Lookup rate: 0.5 packet/ms

– A sends 1000 packets to B
Bridge

CC↑

A↓
– A sends 1000 packets to B

– A sends 10 packets to C

• What happens to C’s 
packets?
– What would happen if this 

Bridge was a Router?

• Need wirespeed 
forwarding

41

A B

A↓



Inside a switch

Ethernet 1
Ethernet chip

Ethernet chip

Packet/lookup memoryProcessor
Lookup
engine

• Packet received from upper Ethernet

• Ethernet chip extracts source address S, stored in shared 
memory, in receive queue

– Ethernet chips set in “promiscuous mode”

• Extracts destination address D, given to lookup engine
42

Ethernet 2
Ethernet chip



Inside a switch

Ethernet 1
Ethernet chip

Ethernet chip

Packet/lookup memoryProcessor
Lookup
engine

F0:4D:A2:3A:31:9C � Eth 1
00:21:9B:77:F2:65 � Eth 2
8B:01:54:A2:78:9C � Eth 1
00:0C:F1:56:98:AD � Eth 1
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2
90:03:BA:26:01:B0 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
00:10:7F:00:0D:B7 � Eth 2

• Lookup engine looks up D in database stored in memory

– If destination is on upper Ethernet: set packet buffer pointer to 
free queue

– If destination is on lower Ethernet: set packet buffer pointer to 
transmit queue of the lower Ethernet

• How to do the lookup quickly? 43

Ethernet 2
Ethernet chip



Problem overview

F0:4D:A2:3A:31:9C � Eth 1
00:21:9B:77:F2:65 � Eth 2
8B:01:54:A2:78:9C � Eth 1
00:0C:F1:56:98:AD � Eth 1
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2

90:03:BA:26:01:B0 Eth 2

• Goal: given address, look up outbound interface
– Do this quickly (few instructions/low circuit 
complexity)

• Linear search too low
44

00:A0:C9:14:C8:29 � Eth 2
90:03:BA:26:01:B0 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
00:10:7F:00:0D:B7 � Eth 2



Idea #1: binary search

F0:4D:A2:3A:31:9C � Eth 1
00:21:9B:77:F2:65 � Eth 2
8B:01:54:A2:78:9C � Eth 1
00:0C:F1:56:98:AD � Eth 1
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2

00:0C:F1:56:98:AD � Eth 1
00:10:7F:00:0D:B7 � Eth 2
00:21:9B:77:F2:65 � Eth 2
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2
00:0C:29:A8:D0:FA � Eth 1

90:03:BA:26:01:B0 Eth 2

• Put all destinations in a list, sort them, 
binary search

• Problem: logarithmic time
45

00:A0:C9:14:C8:29 � Eth 2
90:03:BA:26:01:B0 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
00:10:7F:00:0D:B7 � Eth 2

00:0C:29:A8:D0:FA � Eth 1
8B:01:54:A2:78:9C � Eth 1
90:03:BA:26:01:B0 � Eth 2
F0:4D:A2:3A:31:9C � Eth 1



Improvement: 
Parallel Binary search

00:A0:C9:14:C8:29

00:21:9B:77:F2:65
00:10:7F:00:0D:B7

00:B0:D0:86:BB:F7

00:0C:29:A8:D0:FA

00:0C:F1:56:98:AD
00:10:7F:00:0D:B7
00:21:9B:77:F2:65
00:B0:D0:86:BB:F7
00:A0:C9:14:C8:29
00:0C:29:A8:D0:FA

8B:01:54:A2:78:9C

F0:4D:A2:3A:31:9C

00:10:7F:00:0D:B7

• Packets still have O(log n) delay, but 
can process O(log n) packets in parallel 
� O(1)
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8B:01:54:A2:78:9C
00:0C:29:A8:D0:FA

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA
8B:01:54:A2:78:9C
90:03:BA:26:01:B0
F0:4D:A2:3A:31:9C



Improvement: 
Parallel Binary search

00:A0:C9:14:C8:29

00:21:9B:77:F2:65
00:10:7F:00:0D:B7

00:B0:D0:86:BB:F7

00:0C:29:A8:D0:FA

00:0C:F1:56:98:AD
00:10:7F:00:0D:B7
00:21:9B:77:F2:65
00:B0:D0:86:BB:F7
00:A0:C9:14:C8:29
00:0C:29:A8:D0:FA

8B:01:54:A2:78:9C

F0:4D:A2:3A:31:9C

00:10:7F:00:0D:B7

• Packets still have O(log n) delay, but 
can process O(log n) packets in parallel 
� O(1)
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8B:01:54:A2:78:9C
00:0C:29:A8:D0:FA

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA
8B:01:54:A2:78:9C
90:03:BA:26:01:B0
F0:4D:A2:3A:31:9C



01

02

Idea #2: hashing

00

hashes

03

01

02

function
F0:4D:A2:3A:31:9C

keys

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F7

bins

F0:4D:A2:3A:31:9C

8B:01:54:A2:78:9C

00:0C:29:A8:D0:FA00:10:7F:00:0D:B7
90:03:BA:26:01:B0

04

• Hash key=destination, value=interface pairs

• Lookup in O(1) with hash

• Problem: chaining (not really O(1))

04
05...

08

00:B0:D0:86:BB:F7

00:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA

00:10:7F:00:0D:B7

00:21:9B:77:F2:65

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F700:A0:C9:14:C8:29

90:03:BA:26:01:B0



Improvement: Perfect hashing

01

02

04

00

hashes

03

01

02

04

parameter

F0:4D:A2:3A:31:9C
keys

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F7

bins

F0:4D:A2:3A:31:9C

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:29:A8:D0:FA00:10:7F:00:0D:B7
90:03:BA:26:01:B0

• Perfect hashing: find a hash function that maps perfectly with 
no collisions

• Gigaswitch approach

– Use a parameterized hash function

– Precompute hash function to bound worst case number of collisions
49

0404
05...

08

00:B0:D0:86:BB:F7

00:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA

00:10:7F:00:0D:B7

00:21:9B:77:F2:65

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F700:A0:C9:14:C8:29

90:03:BA:26:01:B0



Variable-Length 
Matching Algorithms



Longest Prefix Match

• Not just one entry that matches a 
destination
– 128.174.252.0/24 and 128.174.0.0/16

– Which one to use for 128.174.252.14?

– By convention, Internet routers choose the longest 
(most-specific) match

• Need variable prefix match algorithms
– Several methods 

51



Method 1: Trie

Sample Database

• P1=10*

• P2=111*

• P3=11001*

• P4=1*

Trie

• P5=0*

• P6=1000*

• P7=100000*

• P8=1000000*

52

• Tree of (left ptr, right ptr) data structures

• May be stored in SRAM/DRAM

• Lookup performed by traversing sequence of pointers

• Lookup time O(log N) where N is # prefixes



Improvement 1: Skip Counts and 
Path Compression

• Removing one-way branches ensures # of trie nodes is at most 
twice # of prefixes

• Using a skip count requires exact match at end and 
backtracking on failure � path compression is simpler

• Main idea behind Patricia Tries 53



Improvement 2: 
Multi-way tree

16-ary Search Trie

0000, ptr 1111, ptr

0000, 0 1111, ptr 0000, 0 1111, ptr

• Doing multiple comparisons per cycle accelerates lookup
– Can do this for free to the width of CPU word (modern CPUs 

process multiple bits per cycle)

• But increases wasted space (more unused pointers)
54

000011110000 111111111111



Improvement 2: Multi-way tree

Degree of # Mem # Nodes Total Memory Fraction

Ew DL 1– 1 1 N

DL
-------–

 
 D–

 
  D i 1 Di 1––( )N 1 D1 i––( )N–( )

i 1=

L 1–

∑+=

En 1 DL 1 N

DL
-------–

 
 D Di D i 1– 1 Di 1––( )N–

i 1=

L 1–

∑+ +=

Where:

D Degree of tree=

L Number of layers/references=

N Number of entries in table =

En Expected number of nodes=

Ew Expected amount of wasted memory=

55

Degree of
Tree

# Mem
References

# Nodes
(x106)

Total Memory
(Mbytes)

Fraction
Wasted (%)

2 48 1.09 4.3 49
4 24 0.53 4.3 73
8 16 0.35 5.6 86
16 12 0.25 8.3 93
64 8 0.17 21 98
256 6 0.12 64 99.5

Table produced from 215 randomly generated 48-bit addresses



Method 2: Lookups in Hardware

N
um

be
r
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• Observation: most prefixes are /24 or shorter

• So, just store a big 2^24 table with next hop for each prefix

• Nonexistant prefixes � just leave that entry empty

Prefix length

N
um

be
r



Method 2: Lookups in Hardware

Prefixes up to 24-bits

1 Next Hop
Next Hop

142.19.6

224 = 16M entries
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Method 2: Lookups in Hardware

Prefixes up to 24-bits

1 Next Hop

128.3.72
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12
8.

3.
72

.4
4

12
8.

3.
72

44

24 0 Pointer

8

Prefixes above 
24-bits

Next Hop

Next Hop

Next Hop
of

fs
et

ba
se



Method 2: Lookups in Hardware

• Advantages
– Very fast lookups

• 20 Mpps with 50ns DRAM

– Easy to implement in hardware

• Disadvantages
– Large memory required

– Performance depends on prefix length distribution
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Method 3: Ternary CAMs

Next Hop

Associative Memory

Value Mask Next hop

10.0.0.0 255.0.0.0 IF 1

10.1.0.0 255.255.0.0 IF 3

10.1.1.0 255.255.255.0 IF 4

Lookup
Value

• “Content Addressable” 
– Hardware searches entire memory to find supplied value

– Similar interface to hash table

• “Ternary”: memory can be in three states
– True, false, don’t care

– Hardware to treat don’t care as wildcard match

Selector

10.1.3.0 255.255.255.0 IF 2

10.1.3.1 255.255.255.255 IF 2



Classification Algorithms



Providing Value-Added Services

• Differentiated services 

– Regard traffic from AS#33 as `platinum-grade’

• Access Control Lists

– Deny udp host 194.72.72.33 194.72.6.64 0.0.0.15 eq snmp

• Committed Access Rate

– Rate limit WWW traffic from sub-interface#739 to 10Mbps– Rate limit WWW traffic from sub-interface#739 to 10Mbps

• Policy-based Routing

– Route all voice traffic through the ATM network

• Peering Arrangements

– Restrict the total amount of traffic of precedence 7 from

– MAC address N to 20 Mbps between 10 am and 5pm 

• Accounting and Billing

– Generate hourly reports of traffic from MAC address M

• � Need to address the Flow Classification problem 62



Flow Classification

Flow Index
Flow Classification

Forwarding Engine
H
E
A
D
E
R
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----
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---- ----

----
----

Predicate Action
Policy Database

Incoming 
Packet

R



A Packet Classifier

 Field 1 Field 2 … Field k Action 

Rule 1 152.163.190.69/21 152.163.80.11/32 … Udp A1 

Rule 2 152.168.3.0/24 152.163.200.157/16 … Tcp A2 
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Given a classifier, find the action associated with the highest priority 
rule  (here, the lowest numbered rule) matching an incoming packet.

Rule 2 152.168.3.0/24 152.163.200.157/16 … Tcp A2 

… … … … … … 

Rule N 152.168.3.0/16 152.163.80.11/32 … Any An 

 

 



Geometric Interpretation in 2D

R3

R7

P2

F
ie

ld
 #

2

R6

Field #1 Field #2 Data

P1

e.g. (144.24/16, 64/24)
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R5 R4

R3

R2
R1

Field #1

F
ie

ld
 #

2

e.g. (128.16.46.23, *)
e.g. (144.24/16, 64/24)



Approach #1: Linear search

• Build linked list of all classification rules
– Possibly sorted in order of decreasing priorities

• For each arriving packet, evaluate each rule 
until match is founduntil match is found

• Pros: simple and storage efficient

• Cons: classification time grows linearly with 
number of rules
– Variant: build FSM of rules (pattern matching)

66



Approach #2: Ternary CAMs

• Similar to TCAM use in prefix matching
– Need wider than 32-bit array, typically 128-256 
bits

• Ranges expressed as don’t cares below a • Ranges expressed as don’t cares below a 
particular bit
– Done for each field

• Pros: O(1) lookup time, simple

• Cons: heat, power, cost, etc.
– Power for a TCAM row increases proportionally to 
its width

67



Approach #3: Hierarchical trie

F2

• Recursively build d-dimensional radix trie
– Trie for first field, attach sub-tries to trie’s leaves for sub-

field, repeat

• For N-bit rules, d dimensions, W-bit wide dimensions:
– Storage complexity: O(NdW)

– Lookup complexity: O(W^d)
68

F1



Approach #4: Set-pruning tries

F2

• “Push” rules down the hierarchical trie

• Eliminates need for recursive lookups

• For N-bit rules, d dimensions, W-bit wide dimensions:
– Storage complexity: O(dWN^d)

– Lookup complexity: O(dW)
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F1



Approach #5: Crossproducting

• Compute separate 1-dimensional range 
lookups for each dimension

• For N-bit rules, d dimensions, W-bit wide dimensions:
– Storage complexity: O(N^d)

– Lookup complexity: O(dW) 70



Other proposed schemes
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