
Lecture 5:
Router Architecture

CS 598: Advanced Internetworking

Matthew Caesar

February 8, 2011

1

IP Router

.

.. .
..

2

• A router consists
– A set of input interfaces at which packets arrive

– A se of output interfaces from which packets depart

• Router implements two main functions
– Forward packet to corresponding output interface

– Manage congestion

Generic Router Architecture

• Input and output interfaces
are connected through a
backplane

• A backplane can be
implemented by

input interface output interface

Inter-
connection
Medium
(Backplane)

3

implemented by
– Shared memory

• Low capacity routers (e.g., PC-
based routers)

– Shared bus

• Medium capacity routers

– Point-to-point (switched) bus

• High capacity routers

(Backplane)

Speedup

• C – input/output link capacity

• RI – maximum rate at which an
input interface can send data
into backplane

• RO – maximum rate at which an
output can read data from

input interface output interface

Inter-
connection
Medium
(Backplane)

4

output can read data from
backplane

• B – maximum aggregate
backplane transfer rate

• Back-plane speedup: B/C

• Input speedup: RI/C

• Output speedup: RO/C

(Backplane)

C CRI ROB

Function division

• Input interfaces:
– Must perform packet
forwarding – need to
know to which output
interface to send

input interface output interface

Inter-
connection
Medium
(Backplane)

5

interface to send
packets

– May enqueue packets
and perform scheduling

• Output interfaces:
– May enqueue packets
and perform scheduling

(Backplane)

C CRI ROB

Three Router Architectures

• Output queued

• Input queued

• Combined Input-Output queued

6

Output Queued (OQ) Routers

• Only output interfaces
store packets

• Advantages
– Easy to design

input interface output interface

Backplane

7

– Easy to design
algorithms: only one
congestion point

• Disadvantages
– Requires an output
speedup of N, where N
is the number of
interfaces � not
feasible

CRO

Input Queueing (IQ) Routers

• Only input interfaces store packets
• Advantages

– Easy to built
• Store packets at inputs if
contention at outputs

– Relatively easy to design algorithms
• Only one congestion point, but
not output…

input interface output interface

Backplane

8

not output…
• need to implement backpressure

• Disadvantages
– Hard to achieve utilization � 1 (due

to output contention, head-of-line
blocking)
• However, theoretical and
simulation results show that for
realistic traffic an input/output
speedup of 2 is enough to achieve
utilizations close to 1

CRO

Combined Input-Output
Queueing (CIOQ) Routers

• Both input and output
interfaces store packets

• Advantages
– Easy to built

• Utilization 1 can be achieved
with limited input/output
speedup (<= 2)

input interface output interface

Backplane

9

speedup (<= 2)

• Disadvantages
– Harder to design algorithms

• Two congestion points
• Need to design flow control

– Note: results show that with a
input/output speedup of 2, a
CIOQ can emulate any work-
conserving OQ [G+98,SZ98]

CRO

Generic Architecture of a High
Speed Router Today

• Combined Input-Output Queued Architecture
– Input/output speedup <= 2

• Input interface
– Perform packet forwarding (and classification)

10

• Output interface
– Perform packet (classification and) scheduling

• Backplane
– Point-to-point (switched) bus; speedup N

– Schedule packet transfer from input to output

Backplane

• Point-to-point switch allows to simultaneously
transfer a packet between any two disjoint pairs of
input-output interfaces

• Goal: come-up with a schedule that
– Meet flow QoS requirements
– Maximize router throughput

11

– Maximize router throughput

• Challenges:
– Address head-of-line blocking at inputs
– Resolve input/output speedups contention
– Avoid packet dropping at output if possible

• Note: packets are fragmented in fix sized cells
(why?) at inputs and reassembled at outputs
– In Partridge et al, a cell is 64 B (what are the trade-offs?)

Head-of-line Blocking

• The cell at the head of an input queue
cannot be transferred, thus blocking the
following cells
Cannot be transferred because
is blocked by red cell

12

Cannot be
transferred
because output
buffer full

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

Solution to Avoid Head-of-line
Blocking

• Maintain at each input N virtual queues,
i.e., one per output

Output 1
Input 1

13

Output 1

Output 2

Output 3
Input 2

Input 3

Cell transfer

• Schedule:

– Ideally: find the maximum number of input-output pairs such that:

• Resolve input/output contentions

• Avoid packet drops at outputs

• Packets meet their time constraints (e.g., deadlines), if any

• Example

14

• Example

– Assign cell preferences at inputs, e.g., their position in the input queue

– Assign cell preferences at outputs, e.g., based on packet deadlines, or
the order in which cells would depart in a OQ router

– Match inputs and outputs based on their preferences

• Problem:

– Achieving a high quality matching complex, i.e., hard to do in constant
time

Routing vs. Forwarding

• Routing: control plane

– Computing paths the packets will follow

– Routers talking amongst themselves

– Individual router creating a forwarding table

15

• Forwarding: data plane

– Directing a data packet to an outgoing link

– Individual router using a forwarding table

How the control and data planes
work together (logical view)

RIB

Protocol daemon
Control
Plane

12.0.0.0/8
Update

FIB
IF 1

IF 2

RIB

Data
Plane

12.0.0.0/8 ���� IF 2

12.0.0.0/8 ���� IF 2

12.0.0.0/8
Data packet

Physical layout of a
high-end router

Route
Processordata plane

control
plane

17

Switching
Fabric

Line card

Line card

Line card

Line card

Line card

Line card

Routing vs. Forwarding

• Control plane’s jobs include
– Route calculation

– Maintenance of routing table

– Execution of routing protocols

• On commercial routers,
handled by special-purpose

Route
Processor

data plane

control
plane

handled by special-purpose
processor called “route
processor”

• IP forwarding is per-packet
processing
– On high-end commercial

routers, IP forwarding is
distributed

– Most work is done by interface
cards

18

Switching
Fabric

Router Components

• On a PC router:
– Interconnection network is the PCI

bus

– Interface cards are the NICs (e.g.,
Ethernet cards)

– All forwarding and routing is done – All forwarding and routing is done
on a commodity CPU

• On commercial routers:
– Interconnection network and

interface cards are sophisticated,
special-purpose hardware

– Packet forwarding oftend
implemented in a custom ASIC

– Only routing (control plane) is done
on the commodity CPU (route
processor)

Slotted Chassis

• Large routers are built as a slotted chassis
– Interface cards are inserted in the slots

– Route processor is also inserted as a slot

• This simplifies repairs and upgrades of components
– E.g., “hot-swapping” of components

Evolution of router architectures

• Early routers were just general-purpose computers

• Today, high-performance routers resemble mini data
centers
– Exploit parallelism

– Specialized hardware– Specialized hardware

• Until 1980s (1st generation): standard computer

• Early 1990s (2nd generation): delegate packet
processing to interfaces

• Late 1990s (3rd generation): distributed architecture

• Today: distributed across multiple racks

21

First generation routers

• This architecture is still used in
low-end routers

• Arriving packets are copied to
main memory via direct memory
access (DMA)

• Interconnection network is a
backplane (shared bus)

Off-chip buffer
memory

Shared
bus

CPU Buffer
Memory

DMA DMA DMA
backplane (shared bus)

• All IP forwarding functions are
performed by a commodity CPU

• Routing cache at processor can
accelerate the routing table
lookup

• Drawbacks:

– Forwarding performance is
limited by the CPU

– Capacity of shared bus limits the
number of interface cards that
can be connected

22

Typically <0.5Gb/s
aggregate capacity

Line
Interface

DMA

MAC

Line
Interface

DMA

MAC

Line
Interface

DMA

MAC

Second generation routers

• Bypasses memory bus
with direct transfer over
bus between line cards

• Moves forwarding

CPU Buffer
Memory

DMA DMA DMA• Moves forwarding
decisions local to card
to reduce CPU
utilization

• Trap to CPU for “slow”
operations

23
Typically <5Gb/s aggregate capacity

Line
Card

DMA

MAC

Local
Buffer

Memory

Line
Card

DMA

MAC

Local
Buffer

Memory

Line
Card

DMA

MAC

Local
Buffer

Memory

Speeding up the common case
with a “Fast path”

• IP packet forwarding is complex
– But, vast majority of packets can be forwarded with simple

algorithm

– Main idea: put common-case forwarding in hardware, trap to
software on exceptions

– Example: BBN router had 85 instructions for fast-path code, which – Example: BBN router had 85 instructions for fast-path code, which
fits entirely in L1 cache

• Non-common cases handled by slow path:
– Route cache misses

– Errors (e.g., ICMP time exceeded)

– IP options

– Fragmented packets

– Multicast packets

24

Improving upon second-
generation routers

• Control plane must remember lots of
information (BGP attributes, etc.)

– But data plane only needs to know FIB

– Smaller, fixed-length attributes– Smaller, fixed-length attributes

– Idea: store FIB in hardware

• Going over the bus adds delay

– Idea: Cache FIB in line cards

– Send directly over bus to outbound line
card 25

Improving upon second-
generation routers

• Shared bus is a big bottleneck

– E.g., modern PCI bus (PCIx16) is only
32Gbit/sec (in theory)

– Almost-modern Cisco (XR 12416) is 320 – Almost-modern Cisco (XR 12416) is 320
Gbit/sec

– Ow! How do we get there?

– Idea: put a “network” inside the router
• Switched backplane for larger cross-section
bandwidths

26

Third generation routers

• Replace bus with
interconnection network
(e.g., a crossbar switch)

• Distributed architecture:
– Line cards operate

independently of one another Line
Card

CPU
Card

Line
Card

independently of one another

– No centralized processing for IP
forwarding

• These routers can be scaled
to many hundreds of
interface cards and capacity
of > 1 Tbit/sec

27

Line
Card

MAC

Local
Buffer

Memory

CPU
Card

Line
Card

MAC

Local
Buffer

Memory

Switch Fabric: From Input to
Output

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Lookup
Address

Update
Header

Header Processing

Queue
Packet

Buffer
Memory

Queue
Packet

Data Hdr

Data Hdr

1

2

1

2

Address Header

Address
Table
Address
Table

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Packet

Buffer
Memory

Queue
Packet

Buffer
Memory

Data Hdr N N

Crossbars

• N input ports, N output ports
– One per line card, usually

• Every line card has its own forwarding
table/classifier/etc --- removes CPU bottleneck

• Scheduler• Scheduler
– Decides which input/output port pairs to connect in a given

time slot

– Often forward fixed-sized “cells” to avoid variable-length
time slots

– Crossbar constraint

• If input i is connected to output j, no other input connected to
j, no other output connected to i

• Scheduling is a bipartite matching

29

Data Plane Details: Checksum

• Takes too much time to verify checksum
– Increases forwarding time by 21%

• Take an optimistic approach: just
incrementally update it

30

– Safe operation: if checksum was correct it remains
correct

– If checksum bad, it will be anyway caught by end-
host

• Note: IPv6 does not include a header
checksum anyway!

Multi-chassis routers

• Multi-chassis router
– A single router that is a distributed collection of racks

– Scales to 322 Tbps, can replace an entire PoP

31

Why multi-chassis routers?

• ~ 40 routers per PoP (easily) in today’s Intra-PoP
architectures

• Connections between these routers require the
same expensive line cards as inter-PoP connections
– Support forwarding tables, QoS, monitoring,

32

– Support forwarding tables, QoS, monitoring,
configuration, MPLS

– Line cards are dominant cost of router, and racks often
limited to sixteen 40 Gbps line cards

• Each connection appears as an adjacency in the
routing protocol
– Increases IGP/iBGP control-plane overhead

– Increases complexity of scaling techniques such as route
reflectors and summarization

Multi-chassis routers
to the rescue

• Multi-chassis design: each line-card chassis has some fabric
interface cards
– Do not use line-card slots: instead uses a separate, smaller

connection

– Do not need complex packet processing logic � much cheaper than
line cards

• Multi-chassis router acts as one router to the outside world

33

• Multi-chassis router acts as one router to the outside world
– Simplifies administration

– Reduces number of iBGP adjacencies and IGP nodes/links without
resorting to complex scaling techniques

• However, now the multi-chassis router becomes a
distributed system � Interesting research topics
– Needs rethinking of router software (distributed and parallel)

– Needs high resilience (no external backup routers)

Matching Algorithms

Administrivia

• Lecture topics+outlines due today

– Next step: slide-based outline by 2/16

– Put down the text for your slides (no
graphics)graphics)

• Project topics due on 2/10

– Send me a 1 paragraph description of your
project, names of people in your group

35

What’s so hard about IP packet
forwarding?

• Back-of-the-envelope numbers
– Line cards can be 40 Gbps today (OC-768)

• Getting faster every year!

– To handle minimum-sized packets (~40b)
• 125 Mpps, or 8ns per packet• 125 Mpps, or 8ns per packet

• Can use parallelism, but need to be careful about
reordering

• For each packet, you must
– Do a routing lookup (where to send it)

– Schedule the crossbar

– Maybe buffer, maybe QoS, maybe ACLs,…

36

Routing lookups

• Routing tables:
200,000 to 1M entries
– Router must be able to

handle routing table loads
5-10 years hence

• How can we store routing • How can we store routing
state?

– What kind of memory to
use?

• How can we quickly lookup
with increasingly large
routing tables?

37

Memory technologies

Technology Single chip
density

$/MByte Access
speed

Watts/
chip

Dynamic RAM (DRAM)
cheap, slow

64 MB $0.50-
$0.75

40-80ns 0.5-2W

Static RAM (SRAM)
expensive, fast, a bit higher

4 MB $5-$8 4-8ns 1-3W

• Vendors moved from DRAM (1980s) to SRAM (1990s)
to TCAM (2000s)

• Vendors are now moving back to SRAM and parallel
banks of DRAM due to power/heat

38

heat/power

Ternary Content Addressable
Memory (TCAM)
very expensive, very high
heat/power, very fast (does
parallel lookups in hardware)

1 MB $200-$250 4-8ns 15-30W

Fixed-Length
Matching Algorithms

Ethernet Switch

• Lookup frame DA in forwarding table.
– If known, forward to correct port.

– If unknown, broadcast to all ports.

• Learn SA of incoming frame.

• Forward frame to outgoing interface.

• Transmit frame onto link.

• How to do this quickly?
– Need to determine next hop quickly

– Would like to do so without reducing line rates

40

Why Ethernet needs wire-speed
forwarding

• Scenario:
– Bridge has a 500 packet

buffer

– Link rate: 1 packet/ms

– Lookup rate: 0.5 packet/ms

– A sends 1000 packets to B
Bridge

CC↑

A↓
– A sends 1000 packets to B

– A sends 10 packets to C

• What happens to C’s
packets?
– What would happen if this

Bridge was a Router?

• Need wirespeed
forwarding

41

A B

A↓

Inside a switch

Ethernet 1
Ethernet chip

Ethernet chip

Packet/lookup memoryProcessor
Lookup
engine

• Packet received from upper Ethernet

• Ethernet chip extracts source address S, stored in shared
memory, in receive queue

– Ethernet chips set in “promiscuous mode”

• Extracts destination address D, given to lookup engine
42

Ethernet 2
Ethernet chip

Inside a switch

Ethernet 1
Ethernet chip

Ethernet chip

Packet/lookup memoryProcessor
Lookup
engine

F0:4D:A2:3A:31:9C � Eth 1
00:21:9B:77:F2:65 � Eth 2
8B:01:54:A2:78:9C � Eth 1
00:0C:F1:56:98:AD � Eth 1
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2
90:03:BA:26:01:B0 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
00:10:7F:00:0D:B7 � Eth 2

• Lookup engine looks up D in database stored in memory

– If destination is on upper Ethernet: set packet buffer pointer to
free queue

– If destination is on lower Ethernet: set packet buffer pointer to
transmit queue of the lower Ethernet

• How to do the lookup quickly? 43

Ethernet 2
Ethernet chip

Problem overview

F0:4D:A2:3A:31:9C � Eth 1
00:21:9B:77:F2:65 � Eth 2
8B:01:54:A2:78:9C � Eth 1
00:0C:F1:56:98:AD � Eth 1
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2

90:03:BA:26:01:B0 Eth 2

• Goal: given address, look up outbound interface
– Do this quickly (few instructions/low circuit
complexity)

• Linear search too low
44

00:A0:C9:14:C8:29 � Eth 2
90:03:BA:26:01:B0 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
00:10:7F:00:0D:B7 � Eth 2

Idea #1: binary search

F0:4D:A2:3A:31:9C � Eth 1
00:21:9B:77:F2:65 � Eth 2
8B:01:54:A2:78:9C � Eth 1
00:0C:F1:56:98:AD � Eth 1
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2

00:0C:F1:56:98:AD � Eth 1
00:10:7F:00:0D:B7 � Eth 2
00:21:9B:77:F2:65 � Eth 2
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2
00:0C:29:A8:D0:FA � Eth 1

90:03:BA:26:01:B0 Eth 2

• Put all destinations in a list, sort them,
binary search

• Problem: logarithmic time
45

00:A0:C9:14:C8:29 � Eth 2
90:03:BA:26:01:B0 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
00:10:7F:00:0D:B7 � Eth 2

00:0C:29:A8:D0:FA � Eth 1
8B:01:54:A2:78:9C � Eth 1
90:03:BA:26:01:B0 � Eth 2
F0:4D:A2:3A:31:9C � Eth 1

Improvement:
Parallel Binary search

00:A0:C9:14:C8:29

00:21:9B:77:F2:65
00:10:7F:00:0D:B7

00:B0:D0:86:BB:F7

00:0C:29:A8:D0:FA

00:0C:F1:56:98:AD
00:10:7F:00:0D:B7
00:21:9B:77:F2:65
00:B0:D0:86:BB:F7
00:A0:C9:14:C8:29
00:0C:29:A8:D0:FA

8B:01:54:A2:78:9C

F0:4D:A2:3A:31:9C

00:10:7F:00:0D:B7

• Packets still have O(log n) delay, but
can process O(log n) packets in parallel
� O(1)

46

8B:01:54:A2:78:9C
00:0C:29:A8:D0:FA

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA
8B:01:54:A2:78:9C
90:03:BA:26:01:B0
F0:4D:A2:3A:31:9C

Improvement:
Parallel Binary search

00:A0:C9:14:C8:29

00:21:9B:77:F2:65
00:10:7F:00:0D:B7

00:B0:D0:86:BB:F7

00:0C:29:A8:D0:FA

00:0C:F1:56:98:AD
00:10:7F:00:0D:B7
00:21:9B:77:F2:65
00:B0:D0:86:BB:F7
00:A0:C9:14:C8:29
00:0C:29:A8:D0:FA

8B:01:54:A2:78:9C

F0:4D:A2:3A:31:9C

00:10:7F:00:0D:B7

• Packets still have O(log n) delay, but
can process O(log n) packets in parallel
� O(1)

47

8B:01:54:A2:78:9C
00:0C:29:A8:D0:FA

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA
8B:01:54:A2:78:9C
90:03:BA:26:01:B0
F0:4D:A2:3A:31:9C

01

02

Idea #2: hashing

00

hashes

03

01

02

function
F0:4D:A2:3A:31:9C

keys

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F7

bins

F0:4D:A2:3A:31:9C

8B:01:54:A2:78:9C

00:0C:29:A8:D0:FA00:10:7F:00:0D:B7
90:03:BA:26:01:B0

04

• Hash key=destination, value=interface pairs

• Lookup in O(1) with hash

• Problem: chaining (not really O(1))

04
05...

08

00:B0:D0:86:BB:F7

00:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA

00:10:7F:00:0D:B7

00:21:9B:77:F2:65

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F700:A0:C9:14:C8:29

90:03:BA:26:01:B0

Improvement: Perfect hashing

01

02

04

00

hashes

03

01

02

04

parameter

F0:4D:A2:3A:31:9C
keys

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F7

bins

F0:4D:A2:3A:31:9C

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:29:A8:D0:FA00:10:7F:00:0D:B7
90:03:BA:26:01:B0

• Perfect hashing: find a hash function that maps perfectly with
no collisions

• Gigaswitch approach

– Use a parameterized hash function

– Precompute hash function to bound worst case number of collisions
49

0404
05...

08

00:B0:D0:86:BB:F7

00:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA

00:10:7F:00:0D:B7

00:21:9B:77:F2:65

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F700:A0:C9:14:C8:29

90:03:BA:26:01:B0

Variable-Length
Matching Algorithms

Longest Prefix Match

• Not just one entry that matches a
destination
– 128.174.252.0/24 and 128.174.0.0/16

– Which one to use for 128.174.252.14?

– By convention, Internet routers choose the longest
(most-specific) match

• Need variable prefix match algorithms
– Several methods

51

Method 1: Trie

Sample Database

• P1=10*

• P2=111*

• P3=11001*

• P4=1*

Trie

• P5=0*

• P6=1000*

• P7=100000*

• P8=1000000*

52

• Tree of (left ptr, right ptr) data structures

• May be stored in SRAM/DRAM

• Lookup performed by traversing sequence of pointers

• Lookup time O(log N) where N is # prefixes

Improvement 1: Skip Counts and
Path Compression

• Removing one-way branches ensures # of trie nodes is at most
twice # of prefixes

• Using a skip count requires exact match at end and
backtracking on failure � path compression is simpler

• Main idea behind Patricia Tries 53

Improvement 2:
Multi-way tree

16-ary Search Trie

0000, ptr 1111, ptr

0000, 0 1111, ptr 0000, 0 1111, ptr

• Doing multiple comparisons per cycle accelerates lookup
– Can do this for free to the width of CPU word (modern CPUs

process multiple bits per cycle)

• But increases wasted space (more unused pointers)
54

000011110000 111111111111

Improvement 2: Multi-way tree

Degree of # Mem # Nodes Total Memory Fraction

Ew DL 1– 1 1 N

DL
-------–

 
 D–

 
  D i 1 Di 1––()N 1 D1 i––()N–()

i 1=

L 1–

∑+=

En 1 DL 1 N

DL
-------–

 
 D Di D i 1– 1 Di 1––()N–

i 1=

L 1–

∑+ +=

Where:

D Degree of tree=

L Number of layers/references=

N Number of entries in table =

En Expected number of nodes=

Ew Expected amount of wasted memory=

55

Degree of
Tree

Mem
References

Nodes
(x106)

Total Memory
(Mbytes)

Fraction
Wasted (%)

2 48 1.09 4.3 49
4 24 0.53 4.3 73
8 16 0.35 5.6 86
16 12 0.25 8.3 93
64 8 0.17 21 98
256 6 0.12 64 99.5

Table produced from 215 randomly generated 48-bit addresses

Method 2: Lookups in Hardware

N
um

be
r

56

• Observation: most prefixes are /24 or shorter

• So, just store a big 2^24 table with next hop for each prefix

• Nonexistant prefixes � just leave that entry empty

Prefix length

N
um

be
r

Method 2: Lookups in Hardware

Prefixes up to 24-bits

1 Next Hop
Next Hop

142.19.6

224 = 16M entries

57

14
2.

19
.6

.1
4

14
2.

19
.6

14

24

Method 2: Lookups in Hardware

Prefixes up to 24-bits

1 Next Hop

128.3.72

58

12
8.

3.
72

.4
4

12
8.

3.
72

44

24 0 Pointer

8

Prefixes above
24-bits

Next Hop

Next Hop

Next Hop
of

fs
et

ba
se

Method 2: Lookups in Hardware

• Advantages
– Very fast lookups

• 20 Mpps with 50ns DRAM

– Easy to implement in hardware

• Disadvantages
– Large memory required

– Performance depends on prefix length distribution

59

Method 3: Ternary CAMs

Next Hop

Associative Memory

Value Mask Next hop

10.0.0.0 255.0.0.0 IF 1

10.1.0.0 255.255.0.0 IF 3

10.1.1.0 255.255.255.0 IF 4

Lookup
Value

• “Content Addressable”
– Hardware searches entire memory to find supplied value

– Similar interface to hash table

• “Ternary”: memory can be in three states
– True, false, don’t care

– Hardware to treat don’t care as wildcard match

Selector

10.1.3.0 255.255.255.0 IF 2

10.1.3.1 255.255.255.255 IF 2

Classification Algorithms

Providing Value-Added Services

• Differentiated services

– Regard traffic from AS#33 as `platinum-grade’

• Access Control Lists

– Deny udp host 194.72.72.33 194.72.6.64 0.0.0.15 eq snmp

• Committed Access Rate

– Rate limit WWW traffic from sub-interface#739 to 10Mbps– Rate limit WWW traffic from sub-interface#739 to 10Mbps

• Policy-based Routing

– Route all voice traffic through the ATM network

• Peering Arrangements

– Restrict the total amount of traffic of precedence 7 from

– MAC address N to 20 Mbps between 10 am and 5pm

• Accounting and Billing

– Generate hourly reports of traffic from MAC address M

• � Need to address the Flow Classification problem 62

Flow Classification

Flow Index
Flow Classification

Forwarding Engine
H
E
A
D
E
R

63

---- ----

Predicate Action
Policy Database

Incoming
Packet

R

A Packet Classifier

 Field 1 Field 2 … Field k Action

Rule 1 152.163.190.69/21 152.163.80.11/32 … Udp A1

Rule 2 152.168.3.0/24 152.163.200.157/16 … Tcp A2

64

Given a classifier, find the action associated with the highest priority
rule (here, the lowest numbered rule) matching an incoming packet.

Rule 2 152.168.3.0/24 152.163.200.157/16 … Tcp A2

… … … … … …

Rule N 152.168.3.0/16 152.163.80.11/32 … Any An

Geometric Interpretation in 2D

R3

R7

P2

F
ie

ld
 #

2

R6

Field #1 Field #2 Data

P1

e.g. (144.24/16, 64/24)

65

R5 R4

R3

R2
R1

Field #1

F
ie

ld
 #

2

e.g. (128.16.46.23, *)
e.g. (144.24/16, 64/24)

Approach #1: Linear search

• Build linked list of all classification rules
– Possibly sorted in order of decreasing priorities

• For each arriving packet, evaluate each rule
until match is founduntil match is found

• Pros: simple and storage efficient

• Cons: classification time grows linearly with
number of rules
– Variant: build FSM of rules (pattern matching)

66

Approach #2: Ternary CAMs

• Similar to TCAM use in prefix matching
– Need wider than 32-bit array, typically 128-256
bits

• Ranges expressed as don’t cares below a • Ranges expressed as don’t cares below a
particular bit
– Done for each field

• Pros: O(1) lookup time, simple

• Cons: heat, power, cost, etc.
– Power for a TCAM row increases proportionally to
its width

67

Approach #3: Hierarchical trie

F2

• Recursively build d-dimensional radix trie
– Trie for first field, attach sub-tries to trie’s leaves for sub-

field, repeat

• For N-bit rules, d dimensions, W-bit wide dimensions:
– Storage complexity: O(NdW)

– Lookup complexity: O(W^d)
68

F1

Approach #4: Set-pruning tries

F2

• “Push” rules down the hierarchical trie

• Eliminates need for recursive lookups

• For N-bit rules, d dimensions, W-bit wide dimensions:
– Storage complexity: O(dWN^d)

– Lookup complexity: O(dW)

69

F1

Approach #5: Crossproducting

• Compute separate 1-dimensional range
lookups for each dimension

• For N-bit rules, d dimensions, W-bit wide dimensions:
– Storage complexity: O(N^d)

– Lookup complexity: O(dW) 70

Other proposed schemes

71

