
Lecture 7:
Packet Scheduling and Fair Queuing

CS 598: Advanced Internetworking

Matthew Caesar

March 1, 2011

Packet Scheduling:
Problem Overview

2

• When to send packets?

• What order to send them in?

Approach #1:
First In First Out (FIFO)

• Packets are sent out in the same order

3

• Packets are sent out in the same order
they are received

• Benefits: simple to design, analyze

• Downsides: not compatible with QoS

• High priority packets can get stuck behind low
priority packets

Approach #2:
Priority Queuing

High

Normal

Classifier

4

• Operator can configure policies to give certain kinds of
packets higher priority

• Associate packets with priority queues

• Service higher-priority queue when packets are available to be
sent

• Downside: can lead to starvation of lower-priority queues

Low

Approach #3:
Weighted Round Robin

60% (� 6 slots)

30% (� 3 slots)

10% (� 1 slots)

1

1

2367

2345

45

123

6

4

512

31

5

• Round robin through queues, but visit higher-priority queues more
often

• Benefit: Prevents starvation

• Downsides: a host sending long packets can steal bandwidth

• Naïve implementation wastes bandwidth due to unused slots

14 23 31

Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants

6

• Other FQ variants

Fairness Goals

• Allocate resources fairly

• Isolate ill-behaved users

– Router does not send explicit feedback to
source

7

source

– Still needs e2e congestion control

• Still achieve statistical muxing

– One flow can fill entire pipe if no
contenders

– Work conserving � scheduler never idles

link if it has a packet

What is Fairness?

• At what granularity?

– Flows, connections, domains?

• What if users have different RTTs/links/etc.

– Should it share a link fairly or be TCP fair?

8

• Maximize fairness index?

– Fairness = (Σxi)2/n(Σxi2) 0<fairness<1

• Basically a tough question to answer –
typically design mechanisms instead of policy

– User = arbitrary granularity

Max-min Fairness

• Allocate user with “small” demand what
it wants, evenly divide unused
resources to “big” users

• Formally:

9

• Formally:
• Resources allocated in terms of increasing
demand

• No source gets resource share larger than its
demand

• Sources with unsatisfied demands get equal
share of resource

Max-min Fairness Example

• Assume sources 1..n, with resource
demands X1..Xn in ascending order

• Assume channel capacity C.

– Give C/n to X1; if this is more than X1

10

– Give C/n to X1; if this is more than X1
wants, divide excess (C/n - X1) to other
sources: each gets C/n + (C/n - X1)/(n-1)

– If this is larger than what X2 wants, repeat
process

Implementing max-min Fairness

• Generalized processor sharing

– Fluid fairness

– Bitwise round robin among all queues

• Why not simple round robin?

11

• Why not simple round robin?

– Variable packet length � can get more

service by sending bigger packets

– Unfair instantaneous service rate

• What if arrive just before/after packet departs?

Bit-by-bit RR

• Single flow: clock ticks when a bit is
transmitted. For packet i:
– Pi = length, Ai = arrival time, Si = begin
transmit time, Fi = finish transmit time

– F = S+P = max (F , A) + P

12

– Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit
from all active flows is transmitted �
round number
– Can calculate Fi for each packet if number
of flows is know at all times
• This can be complicated

Approach #4:
Bit-by-bit Round Robin

20 bits

10 bits

Output queue

13

• Round robin through “backlogged” queues (queues with pkts to
send)

• However, only send one bit from each queue at a time

• Benefit: Achieves max-min fairness, even in presence of variable
sized pkts

• Downsides: you can’t really mix up bits like this on real networks!

5 bits

The next-best thing:
Fair Queuing

• Bit-by-bit round robin is fair, but you
can’t really do that in practice

• Idea: simulate bit-by-bit RR, compute

14

• Idea: simulate bit-by-bit RR, compute
the finish times of each packet

– Then, send packets in order of finish times

– This is known as Fair Queuing

What is Weighted Fair Queuing?

w1

w2

wn

R

Packet queues

15

• Each flow i given a weight (importance) wi

• WFQ guarantees a minimum service rate to
flow i

– ri = R * wi / (w1 + w2 + ... + wn)

– Implies isolation among flows (one cannot mess
up another)

wn

What is the Intuition? Fluid Flow

w1

water pipes
w2

16

w3

t1

t2

w2 w3

water buckets

w1

Fluid Flow System

• If flows could be served one bit at a time:

• WFQ can be implemented using bit-by-bit
weighted round robin

17

weighted round robin

–During each round from each flow that has
data to send, send a number of bits equal to
the flow’s weight

Fluid Flow System: Example 1

Packet
Size (bits)

Packet inter-arrival
time (ms)

Arrival
Rate

(Kbps)

Flow 1 1000 10 100

Flow 2 500 10 50

100 KbpsFlow 1 (w1 = 1)

Flow 2 (w2 = 1)

18

1 2 3
1 2

4
3 4

5
5 6

Flow 2
(arrival traffic) time

Flow 1
(arrival traffic) time

1 2 3 4 5

1 2 3 4 5 6

Service
in fluid flow

system time (ms)0 10 20 30 40 50 60 70 80

Fluid Flow System: Example 2

5 1 1 11 1

• Red flow has packets
backlogged between time 0
and 10

– Backlogged flow � flow’s

queue not empty

• Other flows have packets

flows

link

weights

19

0 152 104 6 8

• Other flows have packets
continuously backlogged

• All packets have the same size

Implementation in Packet
System

• Packet (Real) system: packet
transmission cannot be preempted.
Why?

20

• Solution: serve packets in the order in
which they would have finished being
transmitted in the fluid flow system

Packet System: Example 1

0 2 104 6 8

Service
in fluid flow

system

21

0 2 104 6 8

0 2 104 6 8

• Select the first packet that finishes in the fluid flow system

Packet
system

Packet System: Example 2

1 2 3
1 2

4
3 4

5
5 6

Service
in fluid flow

system time (ms)

22

1 2 1 3 2 3 4 4 55 6Packet
system time

• Select the first packet that finishes in the fluid flow system

Implementation Challenge

• Need to compute the finish time of a
packet in the fluid flow system…

• … but the finish time may change as
new packets arrive!

23

new packets arrive!

• Need to update the finish times of all
packets that are in service in the fluid
flow system when a new packet arrives

–But this is very expensive; a high speed
router may need to handle hundred of
thousands of flows!

Example

• Four flows, each with weight 1
Flow 1

time

time

time

time

Flow 2

Flow 3

Flow 4

24

time
ε

Flow 4

0 1 2 3

Finish times computed at time 0

time

time

Finish times re-computed at time ε

0 1 2 3 4

Approach #5:
Self-Clocked Fair Queuing

A 9 8 7 6 5 4 3 2 1

4 3 2 1

Output queue

25

2 1

Virtual time

Real time (or, # bits processed)

1

Solution: Virtual Time

• Key Observation: while the finish times of
packets may change when a new packet
arrives, the order in which packets finish
doesn’t!

26

doesn’t!

–Only the order is important for scheduling

• Solution: instead of the packet finish time
maintain the round # when a packet
finishes (virtual finishing time)

–Virtual finishing time doesn’t change when a
packet arrives

Example

• Suppose each packet is 1000 bits, so takes 1000

Flow 1

time

time

ε

time

time

Flow 2

Flow 3

Flow 4

27

• Suppose each packet is 1000 bits, so takes 1000
rounds to finish

• So, packets of F1, F2, F3 finishes at virtual time
1000

• When packet F4 arrives at virtual time 1 (after
one round), the virtual finish time of packet F4 is
1001

• But the virtual finish time of packet F1,2,3
remains 1000

• Finishing order is preserved

System Virtual Time (Round #): V(t)

• V(t) increases inversely proportionally to the sum of the
weights of the backlogged flows
– During one tick of V(t), all backlogged flows can transmit one bit

• Since round # increases slower when there are more flows
to visit each round.

Flow 1 (w1 = 1)

time

28

1 2 3
1 2

4
3 4

5
5 6

Flow 2 (w2 = 1)

time

time

C

C/2V(t)

Is Fair Queuing perfectly fair?

• No. Example: Once we begin transmission of
a packet, it’s possible a new packet arrives
that would have a smaller finishing time than
the current packet

– FQ is non-preemptive, so keep transmitting – FQ is non-preemptive, so keep transmitting
current packet

• However, if a packet is sitting in an output
queue with its finish time calculated, and a
new packet arrives with a sooner finish time,
the new packet will be sent first

29

Fair Queueing Implementation

• Define

– - virtual finishing time of packet k of flow i

– - arrival time of packet k of flow i

– - length of packet k of flow i

–weight of flow i

k
iL

k
ia

k
iF

30

– wi –weight of flow i

• The finishing time of packet k+1 of flow i is

• Smallest finishing time first scheduling policy

111)),(max(+++ += k
i

k
i

k
i

k
i LFaVF / wi

Properties of WFQ

• Guarantee that any packet is
transmitted within
packet_length/link_capacityof its
transmission time in the fluid flow

31

transmission time in the fluid flow
system

–Can be used to provide guaranteed services

• Achieve fair allocation

–Can be used to protect well-behaved flows
against malicious flows

Fair Queuing Tradeoffs

• FQ can control congestion by monitoring flows

– Non-adaptive flows can still be a problem – why?

• Complex state

– Must keep queue per flow

32

– Must keep queue per flow

• Hard in routers with many flows (e.g., backbone routers)

• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation

– Classification into flows may be hard

– Must keep queues sorted by finish times

– Finish times change whenever the flow count changes

Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants

33

• Other FQ variants

Core-Stateless Fair Queuing

• Key problem with FQ is core routers

– Must maintain state for 1000’s of flows

– Must update state at Gbps line speeds

• CSFQ (Core-Stateless FQ) objectives

34

– Edge routers should do complex tasks since they
have fewer flows

– Core routers can do simple tasks

• No per-flow state/processing � this means that core

routers can only decide on dropping packets not on
order of processing

• Can only provide max-min bandwidth fairness not delay
allocation

Core-Stateless Fair Queuing

• Edge routers keep state about flows
and do computation when packet
arrives

• DPS (Dynamic Packet State)

35

• DPS (Dynamic Packet State)

– Edge routers label packets with the result
of state lookup and computation

• Core routers use DPS and local
measurements to control processing of
packets

Edge Router Behavior

• Monitor each flow i to measure its
arrival rate (ri)

– EWMA of rate

– Non-constant EWMA constant

36

– Non-constant EWMA constant

• e-T/K where T = current interarrival, K =
constant

• Helps adapt to different packet sizes and arrival
patterns

• Rate is attached to each packet

Core Router Behavior

• Keep track of fair share rate α
– Increasing α does not increase load (F) by
N * α

– F(α) = Σi min(ri, α) � what does this look

37

– F(α) = Σi min(ri, α) � what does this look

like?

– Periodically update α
– Keep track of current arrival rate

• Only update α if entire period was congested or
uncongested

• Drop probability for packet = max(1-
α/r, 0)

F vs. Alpha

C [linked capacity]

F

38

New alpha
r1 r2 r3 old alpha

alpha

Estimating Fair Share

• Need F(α) = capacity = C
– Can’t keep map of F(α) values � would require

per flow state

– Since F(α) is concave, piecewise-linear
• F(0) = 0 and F(α) = current accepted rate = F

39

• F(0) = 0 and F(α) = current accepted rate = Fc
• F(α) = Fc/ α
• F(αnew) = C � αnew = αold * C/Fc

• What if a mistake was made?

– Forced into dropping packets due to buffer
capacity

– When queue overflows α is decreased slightly

Other Issues

• Punishing fire-hoses – why?

– Easy to keep track of in a FQ scheme

• What are the real edges in such a
scheme?

40

scheme?

– Must trust edges to mark traffic accurately

– Could do some statistical sampling to see if
edge was marking accurately

Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants

41

• Other FQ variants

Stochastic Fair Queuing

• Compute a hash on each packet

• Instead of per-flow queue have a queue
per hash bin

• An aggressive flow steals traffic from • An aggressive flow steals traffic from
other flows in the same hash

• Queues serviced in round-robin fashion
– Has problems with packet size unfairness

• Memory allocation across all queues
– When no free buffers, drop packet from
longest queue

42

Deficit Round Robin

• Each queue is allowed to send Q bytes per
round

• If Q bytes are not sent (because packet is too
large) deficit counter of queue keeps track of
unused portion

43

unused portion

• If queue is empty, deficit counter is reset to 0

• Uses hash bins like Stochastic FQ

• Similar behavior as FQ but computationally
simpler
– Bandwidth guarantees, but no latency guarantees

Deficit Round Robin
Example

1500

800

Deficit=0

1. Increment deficit counter by
Quantum Size

2. Send packet if size is greater than
deficit

3. When you send a packet,
subtract its size from the deficit

Quantum Size = 1000

1000
2000

500

Matthew Caesar (caesar@uiuc.edu) 44

800

1200

Deficit=0

Deficit=0
1000

1000

2000

200 Outbound queue

800

Self-clocked Fair Queuing

• Virtual time to make computation of
finish time easier

• Problem with basic FQ
– Need be able to know which flows are
really backlogged

45

– Need be able to know which flows are
really backlogged
• They may not have packet queued because
they were serviced earlier in mapping of bit-by-
bit to packet

• This is necessary to know how bits sent map
onto rounds

• Mapping of real time to round is piecewise
linear � however slope can change often

Self-clocked FQ

• Use the finish time of the packet being
serviced as the virtual time

– The difference in this virtual time and the
real round number can be unbounded

46

real round number can be unbounded

• Amount of service to backlogged flows
is bounded by factor of 2

Start-time Fair Queuing

• Packets are scheduled in order of their
start not finish times

• Self-clocked � virtual time = start time

of packet in service

47

of packet in service

• Main advantage � can handle variable

rate service better than other schemes

Mobility models

CS 598: Advanced Internetworking

Matthew Caesar

March 3, 2011

Entity model: Random Walk

• A mobile node moves from its current
location to a new location by randomly
choosing a direction and speed in which to
travel.

• Random Walk is a memoryless mobility

49

• Random Walk is a memoryless mobility
pattern. This characteristic can generate
unrealistic movements such as sudden stops
and sharp turns

Random Walk Example

EECS 600 Advanced Network
Research, Spring 2005

50

Entity model: Random Waypoint

• The Random Waypoint Mobility Model includes pause
times between changes in direction and/or speed.
– A mobile node stays in one location for a certain period of time

(i.e., a pause time).
– Once this time expires, the node chooses a random destination

in the simulation area and a speed that is uniformly distributed
between [minspeed,maxspeed]. The node then travels toward

51

between [minspeed,maxspeed]. The node then travels toward
the newly chosen destination at the selected speed.

– Repeat above two steps

• Often in the model, the nodes are initially distributed
randomly around the simulation area. This initial random
distribution of MNs is not representative of the manner
in which nodes distribute themselves when moving.

Random Waypoint Example

EECS 600 Advanced Network
Research, Spring 2005

52

Other variants

• Restricted Random Waypoint Model
– Observation: on earth, there are obstacles to node movement

• E.g., Buildings, trees

• Nodes cannot walk through these obstacles

– Place a set of obstacles

– Choose waypoint direction randomly, but truncate length to avoid going
through an obstacle

• The Reference Point Group Mobility (RPGM) model

53

• The Reference Point Group Mobility (RPGM) model
– Observation: in practice, nodes move as groups

• E.g., cell phones on a train

– Nodes associated into groups, groups move collectively

– Individual nodes move around with small offsets to the group’s movement

• City Section Mobility model
– Observation: users on cars have very specific mobility pattern

• Eg., can’t go faster than car in front of you, cars collectively slow down/speed up,
cars traverse grid-like pattern of streets

– Nodes move in car-like patterns

Challenges with mobility models

• Distributions of node speed, position,
distances, etc change with time

• E.g., random waypoint:

54

100 users average

1 user

Time (s)

S
p

ee
d

 (
m

/s
)

Challenges with mobility models

• Distributions of node speed, position,
distances, etc change with time

– E.g., distribution of node position under random
waypoint:

55Time = 0 sec Time = 2000 sec

Finishing up DHTs

CS 598: Advanced Internetworking

Matthew Caesar

March 3, 2011

Security issues

• Sybil attacks
– Malicious node pretends to be many nodes
– Can take over large fraction of ID space, files

• Eclipse attacks• Eclipse attacks
– Malicious node intercepts join requests, replies
with its cohorts as joining node’s fingers

• Solutions:
– Perform several joins over diverse paths, PKI,
leverage social network relationships, audit by
sharing records with neighbors

One-hop DHTs

• Idea: maintain global state of all nodes

– Might get this for free (link state routing)

– Hash over all visible nodes

• Benefits:• Benefits:

– Reduces number of hops to reach a key

– “Worth it” when node lifetimes
weeks/months, when hundreds/thousands
of lookups/second per node

– Used in Amazon dynamo, cluster load
balancing Matthew Caesar (caesar@uiuc.edu) 58

Consistent Hashing:
Background

• Hash table: maps identifiers to keys
– Hash function used to transform key to index
(slot)

– To balance load, should ideally map each key to
different index

• Distributed hash tables
– Stores values (e.g., by mapping keys and values
to servers)

– Used in distributed storage, load balancing, peer-
to-peer, content distribution, multicast, anycast,
botnets, BitTorrent’s tracker, etc.

01

02

Background: hashing

00

hashes

01

02

function

Ahmed

Yan

keys

02

04
03
02

04
05...

08

Yan

John

Viraj

Example

00

hashes

01

02
03
04

function

Yan

Ahmed

keys

A H M E D

Y A N
89+65+78=232
232%9=7

00

02

65+72+77+69+68=351
351%9=0 351%8=1

232%8=1

Ahmed

Viraj
01

02

• Example: Sum ASCII digits, mod number of bins

• Problem: failures cause large shifts

04
05

John

Viraj

232%9=7

J O H N
74+79+72+78=303
303%9=6

V I R A J
86+73+82+65+74=380
380%9=2

06
07
08

06
07

232%8=1

303%8=2

380%8=2

Yan

John
04

05

06
07

Solution: Consistent Hashing

• Hashing function that reduces churn

• Addition or removal of one slot does not
significantly change mapping of keys to slots

• Good consistent hashing schemes change • Good consistent hashing schemes change
mapping of K/N entries on single slot addition

– K: number of keys

– N: number of slots

• E.g., map keys and slots to positions on circle

– Assign keys to closest slot on circle

Solution: Consistent Hashing

hashesfunction

Yan

Ahmed

keys

Y A N
89+65+78=232
232%100=32

A H M E D
65+72+77+69+68=351
351%100=51

04
08
26
27
35

• Slots have IDs selected randomly from [0,100]

• Hash keys onto same space, map key to closest bin

• Less churn on failure � more stable system

John

Viraj

232%100=32

J O H N
74+79+72+78=303
303%100=3

V I R A J
86+73+82+65+74=380
380%100=80

35
41
47
65
70
81

