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Packet Scheduling: 
Problem Overview
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• When to send packets?

• What order to send them in?



Approach #1: 
First In First Out (FIFO)

• Packets are sent out in the same order 
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• Packets are sent out in the same order 
they are received

• Benefits: simple to design, analyze

• Downsides: not compatible with QoS

• High priority packets can get stuck behind low 
priority packets



Approach #2: 
Priority Queuing

High

Normal

Classifier
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• Operator can configure policies to give certain kinds of 
packets higher priority

• Associate packets with priority queues

• Service higher-priority queue when packets are available to be 
sent

• Downside: can lead to starvation of lower-priority queues

Low



Approach #3: 
Weighted Round Robin
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• Round robin through queues, but visit higher-priority queues more 
often

• Benefit: Prevents starvation

• Downsides: a host sending long packets can steal bandwidth

• Naïve implementation wastes bandwidth due to unused slots

14 23 31



Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants
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• Other FQ variants



Fairness Goals

• Allocate resources fairly 

• Isolate ill-behaved users

– Router does not send explicit feedback to 
source
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source

– Still needs e2e congestion control

• Still achieve statistical muxing

– One flow can fill entire pipe if no 
contenders

– Work conserving � scheduler never idles 

link if it has a packet



What is Fairness?

• At what granularity?

– Flows, connections, domains?

• What if users have different RTTs/links/etc.

– Should it share a link fairly or be TCP fair?
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• Maximize fairness index?

– Fairness = (Σxi)2/n(Σxi2)   0<fairness<1

• Basically a tough question to answer –
typically design mechanisms instead of policy

– User = arbitrary granularity



Max-min Fairness

• Allocate user with “small” demand what 
it wants, evenly divide unused 
resources to “big” users

• Formally:
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• Formally:
• Resources allocated in terms of increasing 
demand

• No source gets resource share larger than its 
demand

• Sources with unsatisfied demands get equal 
share of resource



Max-min Fairness Example

• Assume sources 1..n, with resource 
demands X1..Xn in ascending order

• Assume channel capacity C.

– Give C/n to X1; if this is more than X1 
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– Give C/n to X1; if this is more than X1 
wants, divide excess (C/n - X1) to other 
sources: each gets C/n + (C/n - X1)/(n-1)

– If this is larger than what X2 wants, repeat 
process



Implementing max-min Fairness

• Generalized processor sharing

– Fluid fairness

– Bitwise round robin among all queues

• Why not simple round robin?
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• Why not simple round robin?

– Variable packet length � can get more 

service by sending bigger packets

– Unfair instantaneous service rate

• What if arrive just before/after packet departs?



Bit-by-bit RR

• Single flow: clock ticks when a bit is 
transmitted. For packet i:
– Pi = length, Ai = arrival time, Si = begin 
transmit time, Fi = finish transmit time

– F = S+P = max (F , A ) + P
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– Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit 
from all active flows is transmitted �
round number
– Can calculate Fi for each packet if number 
of flows is know at all times
• This can be complicated



Approach #4: 
Bit-by-bit Round Robin

20 bits

10 bits

Output queue
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• Round robin through “backlogged” queues (queues with pkts to 
send)

• However, only send one bit from each queue at a time

• Benefit: Achieves max-min fairness, even in presence of variable 
sized pkts

• Downsides: you can’t really mix up bits like this on real networks!

5 bits



The next-best thing: 
Fair Queuing

• Bit-by-bit round robin is fair, but you 
can’t really do that in practice

• Idea: simulate bit-by-bit RR, compute 
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• Idea: simulate bit-by-bit RR, compute 
the finish times of each packet

– Then, send packets in order of finish times

– This is known as Fair Queuing



What is Weighted Fair Queuing?

w1

w2

wn

R

Packet queues
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• Each flow i given a weight (importance) wi

• WFQ guarantees a minimum service rate to 
flow i

– ri = R * wi  / (w1 + w2 + ... + wn)

– Implies isolation among flows (one cannot mess 
up another)

wn



What is the Intuition? Fluid Flow

w1

water pipes
w2
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w3

t1

t2

w2 w3

water buckets

w1



Fluid Flow System

• If flows could be served one bit at a time:

• WFQ can be implemented using bit-by-bit 
weighted round robin
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weighted round robin

–During each round from each flow that has 
data to send, send a number of bits equal to 
the flow’s weight



Fluid Flow System: Example 1

Packet 
Size (bits)

Packet inter-arrival 
time (ms)

Arrival 
Rate 

(Kbps)

Flow 1 1000 10 100

Flow 2 500 10 50

100 KbpsFlow 1 (w1 = 1)

Flow 2 (w2 = 1)
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1 2 3
1 2

4
3 4

5
5 6

Flow 2
(arrival traffic) time

Flow 1
(arrival traffic) time

1 2 3 4 5

1 2 3 4 5 6

Service
in fluid flow 

system time (ms)0 10 20 30 40 50 60 70 80



Fluid Flow System: Example 2

5 1 1 11 1

• Red flow has packets 
backlogged between time 0 
and 10

– Backlogged flow � flow’s 

queue not empty 

• Other flows have packets 

flows

link

weights
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0 152 104 6 8

• Other flows have packets 
continuously backlogged

• All packets have the same size



Implementation in Packet 
System

• Packet (Real) system: packet 
transmission cannot be preempted. 
Why?
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• Solution: serve packets in the order in 
which they would have finished being 
transmitted in the fluid flow system



Packet System: Example 1

0 2 104 6 8

Service
in fluid flow 

system

21

0 2 104 6 8

0 2 104 6 8

• Select the first packet that finishes in the fluid flow system

Packet
system



Packet System: Example 2

1 2 3
1 2

4
3 4

5
5 6

Service
in fluid flow 

system time (ms)
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1 2 1 3 2 3 4 4 55 6Packet
system time

• Select the first packet that finishes in the fluid flow system



Implementation Challenge

• Need to compute the finish time of a 
packet in the fluid flow system…

• … but the finish time may change as 
new packets arrive!
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new packets arrive!

• Need to update  the finish times of all 
packets that are in service in the fluid 
flow system when a new packet arrives

–But this is very expensive; a high speed 
router may need to handle hundred of 
thousands of flows!



Example

• Four flows, each with weight 1
Flow 1

time

time

time

time

Flow 2

Flow 3

Flow 4
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time
ε

Flow 4

0 1 2 3

Finish times computed at time 0

time

time

Finish times re-computed at time ε

0 1 2 3 4



Approach #5: 
Self-Clocked Fair Queuing

A 9 8 7 6 5 4 3 2 1

4 3 2 1

Output queue
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2 1

Virtual time

Real time (or, # bits processed)

1



Solution: Virtual Time

• Key Observation: while the finish times of 
packets may change when a new packet 
arrives, the order in which packets finish 
doesn’t!

26

doesn’t!

–Only the order is important for scheduling

• Solution: instead of the packet finish time 
maintain the  round # when a packet 
finishes (virtual finishing time)

–Virtual finishing time doesn’t change when a 
packet arrives



Example

• Suppose each packet is 1000 bits, so takes 1000 

Flow 1

time

time

ε

time

time

Flow 2

Flow 3

Flow 4
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• Suppose each packet is 1000 bits, so takes 1000 
rounds to finish

• So, packets of F1, F2, F3 finishes at virtual time 
1000

• When packet F4 arrives at virtual time 1 (after 
one round), the virtual finish time of packet F4 is 
1001

• But the virtual finish time of packet F1,2,3 
remains 1000

• Finishing order is preserved



System Virtual Time (Round #): V(t)

• V(t) increases inversely proportionally to the sum of the 
weights of the backlogged flows
– During one tick of V(t), all backlogged flows can transmit one bit 

• Since round # increases slower when there are more flows 
to visit each round.

Flow 1 (w1 = 1)

time
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1 2 3
1 2

4
3 4

5
5 6

Flow 2 (w2 = 1)

time

time

C

C/2V(t)



Is Fair Queuing perfectly fair?

• No. Example: Once we begin transmission of 
a packet, it’s possible a new packet arrives 
that would have a smaller finishing time than 
the current packet

– FQ is non-preemptive, so keep transmitting – FQ is non-preemptive, so keep transmitting 
current packet

• However, if a packet is sitting in an output 
queue with its finish time calculated, and a 
new packet arrives with a sooner finish time, 
the new packet will be sent first
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Fair Queueing Implementation

• Define

– - virtual finishing time of packet k of flow i

– - arrival time of packet k of flow i

– - length of packet k of flow i

–weight of flow i

k
iL

k
ia

k
iF
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– wi –weight of flow i

• The finishing time of packet k+1 of flow i is

• Smallest finishing time first scheduling policy

111 )),(max( +++ += k
i

k
i

k
i

k
i LFaVF / wi



Properties of WFQ

• Guarantee that any packet is 
transmitted within 
packet_length/link_capacityof its 
transmission time in the fluid flow 
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transmission time in the fluid flow 
system

–Can be used to provide guaranteed services

• Achieve fair allocation

–Can be used to protect well-behaved flows 
against malicious flows



Fair Queuing Tradeoffs

• FQ can control congestion by monitoring flows

– Non-adaptive flows can still be a problem – why?

• Complex state

– Must keep queue per flow
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– Must keep queue per flow

• Hard in routers with many flows (e.g., backbone routers)

• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation

– Classification into flows may be hard

– Must keep queues sorted by finish times

– Finish times change whenever the flow count changes



Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants
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• Other FQ variants



Core-Stateless Fair Queuing

• Key problem with FQ is core routers

– Must maintain state for 1000’s of flows

– Must update state at Gbps line speeds

• CSFQ (Core-Stateless FQ) objectives
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– Edge routers should do complex tasks since they 
have fewer flows

– Core routers can do simple tasks

• No per-flow state/processing � this means that core 

routers can only decide on dropping packets not on 
order of processing

• Can only provide max-min bandwidth fairness not delay 
allocation



Core-Stateless Fair Queuing

• Edge routers keep state about flows 
and do computation when packet 
arrives

• DPS (Dynamic Packet State)
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• DPS (Dynamic Packet State)

– Edge routers label packets with the result 
of state lookup and computation

• Core routers use DPS and local 
measurements to control processing of 
packets



Edge Router Behavior

• Monitor each flow i to measure its 
arrival rate (ri)

– EWMA of rate

– Non-constant EWMA constant 
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– Non-constant EWMA constant 

• e-T/K where T = current interarrival, K = 
constant

• Helps adapt to different packet sizes and arrival 
patterns

• Rate is attached to each packet



Core Router Behavior

• Keep track of fair share rate α
– Increasing α does not increase load (F) by 
N * α

– F(α) = Σi min(ri, α) � what does this look 
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– F(α) = Σi min(ri, α) � what does this look 

like?

– Periodically update α
– Keep track of current arrival rate

• Only update α if entire period was congested or 
uncongested

• Drop probability for packet = max(1-
α/r, 0)



F vs. Alpha

C [linked capacity]

F
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New alpha
r1 r2 r3 old alpha

alpha



Estimating Fair Share

• Need F(α) = capacity = C
– Can’t keep map of F(α) values � would require 

per flow state

– Since F(α) is concave, piecewise-linear
• F(0) = 0 and F(α) = current accepted rate = F
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• F(0) = 0 and F(α) = current accepted rate = Fc
• F(α) = Fc/ α
• F(αnew) = C � αnew = αold * C/Fc

• What if a mistake was made?

– Forced into dropping packets due to buffer 
capacity

– When queue overflows α is decreased slightly



Other Issues

• Punishing fire-hoses – why?

– Easy to keep track of in a FQ scheme

• What are the real edges in such a 
scheme?
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scheme?

– Must trust edges to mark traffic accurately

– Could do some statistical sampling to see if 
edge was marking accurately



Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants
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• Other FQ variants



Stochastic Fair Queuing

• Compute a hash on each packet

• Instead of per-flow queue have a queue 
per hash bin

• An aggressive flow steals traffic from • An aggressive flow steals traffic from 
other flows in the same hash

• Queues serviced in round-robin fashion
– Has problems with packet size unfairness

• Memory allocation across all queues
– When no free buffers, drop packet from 
longest queue
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Deficit Round Robin

• Each queue is allowed to send Q bytes per 
round

• If Q bytes are not sent (because packet is too 
large) deficit counter of queue keeps track of 
unused portion
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unused portion

• If queue is empty, deficit counter is reset to 0

• Uses hash bins like Stochastic FQ

• Similar behavior as FQ but computationally 
simpler
– Bandwidth guarantees, but no latency guarantees



Deficit Round Robin
Example

1500

800

Deficit=0

1. Increment deficit counter by 
Quantum Size

2. Send packet if size is greater than 
deficit

3. When you send a packet, 
subtract its size from the deficit

Quantum Size = 1000

1000
2000

500

Matthew Caesar (caesar@uiuc.edu) 44

800

1200

Deficit=0

Deficit=0
1000

1000

2000

200 Outbound queue

800



Self-clocked Fair Queuing

• Virtual time to make computation of 
finish time easier

• Problem with basic FQ
– Need be able to know which flows are 
really backlogged
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– Need be able to know which flows are 
really backlogged
• They may not have packet queued because 
they were serviced earlier in mapping of bit-by-
bit to packet

• This is necessary to know how bits sent map 
onto rounds

• Mapping of real time to round is piecewise 
linear � however slope can change often



Self-clocked FQ

• Use the finish time of the packet being 
serviced as the virtual time

– The difference in this virtual time and the 
real round number can be unbounded
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real round number can be unbounded

• Amount of service to backlogged flows 
is bounded by factor of 2



Start-time Fair Queuing

• Packets are scheduled in order of their 
start not finish times

• Self-clocked � virtual time = start time 

of packet in service
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of packet in service

• Main advantage � can handle variable 

rate service better than other schemes



Mobility models
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Entity model: Random Walk

• A mobile node moves from its current 
location to a new location by randomly 
choosing a direction and speed in which to 
travel.

• Random Walk is a memoryless mobility 
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• Random Walk is a memoryless mobility 
pattern. This characteristic can generate 
unrealistic movements such as sudden stops 
and sharp turns



Random Walk Example

EECS 600 Advanced Network 
Research, Spring 2005
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Entity model: Random Waypoint

• The Random Waypoint Mobility Model includes pause 
times between changes in direction and/or speed.
– A mobile node stays in one location for a certain period of time 

(i.e., a pause time).
– Once this time expires, the node chooses a random destination 

in the simulation area and a speed that is uniformly distributed 
between [minspeed,maxspeed]. The node then travels toward 
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between [minspeed,maxspeed]. The node then travels toward 
the newly chosen destination at the selected speed.

– Repeat above two steps

• Often in the model, the nodes are initially distributed 
randomly around the simulation area. This initial random 
distribution of MNs is not representative of the manner 
in which nodes distribute themselves when moving.



Random Waypoint Example

EECS 600 Advanced Network 
Research, Spring 2005
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Other variants

• Restricted Random Waypoint Model
– Observation: on earth, there are obstacles to node movement

• E.g., Buildings, trees

• Nodes cannot walk through these obstacles

– Place a set of obstacles

– Choose waypoint direction randomly, but truncate length to avoid going 
through an obstacle

• The Reference Point Group Mobility (RPGM) model 
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• The Reference Point Group Mobility (RPGM) model 
– Observation: in practice, nodes move as groups

• E.g., cell phones on a train

– Nodes associated into groups, groups move collectively

– Individual nodes move around with small offsets to the group’s movement

• City Section Mobility model
– Observation: users on cars have very specific mobility pattern

• Eg., can’t go faster than car in front of you, cars collectively slow down/speed up, 
cars traverse grid-like pattern of streets

– Nodes move in car-like patterns



Challenges with mobility models

• Distributions of node speed, position, 
distances, etc change with time

• E.g., random waypoint:
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100 users average

1 user
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Challenges with mobility models

• Distributions of node speed, position, 
distances, etc change with time

– E.g., distribution of node position under random 
waypoint:

55Time = 0 sec Time = 2000 sec



Finishing up DHTs
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Security issues

• Sybil attacks
– Malicious node pretends to be many nodes
– Can take over large fraction of ID space, files

• Eclipse attacks• Eclipse attacks
– Malicious node intercepts join requests, replies 
with its cohorts as joining node’s fingers

• Solutions:
– Perform several joins over diverse paths, PKI, 
leverage social network relationships, audit by 
sharing records with neighbors



One-hop DHTs

• Idea: maintain global state of all nodes

– Might get this for free (link state routing)

– Hash over all visible nodes

• Benefits:• Benefits:

– Reduces number of hops to reach a key

– “Worth it” when node lifetimes 
weeks/months, when hundreds/thousands 
of lookups/second per node

– Used in Amazon dynamo, cluster load 
balancing Matthew Caesar (caesar@uiuc.edu) 58



Consistent Hashing:
Background

• Hash table: maps identifiers to keys
– Hash function used to transform key to index 
(slot)

– To balance load, should ideally map each key to 
different index

• Distributed hash tables
– Stores values (e.g., by mapping keys and values 
to servers)

– Used in distributed storage, load balancing, peer-
to-peer, content distribution, multicast, anycast, 
botnets, BitTorrent’s tracker, etc.
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Background: hashing

00

hashes

01

02

function

Ahmed

Yan

keys

02

04
03
02

04
05...

08

Yan

John

Viraj



Example

00

hashes

01

02
03
04

function

Yan

Ahmed

keys

A   H    M   E   D

Y    A   N
89+65+78=232
232%9=7

00

02

65+72+77+69+68=351
351%9=0 351%8=1

232%8=1

Ahmed

Viraj
01

02

• Example: Sum ASCII digits, mod number of bins

• Problem: failures cause large shifts

04
05

John

Viraj

232%9=7

J    O   H    N
74+79+72+78=303
303%9=6

V    I    R    A    J
86+73+82+65+74=380
380%9=2

06
07
08

06
07

232%8=1

303%8=2

380%8=2

Yan

John
04

05

06
07

___________________



Solution: Consistent Hashing

• Hashing function that reduces churn

• Addition or removal of one slot does not 
significantly change mapping of keys to slots

• Good consistent hashing schemes change • Good consistent hashing schemes change 
mapping of K/N entries on single slot addition

– K: number of keys

– N: number of slots

• E.g., map keys and slots to positions on circle

– Assign keys to closest slot on circle



Solution: Consistent Hashing

hashesfunction

Yan

Ahmed

keys

Y    A   N
89+65+78=232
232%100=32

A   H    M   E   D
65+72+77+69+68=351
351%100=51

04
08
26
27
35

• Slots have IDs selected randomly from [0,100]

• Hash keys onto same space, map key to closest bin

• Less churn on failure � more stable system

John

Viraj

232%100=32

J    O   H    N
74+79+72+78=303
303%100=3

V    I    R    A    J
86+73+82+65+74=380
380%100=80

35
41
47
65
70
81


