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Fault-Tolerant Broadcast of Routing 
Information 

R a d i a  Pe r lman  
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01876, USA 

An algorithm is presented for the reliable broadcast of 
routing information throughout a network. The algorithm an- 
ticipates the possibility of long-delayed packets, line and node 
outages, network partitions, hardware failures, and a history of 
arbitrarily corrupted databases throughout the network, After 
any failure, the algorithm stabilizes in reasonable time without 
human intervention, once any malfunctioning equipment is 
repaired or disconnected. The algorithm also has the ad- 
vantages of not requiring frequent control traffic in the absence 
of topological changes, not imposing artificial delays on nodes 
upon startup, and not relying on timers in ordinary operation. 
The algorithm is compared to a functionally similar algorithm 
in the ARPANET. 
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1. Introduction 

This paper assumes the kind of routing scheme 
(such as currently in operation in the ARPANET)  
in which each node in the network ascertains the 
state of the links to its neighbors, and reports that 
information in a Link State Packet, which is 
broadcast to all the other nodes in the network. 
Each node in the network keeps in its database the 
latest Link State Packet from every node in the 
network. Thus each node's database contains a 
complete map of the network. With this complete 
map, a node can compute routes using an algo- 
rithm such as Dijkstra's algorithm [1]. Correct 
routing requires that all nodes agree on the map of 
the network. 

This paper uses the ARPANET routing broad- 
cast scheme as a comparison, and shows how 
certain modifications to that scheme can yield 
improvements of self-stabilization, decreased over- 
head, and higher reliability. 

The principles behind the scheme in this paper 
are: 

1. After any failure, including arbitrarily cor- 
rupted databases due to unknown or even mali- 
cious causes, the algorithm should stabilize in rea- 
sonable time to correct routes, without human 
intervention, once any malfunctioning equipment 
is repaired or disconnected. 

Note that it is impossible to design an algo- 
rithm that functions correctly in the presence of 
continuous malfunction, because that implies an 
algorithm that functions correctly even if the algo- 
rithm is changed into a different algorithm. Thus, 
it is possible for a node to fail in such a way as to 
require human intervention to discover and dis- 
connect the node. However, it is still important to 
design an algorithm that self-stabilizes once 
malfunctions cease. Otherwise, an intruder could 
inject a few well-chosen packets into a net and 
bring the net down long after he has left the scene. 
In the case of malfunctions, it is often the case (as 
in the ARPANET bug related in [3]) that malfunc- 
tioning equipment will crash completely soon after 
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acting erratically. Thus even though the algorithm 
cannot function during the presence of malice or 
certain types of malfunctions, an algorithm that 
recovers by itself once malfunctions cease is much 
more likely not to require human intervention. 

2. "Low probability" events cannot be ignored. 
In a network, low probability events do occur. The 
ARPANET incident described in [3] was due to 
low probability events. This failure took 1½ years 
of operation to occur in the ARPANET.  However, 
the ARPANET is only a single network. With a 
design that is used in a network product, many 
networks will be running with the design. Any 
low-probability events that can cause disasters are 
much more likely to occur, of course, the longer a 
design is in operation, and the more places in 
which it is operating. 

Low probability events should not cause perma- 
nent catastrophe, though it is tolerable for the 
network to require some amount of time to auto- 
matically recover from a low probability event. 

3. Timers should be avoided, if possible, since 
they can be set incorrectly. Although the timer 
values might work at first, they can fail years later 
when the network has evolved with more nodes, 
different speed lines, etc. Debugging occasional 
timing problems that would then ensue would be 
very difficult, especially if enough time has elapsed 
that the network designers are no longer available. 

4. Timers which cannot be eliminated from the 
design should have a large safe space from which 
to be chosen, so that the design can be exported to 
a network with different characteristics, so that the 
design will continue to work as the network evolves, 
and so that skews in local clocks will not impact 
performance. 

5. Correct operation should not be delayed for 
timeout periods, except after a low probability 
event. For example, nodes should not be artifi- 
cially constrained to wait a timeout interval upon 
restart before returning to operation. 

6. The algorithm should minimize control traffic. 
The algorithm does not assume the existence of 

special hardware such as globally synchronized 
clocks, or local clocks with battery backup. 

In the section "Basic Scheme", we present the 
general idea behind the broadcast scheme. The 
basic scheme applies both to the AR P ANET de- 
sign, and to the design recommended in this paper. 
In the section "Design Details", we present the 
ARPANET scheme in detail, and describe modifi- 

cations to that design to yield increased robust- 
ness, flexibility, and efficiency. 

2. Basic Scheme 

2.1. Propagation of Link State Packets 

Propagation of routing information should not 
depend upon routing in a network being correct, 
for obvious reasons. A simple, fairly efficient 
method of distributing routing information is by 
"intelligent flooding". "Flooding" means that a 
node broadcasts a Link State Packet on all its 
links except for the one on which it was received. 
"Intelligent flooding" means that the node rec- 
ognizes duplicates, and does not flood a packet 
unless it is a new packet. 

With intelligent flooding, assuming no need for 
retransmissions, each packet will traverse each link 
at most twice, o n c e  in each direction. (Usually 
each packet will traverse each link once, but a 
packet can traverse a link between A and B twice 
if A sends the packet to B while B's transmission 
to A is in progress.) 

Intelligent flooding is used in the current AR- 
PANET scheme, and it is used in the scheme 
presented in this paper. However, the most dif- 
ficult part of the scheme is determining whether a 
received packet is older or newer than the packet 
stored in the database. 

2.2. Recognizing Most Recent Information 

2.2.1. Globally Synchronized Clocks. 
In a network with globally synchronized clocks, 

Link State Packets could be timestamped by the 
source upon generation. Then it would be easy to 
compare a received Link State Packet with a previ- 
ously received Link State Packet stored in the 
database, and the one with the later t imestamp 
would be the more recent packet. 

The timestamp will be a finite length field, so 
eventually it will wrap around (unless it is many 
bits long). However, each node can periodically 
scan its database for Link State Packets that are 
very old, and purge them long before a new time- 
stamp could look old because of wrap-around. 

Global clocks can also safeguard against faulty 
timestamps. If a node (due to hardware fault or 
other causes) issued a Link State Packet with an 
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incorrect t imestamp indicating the packet was 
created far in the future, the other nodes would be 
able to detect the problem and prevent such a 
Link State Packet from being propagated. 

Most networks do not, however, have globally 
synchronized clocks. 

2.2.2. Local Clocks. 
If each node in the network had a local clock 

that was guaranteed to be monotonically increas- 
ing, even when the node was down, Link State 
Packets could be timestamped by the source with 
the local clock. 

However, given that the timestamp is a finite 
length field, a node could be down for long enough 
for the timestamp to wrap around, so that when 
the node came up again, its new Link State Packets 
could look old. With local timestamps (as opposed 
to globally synchronized clocks), the t imestamp 
alone would not be enough information for a 
distant node to determine how long ago the packet 
was generated, because the timestamp has mean- 
ing only to the source node. 

The local t imestamp could be a large enough 
field so that for all practical purposes it would 
never wrap around. However, a hardware fault or 
data corruption at the source node S could cause 
the high order bits to be set in S's timestamp. Also, 
a hardware fault, malice, or data corruption in a 
distant node could cause a faulty timestamp for S, 
with the high order bits set, to be propagated 
throughout the net. With a global clock, this would 
be easily detected and corrected, but this is not 
easily done with local clocks. Therefore, the possi- 
bility of wrap-around must be considered no matter 
how large the field. Thus local clocks are not much 
of a simplification over sequence numbers (to be 
described below), and require hardware that is not 
always available in packet switches. Thus a se- 
quence number scheme, as described below, is 
assumed for the rest of the paper. 

2.2.3. Sequence Numbers 
Each node A maintains a counter (known as a 

sequence number) and increments the sequence 
number each time it generates a Link State Packet, 
marking the Link State Packet with the sequence 
number. When distant node B receives a Link 
State Packet from A, B compares the sequence 
number with the one it has stored in its database 
from the last Link State Packet received from A. 

Assuming the sequence number field is large 
enough (e.g., 64 bits at one message/millisecond 
would take > 500 million years to wrap around), 
wrap-around would not occur under normal cir- 
cumstances. However a hardware fault or other 
data corruption could set the high order bits. Also, 
a node (possibly maliciously) could inject a Link 
State Packet into the network with source ID A 
and a sequence number with the high order bits 
set. 

Thus it is possible for the field to get incre- 
mented to the maximum value. When the field 
does increment to the maximum value, something 
must be done. Basically there are two choices: 
1. attempt to reset, or 
2. wrap around. 

Resetting is very difficult. Assume some sort of 
"reset"  packet. The reset packets must be flooded 
somehow to ensure that all nodes are reset. Old 
duplicate reset packets that might emerge after a 
reset would cause a whole new reset operation. 
And worse yet, a node that was isolated from the 
net at the time of the reset would still have the 
high value for the sequence number, so there is no 
way to ensure that the reset will reach all nodes. 

Thus we assume nodes cannot make a simple 
arithmetic comparison of sequence numbers, but 
must treat the sequence number space as a circular 
space. 

In a circular sequence number space, assuming 
the sequence number space to be of size n, and 
numbers a and b are being compared, the ordering 
LT (less than) is defined by: 
a L T b i f a < b ,  a n d b - a < n / 2 ,  

or 
a > b, and a -  b > n/2.  

There are problems with this simple scheme. 
1. Node A goes down and comes back up. Since 

A does not know which sequence number it was 
using before it crashed, it might choose a sequence 
number that looked old compared to the sequence 
number it was using before the crash. Then A's 
packets will not be believed until A's sequence 
number increments past the old sequence numbers 
issued before the crash. 

2. The net partitions. Suppose the network parti- 
tioned into East and West, with node A a member 
of West. East would not receive any Link State 
Packets from A during the partition, and during 
that time A could issue n / 2  Link State Packets, 
received by the nodes in West. When the network 
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reformed, the new Link State Packets from A 
would look old to the nodes in East. 

3. A sequence number is corrupted by another 
node. Some node D in the network might, due to a 
hardware problem, corrupt the sequence number 
on A's Link State Packet, causing it to be greater 
than the true value, and then to nodes downstream 
from D relative to A, A's Link State Packets 
would look old, until A's sequence number incre- 
mented past D's corrupted value. This type of 
error might not be detected by Data Link Layer 
CRC, because it might have occurred in D's mem- 
ory, and not during transmission of the packet. 

4. A sequence number is corrupted by the source 
node. Node A, due to hardware problems, might 
issue Link State packets for itself with arbitrary 
sequence numbers. This problem actually occurred 
in the ARPANET [3]. The result was that after A 
was repaired there was no value A could choose 
for a sequence number that would look new to all 
nodes in the network. 

Thus sequence numbers do not give sufficient 
information to determine which of two packets is 
newer. It is necessary to add an age field to the 
Link State Packet. The purpose of the age field is 
to give the network enough information to purge 
an old Link State Packet before the source node's 
sequence number can wrap around, and to ensure 
that any Link State Packet will eventually cease to 
exist. 

3. Design Details 

3.1. The A R P A N E T  Approach 

3.1.1. Age Field Rules 
1. When a Link State Packet is created, the age 

field in the packet is set to a max value, MAX- 
AGE, by the source node S. 

2. When S's Link State Packet is accepted by 
another node, T, T copies the age field from the 
received packet, and decrements it according to 
holding time at T. The clock resolution in the 
A R P A N E T  is one tick every 8 seconds. Thus the 
age field is decremented by T after the packet has 
been held for 8 seconds. 

3. When the age decrements to 0, the age field is 
no longer decremented, and a packet with an age 
field of 0 is considered to be " too  old", and no 
longer propagated, although it is not purged from 

the database. A Link State Packet that has a 
nonzero age is always considered newer than a 
Link State Packet with a zero age, regardless of 
sequence number. 

4. A source node must issue a new Link State 
Packet within MAX-INT after the previous one. 

5. A node must wait an interval RESTART- 
TIME, for its old Link State Packets to expire, 
before it can restart. The parameters are: 

1. MAX-AGE, the amount of time a Link State 
Packet is considered valid since it was created by 
the source node (64 seconds, for the ARPANET),  
and 

2. MIN-INT,  the minimum interval allowed 
between creation of Link State Packets by the 
source node. 

3. n, the size of the sequence number space. 
Since it must not be possible for a source to issue 
Link State Packet numbered K + (n /2 )  before Link 
State Packet ~ K  has expired, n / 2  > MAX- 
A G E / M I N - I N T .  

4. MAX-INT,  the maximum interval allowed 
between creation of Link State Packets by the 
source node (60 seconds, for the ARPANET).  
MAX-INT must be less than [MAX-AGE minus 
the propagation time required for a Link State 
Packet from the source to reach all nodes in the 
network], so that the new Link State Packet will 
reach all nodes before the old one expires. (Once 
A's packet expires, nodes no longer exchange A's 
information, so new nodes will have incomplete 
databases until A issues a new Link State Packet.) 

5. RESTART-TIME,  the interval a node must 
wait after restarting, in a dormant state, waiting 
for its old Link State Packets to expire. RE- 
START-TIME must be greater than MAX-AGE. 
In the ARPANET,  RESTART-TIME is set at 90 
seconds. 

3.1.2. Flooding Rules 
1. If  the received packet is newer than the stored 

packet, flood. 
2. If the received packet is the same as the stored 

packet, treat it as an ACK and then discard it. 
3. If the received packet is older than the stored 

packet, discard it. 

3.2. Problems And Fixes 

In this section we describe potential problems 
in the ARPANET design, and give modifications 



R. Perlrnan / Fault-Tolerant Broadcast of Routing Information 399 

to the ARPANET scheme that would enhance its 
robustness and efficiency. 

3.2.1. Immortal Packets 
One problem with the ARPANET scheme de- 

scribed above is that it does not ensure that packets 
will age. If the clock resolution is coarse (8 seconds 
in the case of the ARPANET),  and a packet is 
held for less than a clock period before being 
transmitted to the next node, the next node will 
receive the packet without the packet having been 
aged at all. This can happen over many hops, and 
the error can accumulate. Even if the clock resolu- 
tion is not coarse, the age can be arbitrarily in 
error if the packet loops, being held a negligible 
time in each node, but being transmitted indefi- 
nitely between nodes. 

The looping problem actually occurred in the 
A R P A N E T  [3]. A source node, A, due to hardware 
problems, issued Link State Packets with three 
sequence numbers all around the sequence number 
circle, say 0, n/3 and 2n/3. Since the circular 
sequence number space is not well-ordered (there 
is no smallest number), 0 < n/3 < 2n/3 < O. A 
node X, having A's Link State Packet ~ 0  stored, 
would accept the Link State Packet ~n /3  as newer 
(and flood it to its neighbors), and subsequently 
accept Link State Packet ~ 2 n / 3  as newer, and 
subsequently accept Link State Packet ~ 0  as 
newer . . . .  Thus all three packets circulated indefi- 
nitely, and without increasing their ages, since the 
holding time at each node was shorter than the 
clock resolution. 

The solution is to require packets to age. If the 
clock resolution is sufficiently fine, it can be re- 
quired that every node increase the age. Otherwise, 
if the clock resolution is so coarse that it is unrea- 
sonable to require the packet to age at each hop, 
each node can decrement the age field with pseu- 
dorandomly generated probability x, where x is 
the fractional number of units the packet was held. 

If the age field in the AR P ANET had been 
forced to decrease in this way, the packets would 
have died out by themselves without human inter- 
vention, especially since the malfunctioning 
hardware failed completely soon after generating 
the offending packets. Instead, human interven- 
tion with a lot of effort by people very familiar 
with the implementation was required to fix the 
problem, even after it was diagnosed. 

3.2.2. Parameter Settings 
Another possible problem with the ARPANET 

aging mechanism is the criticality of parameter 
settings. MAX-AGE must be enough larger than 
MAX-INT to ensure that the new Link State 
Packet will reach all reachable nodes before the 
old packet expires. Propagation time across a hop 
can be much longer than expected because of long 
queues, contention for shared (e.g., CSMA) links, 
or if a packet must be retransmitted several times 
because of transmission errors. Also, a packet 
might age more quickly than the source expects, 
due to a distant node having a faster-running 
clock. Thus [MAX-AGE minus MAX-INT] must 
be fairly large. 

If MAX-INT is set very small, the overhead of 
having every node issuing Link State Packets so 
frequently might be excessive. This overhead be- 
comes more severe as the network grows in size. 
Thus it is desirable for MAX-INT to be as large as 
possible. 

If MAX-AGE is set very large, to give more 
room for setting the MAX-INT parameter, it will 
take longer to purge the net of old Link State 
Packets. This can be a problem in the ARPANET 
scheme because a node is not allowed to restart 
until all its old Link State Packets have timed out. 
Thus in the ARPANET scheme, since RESTART- 
TIME must be greater than MAX-AGE, MAX- 
A G E  must be kept as small as possible. 

Thus the goals are: 
1. Minimize MAX-AGE (to enable nodes to re- 

start in reasonable time). 
2. Maximize [MAX-AGE minus MAX-INT] (to 

prevent routing disruption if a Link State Packet 
expires before the next one reaches all parts of 
the net). 

3. Maximize MAX-INT (to cut down on control 
traffic overhead). 
These are basically conflicting goals, making 

the parameter settings very critical, if there even 
are settings that are reasonable. Although there 
may be parameter  settings that are satisfactory for 
the current ARPANET,  the tight bounds and in- 
terrelationships of the various timers make it dif- 
ficult or impossible to export the design to a 
network with different characteristics, and might 
even pose a problem as the ARPANET evolves. 

The solution is to remove the restriction (to be 
described in the section " R E S T A R T - T I M E  
Elimination") that nodes must remain dormant for 
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RESTART-TIME after restarting. 
Given that nodes do not have to wait RE- 

START-TIME,  MAX-AGE now is needed just to 
recover from low-probability events, so it can be 
set to the maximum amount of time considered 
tolerable for the net to recover from a low-proba- 
bility event. For most networks, a value on the 
order of an hour is quite reasonable for this pur- 
pose. 

Given that the MAX-AGE parameter  is much 
longer, the MAX-INT interval can be set much 
longer as well. A value of half MAX-AGE is very 
safe and reasonable, so MAX-INT can be on the 
order of a half-hour, as contrasted with being on 
the order of a minute under the AR P ANET 
scheme. 

Thus the amount of control traffic is vastly 
reduced, due to increasing MAX-INT,  and there is 
a large safe space for setting the two parameters 
MAX-AGE and MAX-INT.  

3.2.3. Premature Aging 
Another potential problem is that a node D 

could corrupt the age field in S's Link State Packet, 
or age the packet incorrectly so that the age is 
almost zero. Then S's packet might not make it 
through the entire network before it expires. Then 
the network can disagree about the contents of S's 
packet until S issues a new Link State Packet, and 
routing can be incorrect during that time. 

Also, since the aging mechanism is only an 
estimate, a large skew can develop among the 
estimated ages of a Link State Packet in different 
parts of the net. 

Any problem that might occur because of dif- 
ferent portions of the net disagreeing about when 
a Link State Packet has expired will be rectified 
once the source issues a new Link State Packet. 
However, it is safer and less timer-dependent to 
ensure that the nodes synchronize the event of 
packet expiration. 

Synchronization can be accomplished with the 
same flooding mechanism used for propagation of 
routing information. When node D notices that its 
copy of S's Link State Packet has aged to zero, D 
refloods the packet, with age zero, to D's neigh- 
bors. If a node N receives S's Link State Packet 
with zero age, which has the same sequence num- 
ber as the stored packet from S, N treats the 
received packet as a "new" packet, allows it to 
supersede the stored copy, and N floods the infor- 

mation to its neighbors. Thus the entire net will be 
forced to age the packet to zero virtually simulta- 
neously. If S is indeed alive and well, it will 
discover that the network is impatient for new 
information (by receipt of its own zero-aged 
packet), and S will issue a new Link State Packet. 

3.2.4. Old Packets 
Another potential problem is that old Link 

State Packets are kept in the database, but not 
propagated. Since this information is not ex- 
changed, nodes A and B can have different infor- 
mation in their databases about node S. This 
condition will remain until a new Link State Packet 
is received from S, which may not occur because S 
might be unreachable. If the information is used in 
routing calculation, incorrect routing can result. 
This will usually not be a problem because if a 
new Link State Packet has not been received from 
S, S is probably not reachable and its Link State 
Packet will not affect the routing. However, it is 
more consistent to either declare the information 
useless and erase it, or propagate it to ensure that 
all nodes agree. 

An important reason for erasing the informa- 
tion is that a node, due to hardware fault or even 
malice, can issue Link State Packets with random 
source IDs. Unless some mechanism exists to purge 
bad data, these Link State Packets would remain 
forever, cluttering up the databases of the other 
nodes. 

Expiration synchronization as described above 
requires a node D to hold onto an expired packet 
until it has successfully flooded the packet to its 
neighbors. However, it is safe for D to discard the 
packet after MAX-AGE time units after D de- 
cided the packet expired. 

Thus the expiration rules are: 
1. If the age field on S's Link State Packet expires 

while in memory, flood the packet, with age 
field zero, to all neighbors. 

2. If S's Link State Packet is received with age 
zero, then: 
1. If the sequence number matches the se- 

quence number of the stored and unexpired 
Link State Packet for S, accept the expired 
copy and flood it. 

2. If the sequence number does not match the 
sequence number of the stored Link State 
Packet, or if there is no Link State Packet 
stored for S, ignore the received Link State 
Packet 
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3. If MAX-AGE has elapsed since the packet 
expired in memory, or since an expired copy of 
the packet was accepted from a neighbor, dis- 
card the packet. 

3.2.5. Negative Ages 
Another potential problem is that if MAX-AGE 

is considerably less than the maximum value that 
can fit into the age field, a source, due to hardware 
error or other causes, could issue a bad Link State 
Packet with a value in the age field much larger 
than MAX-AGE. Then when the source was re- 
paired, its old, bad Link State Packets would not 
time out within MAX-AGE. There are numerous 
methods of preventing this from happening, given 
that the problem is recognized. One method (used 
in the ARPANET) is to mandate that MAX-AGE 
be the largest value that can 7~hysically be ex- 
pressed in the field. 

3.2.6. RESTART-TIME Elimination 
In the ARPANET, a node must wait RE- 

START-TIME upon restarting. Three modifica- 
tions to the ARPANET scheme eliminate this 
restriction: 
1. send a stored Link State Packet to neighbor N 

in response to receipt of an older Link State 
Packet received from N; 

2. use a lollipop-shaped sequence number space 
instead of a circular space; 

3. have a quick method of obtaining all current 
information upon restart. 
First we discuss the response to an older Link 

State Packet. If a node restarts, and chooses a 
sequence number that looks older than the se- 
quence number it had been using before, its new 
packets will not be believed until the old ones time 
out. The rule in the ARPANET is that a node 
must wait, upon restarting, the amount of time it 
takes for all old packets it had issued to time out 
before it is allowed to issue new packets. 

This approach has the consequence that a node 
is forced to wait some amount of time before 
reentering the network. On the ARPANET, it was 
assumed (falsely) that after 90 seconds all old 
packets would have timed out. Even if the AR- 
PANET design were fixed by forcing the age to 
increase at each hop as suggested (so that it could 
be assumed that all old packets would die out in 
some finite time), this solution would still be un- 
acceptable in many networks because of the large 

amount of time that would be necessary to wait 
upon restart. In the ARPANET, with a relatively 
small diameter and low delay lines, the amount of 
time might be tolerable, but in other networks the 
amount of time could easily be on the order of a 
half hour. [As explained above, RESTART-TIME 
> MAX-AGE > (MAX-INT + Propagation Time 
+ Maximum Possible Aging Error). If Propaga- 
tion Time and /o r  Aging Error is large, and /o r  if 
the network cannot tolerate a small value for 
MAX-INT, then RESTART-TIME must be large.] 

A method of eliminating the RESTART-TIME 
restriction is to modify the third flooding rule to: 
3. If the received packet is older than the stored 

packet, send the stored packet back across the 
link upon which the older packet was received. 
In this way, if node A is using a sequence 

number for itself that looks old to any portion of 
the net, A will be informed of the sequence num- 
ber that the rest of the network believes. Then A 
should (sometimes) switch to the newer-looking 
sequence number. 

We must guard against the case where, due to 
past history, three sequence numbers j, k, and l are 
extant in the network, with j < k < l <j .  If A 
always switched to a newer-looking sequence num- 
ber every time A heard on one, A would switch 
between j, k, l, j . . . . .  and the numbers would 
never age out because A would be constantly 
issuing new packets with each sequence number. 
Node A must never issue sequence numbers differ- 
ing by n/2  or more within MAX-AGE time. Thus 
within a time period of MAX-AGE, A may make 
jumps in the sequence number space totaling a 
parameter J, set to at most n/2  minus the number 
of Link State Packets A can issue within MAX- 
AGE. Thus J < n/2  - (MAX-AGE/MIN-INT) .  

Thus no matter what the previous history is, all 
A's old Link State Packets will die out within 
MAX-AGE, and A's real Link State Packets will 
then be believed. 

And in the case that a previous untimed-out 
Link State Packet has sequence number s, which is 
closer than J to that which A is using, A can 
immediately switch to sequence number s + 1 and 
have its Link State Packets believed. 

Next we discuss a lollipop-shaped sequence 
number space. With a circular sequence number 
space, there is no sequence number less than all 
other sequence numbers. Suppose there were a 
sequence number, s, less than all others. Then, 
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when a node A restarted, it could use sequence 
number s, and if any previously issued sequence 
number t was extant in the network, A would, by 
the scheme above, hear about it. A could safely 
switch to using sequence number t + 1, and the 
packet it had previously issued with sequence 
number s would not be mistaken for more recent 
since s was assumed to be less than any other 
sequence number. 

However, A might have time to issue several 
Link State Packets before hearing that it had been 
previously using sequence number t. The solution 
is a lollipop-shaped sequence number space, where 
sequence numbers start at some value, say minus 
k, and increment up to 0, and proceed from there 
to a circular space of non-negative numbers. The 
value k must be large enough so that A could not 
possibly issue k Link State Packets before any old 
Link State Packets it might have issued previously 
would age out. In other words, k must be more 
than the number of Link State Packets A can issue 
during MAX-AGE (k > M A X - A G E / M I N - I N T ) .  

The rules for sequence numbers in a lollipop 
shaped space are: Sequence numbers start at some 
value, say - k ,  and proceed to a circular space 
where numbers vary between 0 and n. Sequence 
number a LT b if and only if: 
1. a < O a n d a < b ,  or 
2. a > O , a < b ,  a n d b - a < n / 2 ,  or 
3. a > O , b > O , a > b ,  a n d a - b > n / 2 .  
Using a lollipop shaped sequence number space 
has the advantage that A can start with sequence 
number - k ,  and if A hears any other sequence 
number for itself A can immediately switch to 
that. The restriction in jump to J pertains only to 
the circular portion of the sequence number space. 
Thus the lollipop space makes it much less likely 
that a problem would occur in which A would 
have to wait for MAX-AGE to elapse, for its old 
Link State Packets to time out, before its new ones 
would be believed. 

In fact, the only events which could cause A to 
have to wait MAX-AGE are: 

A. Some node, due to incorrect operation, in 
the past issued Link State Packets with source ID 
A, and sequence numbers all around the circular 
space. 

B. An absurd sequence of carefully timed re- 
starts by A and network partitions occurred. An 
example: 
1. The network partitions East-West after A issues 

sequence #0 ,  with A in East. 
2. A issues b more Link State Packets before 

MAX-AGE has elapsed, so that East has se- 
quence ~ b  for A, and West has sequence ~ 0  
for A, with no packets yet expired. 

3. A restarts and the network partition ends at 
about the same time. 

4. A is informed of West's sequence # 0  first, and 
issues a Link State Packet with sequence 1. 

5. The network again partitions. 
6. A is then informed of the sequence ~b ,  and 

issues a Link State Packet with :~b + 1, and 
subsequently issues c more Link State Packets 
before MAX-AGE has elapsed. Thus East will 
have ~ b + c + 1 for A, and West will have ~ I 
for A. 
If this sequence of events repeats, the gap be- 

tween sequence numbers on unexpired packets can 
increase arbitrarily. Anyway, both these events are 
very low-probability events. 

Next we discuss obtaining current information 
upon restart. When a node restarts, it needs to 
reacquire the Link State Packets it had received 
and acknowledged before it crashed. 

The ARPANET a.ddresses this problem by re- 
quiring all nodes to issue Link State Packets fairly 
frequently (every 60 seconds). When a node re- 
starts, it first waits 90 seconds, with the assump- 
tion that during that time it will hear Link State 
Packets from all other nodes in the network. 

However, for some networks, the overhead of 
artificially requiring each node to frequently issue 
Link State Packets, even if their contents have not 
changed, may be excessive. 

A simple solution is to have a special packet 
that a node can send to a neighbor that means, 
"Assume I have not acknowledged any Link State 
Packets, so send them all to me." Then a node will 
not need to wait upon restart, and nodes will not 
be required to send Link State Packets at such a 
frequent rate just to solve the restart problem. 

An alternative to a special packet is to have 
node A mark node B as not having acknowledged 
any packets when the line to B goes down. Then A 
will automatically send all packets to B when the 
line comes back up. The only disadvantage of this 
scheme over the special packet scheme is that if it 
was really the line to B that went down, and not 
node B itself, then it would be unnecessary for A 
to resend all the information to B, that B had 
previously acknowledged, when the line came back 
up. 
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When the line from A to B comes up, it will be 
clogged for a time CLOG-TIME with routing mes- 
sages while A sends one Link State Packet for each 
node in the network to B. This is not a problem 
because: 

1. CLOG-TIME (the amount of time to send s 
packets, where s is the number of nodes in the net) 
will be orders of magnitude less than the amount 
of time a restarting node would be required to wait 
under the RESTART-TIME scheme. Depending 
on s and the speed of the link, CLOG-TIME 
should be at most on the order of a few seconds. 

2. The link from A to B was down for some 
duration which would probably be orders of mag- 
nitude longer than CLOG-TIME, so the clog of 
routing messages upon restart of a link would go 
unnoticed. 

3. CLOG-TIME is much less than the amount 
of time it takes for a Link State Packet to propa- 
gate throughout the entire net. Any traffic travers- 
ing link A-B is likely to encounter routing loops 
until the Link State Packets issued by A and B 
notifying the net of the newly recovered link reach 
all parts of the net. Thus it is probably desirable, 
and certainly not undesirable, for traffic to get 
held up for CLOG-TIME when the link recovers. 

4. When a link recovers, it is desirable to wait 
some amount of time to ensure it stays up. 
CLOG-TIME is probably very close to that amount 
of time. It is beneficial to exercise the link, by 
sending lots of packets when it first comes up, 
before issuing a Link State Packet to the rest of 
the net declaring the link up. 

3.2.7. Restarts 
There is still a problem associated with restart- 

ing of a node. For a period of time MAX-AGE 
after node A restarts, there is the possibility that 
there are still packets around the network, with 
age less than MAX-AGE, issued by A before the 
restart. The sequence number negotiation decribed 
above does not solve the complete problem. There 
are three cases: 

1. The sequence number A is now using is greater 
than the sequence number used before the restart. In 
this case, A's new packets will supersede the old 
ones, and there is no problem. 

2. The sequence number A is now using is less 
than the sequence number used before the restart. In 
this case, by the third flooding rule above, A will 
hear back the old packet, and will issue a new 

Link State Packet with sequence number one 
greater than the one heard (except in the very rare 
case that A has already made jumps in the circular 
sequence number space totaling J, and MAX-AGE 
must elapse before this case is solved). Thus except 
after very low-probability events, A will im- 
mediately skip to a sequence number big enough 
to supersede the old packets, and this case is not a 
problem. 

3. The sequence number A is now using is the 

same as the sequence number used before the restart. 
There are two possible causes: 
i. A previously had time only to issue one Link 

State Packet ( #  -k )  before crashing. When A 
restarts, it again restarts with sequence :~ -k .  

ii. A previously issued two Link State Packets, 
with sequence numbers b and b + 1, before it 
crashed. The b + 1 packet did not yet propagate 
throughout the net. When A restarts, A is in- 
formed of sequence number b first, and switches 
to :~b + 1. 

If A uses the same sequence number that already 
exists in the net, A's new Link State Packets will 
be treated as duplicates and ignored. 

If nothing is done about the third case, the 
network may have inconsistent databases until A 
issues a new Link State Packet (MAX-INT). Since 
this problem is a relatively low-probability event, 
it might be reasonable to allow MAX-INT to 
elapse before it is solved. However, there is a 
solution to the problem. 

The solution is not to treat a Link State Packet 
from A as being a duplicate merely because the 
sequence number matches the stored Link State 
Packet in the database, but to compare the data to 
ensure that the Link State Packet is, indeed, a 
duplicate. If it turns out that the data does not 
match, but the sequence numbers do, A must be 
informed, so that A can issue a Link State Packet 
with the next sequence number, which will super- 
sede the packets that the network disagrees about. 

But informing A is not a simple matter of 
sending a message to A, since it is very likely that 
routing to A will not work. (The network disagrees 
about the contents of A's Link State Packet.) Thus 
some means of flooding must be used to get the 
information back to A. 

The solution is to include a "confusion" bit in 
each Link State Packet. A Link State Packet with 
sequence number n and the confusion bit set is 
treated as having a sequence number between n 
and n + 1. 
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If  node D's stored Link State Packet for A has 
sequence number n, and another Link State Packet 
for A arrives with sequence number n and differ- 
ent data, D sets the confusion bit on A's Link 
State Packet, and floods the packet with the 
"newer"  sequence number (n, plus confusion). If 
node D has a Link State Packet for A with se- 
quence number n, and a Link State Packet for A 
arrives with sequence number n and the confusion 
bit, D accepts the packet as newer and floods it. If 
node D has a Link State Packet for A with se- 
quence number n and the confusion bit, and a 
Link State Packet arrives with sequence number 
n + 1, the arrived Link State Packet is treated as 
newer and flooded. Thus the confusion bit will get 
flooded in the same manner as a Link State Packet. 
When A gets the information that there is confu- 
sion about its sequence number n, A will issue a 
Link State Packet with sequence number n + 1, 
unless the information is out of date, since the last 
Link State Packet A issued had sequence number 
greater than n. If the information is out of date, A 
simply ignores it. 

Since the flooding scheme involves receiving 
many duplicates, it may be undesirable to require 
that every node check each Link State Packet for 
duplicates. There are two possible optimizations: 

1. If a data checksum is included as recom- 
mended below, nodes need only compare the data 
checksum field, and do not have to compare the 
entire contents of the packets. 

2. The problem can occur only for a period of 
MAX-AGE after a node restarts. A Link State 
Packet can contain a bit marking it as having been 
issued by a node which has been up for less than 
MAX-AGE. Link State Packets which are not so 
marked do not need to be compared. 

3.2.8. Eliminating Corruption 
To guard against fields in a Link State Packet 

from being corrupted in memory by distant nodes, 
a data checksum field can be added to the packet. 
This checksum should be computed by the source 
node and never recomputed by any other node. 
That implies that the age field and the confusion 
bit, which are modified by other nodes, must not 
be included in the checksum. 

Luckily, corruption of the age field is not a very 
serious event. If protection is deemed important 
for the age field, it can be provided by including 

two copies of the age field. For added safety, one 
copy should be the one's complement of the other, 
making it extremely unlikely that any hardware 
fault would corrupt both copies in a consistent 
manner. 

Luckily, corruption of the confusion bit is also 
not a serious event. If some node incorrectly set 
the confusion bit on S's packet, the Link State 
Packet with the confusion bit would propagate 
throughout the net, eventually reaching S, which 
would issue a new Link State Packet. Having a 
node incorrectly clear the confusion bit on S's 
packet is not a serious event unless it prevents S 
from receiving a copy of its own packet with the 
confusion bit set. Preventing S from receiving a 
copy is a very low-probability event since it re- 
quires all of the following to occur: 
• S restarts with a sequence number still extant in 

the network. (This can happen easily if S just 
had time to issue one Link State Packet, -~ - k ,  
before going down. This can also happen, but is 
less likely, if S had issued two Link State 
Packets, # b  and # b  + 1, right before crashing, 
and S recovered before # b +  1 had time to 
propagate throughout the net, and when S re- 
starts, it is informed of #b ,  but not of ~ b  + 1.) 

• A node D corrupts the confusion bit, but noth- 
ing else in the packet that would cause the 
data-checksum to catch the problem. 

• The corruption occurs before D has propagated 
the packet. 

• D does not subsequently receive a duplicate of 
the packet with the confusion bit set. 

• The network topology is such that S is reacha- 
ble from the portion of the network that dis- 
covered the confusion, only through D. 
This makes the event of sufficiently low proba- 

bility that it is tolerable to wait MAX-INT (during 
which time S will issue a new Link State Packet), 
for the network to recover. 

It is important to guard against a node A, due 
to hardware problems, issuing a Link State Packet 
claiming to be a different source node. Before 
issuing a Link State Packet A must check the ID 
in the Link State Packet it is about to issue against 
a copy of its ID stored elsewhere, to ensure that 
they match. In this way, if A has a mistaken 
notion of its own ID, or if A is pointing to the 
wrong place in memory for its packet, the mistake 
will probably be caught. 
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4. Summary 

This pape r  presents  a scheme for d is t r ibut ing  
rou t ing  in format ion  a round  a network.  The scheme 
is c o m p a r e d  to the current  A R P A N E T  scheme. 
Advan tages  of the scheme over  the current  AR-  

P A N E T  scheme are: 
1. There  are no art i f icial  de lays  imposed  on nodes 

upon  restart .  
2. Nodes  do not  need to f requent ly  generate  rout-  

ing traffic in the absence of  topologica l  changes.  
3. There  is less rel iance upon timers. Timers  that  

do exist are invoked only as backup  after  very 
low-probab i l i ty  events. There  is a large safe 
space from which to choose t imer values. 

4. Error  condi t ions  are less l ikely to occur, and  
those that  do occur are fixed by the network 

within reasonable  t ime without  human  inter-  

vention,  no mat te r  how low-probab i l i ty  the 
event  was that  caused the error, once the of- 
fending h a r d w a r e / s o f t w a r e  is repai red  or  
removed.  
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