
395

Fault-Tolerant Broadcast of Routing
Information

R a d i a Pe r lman
Digital Equipment Corp., 1925 Andover Street, Tewksbury, MA
01876, USA

An algorithm is presented for the reliable broadcast of
routing information throughout a network. The algorithm an-
ticipates the possibility of long-delayed packets, line and node
outages, network partitions, hardware failures, and a history of
arbitrarily corrupted databases throughout the network, After
any failure, the algorithm stabilizes in reasonable time without
human intervention, once any malfunctioning equipment is
repaired or disconnected. The algorithm also has the ad-
vantages of not requiring frequent control traffic in the absence
of topological changes, not imposing artificial delays on nodes
upon startup, and not relying on timers in ordinary operation.
The algorithm is compared to a functionally similar algorithm
in the ARPANET.

Keywords: Broadcast, Fault-tolerant. Routing, ARPANET,
Synchronization.

Radia Perlman is a Network Architect
for Digital Equipment Corporation,
working on design of network proto-
cols and algorithms for DECNET. She
was formerly at Bolt Beranek and
Newman, working on design and im-
plementation of protocols and algo-
rithms for the ARPA packet radio net,
the ARPA internet, the ARPA satellite
net, and the INTELPOST interna-
tional facsimile mail network. She re-
ceived the S.M. and S.B. degrees in
mathematics from the Massachusetts
Institute of Technology.

North-Holland
Computer Networks 7 (1983) 395-405

1. Introduction

This paper assumes the kind of routing scheme
(such as currently in operation in the ARPANET)
in which each node in the network ascertains the
state of the links to its neighbors, and reports that
information in a Link State Packet, which is
broadcast to all the other nodes in the network.
Each node in the network keeps in its database the
latest Link State Packet from every node in the
network. Thus each node's database contains a
complete map of the network. With this complete
map, a node can compute routes using an algo-
rithm such as Dijkstra's algorithm [1]. Correct
routing requires that all nodes agree on the map of
the network.

This paper uses the ARPANET routing broad-
cast scheme as a comparison, and shows how
certain modifications to that scheme can yield
improvements of self-stabilization, decreased over-
head, and higher reliability.

The principles behind the scheme in this paper
are:

1. After any failure, including arbitrarily cor-
rupted databases due to unknown or even mali-
cious causes, the algorithm should stabilize in rea-
sonable time to correct routes, without human
intervention, once any malfunctioning equipment
is repaired or disconnected.

Note that it is impossible to design an algo-
rithm that functions correctly in the presence of
continuous malfunction, because that implies an
algorithm that functions correctly even if the algo-
rithm is changed into a different algorithm. Thus,
it is possible for a node to fail in such a way as to
require human intervention to discover and dis-
connect the node. However, it is still important to
design an algorithm that self-stabilizes once
malfunctions cease. Otherwise, an intruder could
inject a few well-chosen packets into a net and
bring the net down long after he has left the scene.
In the case of malfunctions, it is often the case (as
in the ARPANET bug related in [3]) that malfunc-
tioning equipment will crash completely soon after

0376-5075/83/$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

396 R. Perlman / Fault-Tolerant Broadcast of Routing Information

acting erratically. Thus even though the algorithm
cannot function during the presence of malice or
certain types of malfunctions, an algorithm that
recovers by itself once malfunctions cease is much
more likely not to require human intervention.

2. "Low probability" events cannot be ignored.
In a network, low probability events do occur. The
ARPANET incident described in [3] was due to
low probability events. This failure took 1½ years
of operation to occur in the ARPANET. However,
the ARPANET is only a single network. With a
design that is used in a network product, many
networks will be running with the design. Any
low-probability events that can cause disasters are
much more likely to occur, of course, the longer a
design is in operation, and the more places in
which it is operating.

Low probability events should not cause perma-
nent catastrophe, though it is tolerable for the
network to require some amount of time to auto-
matically recover from a low probability event.

3. Timers should be avoided, if possible, since
they can be set incorrectly. Although the timer
values might work at first, they can fail years later
when the network has evolved with more nodes,
different speed lines, etc. Debugging occasional
timing problems that would then ensue would be
very difficult, especially if enough time has elapsed
that the network designers are no longer available.

4. Timers which cannot be eliminated from the
design should have a large safe space from which
to be chosen, so that the design can be exported to
a network with different characteristics, so that the
design will continue to work as the network evolves,
and so that skews in local clocks will not impact
performance.

5. Correct operation should not be delayed for
timeout periods, except after a low probability
event. For example, nodes should not be artifi-
cially constrained to wait a timeout interval upon
restart before returning to operation.

6. The algorithm should minimize control traffic.
The algorithm does not assume the existence of

special hardware such as globally synchronized
clocks, or local clocks with battery backup.

In the section "Basic Scheme", we present the
general idea behind the broadcast scheme. The
basic scheme applies both to the AR P ANET de-
sign, and to the design recommended in this paper.
In the section "Design Details", we present the
ARPANET scheme in detail, and describe modifi-

cations to that design to yield increased robust-
ness, flexibility, and efficiency.

2. Basic Scheme

2.1. Propagation of Link State Packets

Propagation of routing information should not
depend upon routing in a network being correct,
for obvious reasons. A simple, fairly efficient
method of distributing routing information is by
"intelligent flooding". "Flooding" means that a
node broadcasts a Link State Packet on all its
links except for the one on which it was received.
"Intelligent flooding" means that the node rec-
ognizes duplicates, and does not flood a packet
unless it is a new packet.

With intelligent flooding, assuming no need for
retransmissions, each packet will traverse each link
at most twice, o n c e in each direction. (Usually
each packet will traverse each link once, but a
packet can traverse a link between A and B twice
if A sends the packet to B while B's transmission
to A is in progress.)

Intelligent flooding is used in the current AR-
PANET scheme, and it is used in the scheme
presented in this paper. However, the most dif-
ficult part of the scheme is determining whether a
received packet is older or newer than the packet
stored in the database.

2.2. Recognizing Most Recent Information

2.2.1. Globally Synchronized Clocks.
In a network with globally synchronized clocks,

Link State Packets could be timestamped by the
source upon generation. Then it would be easy to
compare a received Link State Packet with a previ-
ously received Link State Packet stored in the
database, and the one with the later t imestamp
would be the more recent packet.

The timestamp will be a finite length field, so
eventually it will wrap around (unless it is many
bits long). However, each node can periodically
scan its database for Link State Packets that are
very old, and purge them long before a new time-
stamp could look old because of wrap-around.

Global clocks can also safeguard against faulty
timestamps. If a node (due to hardware fault or
other causes) issued a Link State Packet with an

R. Perlman / Fault-Tolerant Broadcast of Routing Information 397

incorrect t imestamp indicating the packet was
created far in the future, the other nodes would be
able to detect the problem and prevent such a
Link State Packet from being propagated.

Most networks do not, however, have globally
synchronized clocks.

2.2.2. Local Clocks.
If each node in the network had a local clock

that was guaranteed to be monotonically increas-
ing, even when the node was down, Link State
Packets could be timestamped by the source with
the local clock.

However, given that the timestamp is a finite
length field, a node could be down for long enough
for the timestamp to wrap around, so that when
the node came up again, its new Link State Packets
could look old. With local timestamps (as opposed
to globally synchronized clocks), the t imestamp
alone would not be enough information for a
distant node to determine how long ago the packet
was generated, because the timestamp has mean-
ing only to the source node.

The local t imestamp could be a large enough
field so that for all practical purposes it would
never wrap around. However, a hardware fault or
data corruption at the source node S could cause
the high order bits to be set in S's timestamp. Also,
a hardware fault, malice, or data corruption in a
distant node could cause a faulty timestamp for S,
with the high order bits set, to be propagated
throughout the net. With a global clock, this would
be easily detected and corrected, but this is not
easily done with local clocks. Therefore, the possi-
bility of wrap-around must be considered no matter
how large the field. Thus local clocks are not much
of a simplification over sequence numbers (to be
described below), and require hardware that is not
always available in packet switches. Thus a se-
quence number scheme, as described below, is
assumed for the rest of the paper.

2.2.3. Sequence Numbers
Each node A maintains a counter (known as a

sequence number) and increments the sequence
number each time it generates a Link State Packet,
marking the Link State Packet with the sequence
number. When distant node B receives a Link
State Packet from A, B compares the sequence
number with the one it has stored in its database
from the last Link State Packet received from A.

Assuming the sequence number field is large
enough (e.g., 64 bits at one message/millisecond
would take > 500 million years to wrap around),
wrap-around would not occur under normal cir-
cumstances. However a hardware fault or other
data corruption could set the high order bits. Also,
a node (possibly maliciously) could inject a Link
State Packet into the network with source ID A
and a sequence number with the high order bits
set.

Thus it is possible for the field to get incre-
mented to the maximum value. When the field
does increment to the maximum value, something
must be done. Basically there are two choices:
1. attempt to reset, or
2. wrap around.

Resetting is very difficult. Assume some sort of
"reset" packet. The reset packets must be flooded
somehow to ensure that all nodes are reset. Old
duplicate reset packets that might emerge after a
reset would cause a whole new reset operation.
And worse yet, a node that was isolated from the
net at the time of the reset would still have the
high value for the sequence number, so there is no
way to ensure that the reset will reach all nodes.

Thus we assume nodes cannot make a simple
arithmetic comparison of sequence numbers, but
must treat the sequence number space as a circular
space.

In a circular sequence number space, assuming
the sequence number space to be of size n, and
numbers a and b are being compared, the ordering
LT (less than) is defined by:
a L T b i f a < b , a n d b - a < n / 2 ,

or
a > b, and a - b > n/2.

There are problems with this simple scheme.
1. Node A goes down and comes back up. Since

A does not know which sequence number it was
using before it crashed, it might choose a sequence
number that looked old compared to the sequence
number it was using before the crash. Then A's
packets will not be believed until A's sequence
number increments past the old sequence numbers
issued before the crash.

2. The net partitions. Suppose the network parti-
tioned into East and West, with node A a member
of West. East would not receive any Link State
Packets from A during the partition, and during
that time A could issue n / 2 Link State Packets,
received by the nodes in West. When the network

398 R. Perlman / Fault-Tolerant Broadcast of Routing Information

reformed, the new Link State Packets from A
would look old to the nodes in East.

3. A sequence number is corrupted by another
node. Some node D in the network might, due to a
hardware problem, corrupt the sequence number
on A's Link State Packet, causing it to be greater
than the true value, and then to nodes downstream
from D relative to A, A's Link State Packets
would look old, until A's sequence number incre-
mented past D's corrupted value. This type of
error might not be detected by Data Link Layer
CRC, because it might have occurred in D's mem-
ory, and not during transmission of the packet.

4. A sequence number is corrupted by the source
node. Node A, due to hardware problems, might
issue Link State packets for itself with arbitrary
sequence numbers. This problem actually occurred
in the ARPANET [3]. The result was that after A
was repaired there was no value A could choose
for a sequence number that would look new to all
nodes in the network.

Thus sequence numbers do not give sufficient
information to determine which of two packets is
newer. It is necessary to add an age field to the
Link State Packet. The purpose of the age field is
to give the network enough information to purge
an old Link State Packet before the source node's
sequence number can wrap around, and to ensure
that any Link State Packet will eventually cease to
exist.

3. Design Details

3.1. The A R P A N E T Approach

3.1.1. Age Field Rules
1. When a Link State Packet is created, the age

field in the packet is set to a max value, MAX-
AGE, by the source node S.

2. When S's Link State Packet is accepted by
another node, T, T copies the age field from the
received packet, and decrements it according to
holding time at T. The clock resolution in the
A R P A N E T is one tick every 8 seconds. Thus the
age field is decremented by T after the packet has
been held for 8 seconds.

3. When the age decrements to 0, the age field is
no longer decremented, and a packet with an age
field of 0 is considered to be " too old", and no
longer propagated, although it is not purged from

the database. A Link State Packet that has a
nonzero age is always considered newer than a
Link State Packet with a zero age, regardless of
sequence number.

4. A source node must issue a new Link State
Packet within MAX-INT after the previous one.

5. A node must wait an interval RESTART-
TIME, for its old Link State Packets to expire,
before it can restart. The parameters are:

1. MAX-AGE, the amount of time a Link State
Packet is considered valid since it was created by
the source node (64 seconds, for the ARPANET),
and

2. MIN-INT, the minimum interval allowed
between creation of Link State Packets by the
source node.

3. n, the size of the sequence number space.
Since it must not be possible for a source to issue
Link State Packet numbered K + (n /2) before Link
State Packet ~ K has expired, n / 2 > MAX-
A G E / M I N - I N T .

4. MAX-INT, the maximum interval allowed
between creation of Link State Packets by the
source node (60 seconds, for the ARPANET).
MAX-INT must be less than [MAX-AGE minus
the propagation time required for a Link State
Packet from the source to reach all nodes in the
network], so that the new Link State Packet will
reach all nodes before the old one expires. (Once
A's packet expires, nodes no longer exchange A's
information, so new nodes will have incomplete
databases until A issues a new Link State Packet.)

5. RESTART-TIME, the interval a node must
wait after restarting, in a dormant state, waiting
for its old Link State Packets to expire. RE-
START-TIME must be greater than MAX-AGE.
In the ARPANET, RESTART-TIME is set at 90
seconds.

3.1.2. Flooding Rules
1. If the received packet is newer than the stored

packet, flood.
2. If the received packet is the same as the stored

packet, treat it as an ACK and then discard it.
3. If the received packet is older than the stored

packet, discard it.

3.2. Problems And Fixes

In this section we describe potential problems
in the ARPANET design, and give modifications

R. Perlrnan / Fault-Tolerant Broadcast of Routing Information 399

to the ARPANET scheme that would enhance its
robustness and efficiency.

3.2.1. Immortal Packets
One problem with the ARPANET scheme de-

scribed above is that it does not ensure that packets
will age. If the clock resolution is coarse (8 seconds
in the case of the ARPANET), and a packet is
held for less than a clock period before being
transmitted to the next node, the next node will
receive the packet without the packet having been
aged at all. This can happen over many hops, and
the error can accumulate. Even if the clock resolu-
tion is not coarse, the age can be arbitrarily in
error if the packet loops, being held a negligible
time in each node, but being transmitted indefi-
nitely between nodes.

The looping problem actually occurred in the
A R P A N E T [3]. A source node, A, due to hardware
problems, issued Link State Packets with three
sequence numbers all around the sequence number
circle, say 0, n/3 and 2n/3. Since the circular
sequence number space is not well-ordered (there
is no smallest number), 0 < n/3 < 2n/3 < O. A
node X, having A's Link State Packet ~ 0 stored,
would accept the Link State Packet ~n /3 as newer
(and flood it to its neighbors), and subsequently
accept Link State Packet ~ 2 n / 3 as newer, and
subsequently accept Link State Packet ~ 0 as
newer Thus all three packets circulated indefi-
nitely, and without increasing their ages, since the
holding time at each node was shorter than the
clock resolution.

The solution is to require packets to age. If the
clock resolution is sufficiently fine, it can be re-
quired that every node increase the age. Otherwise,
if the clock resolution is so coarse that it is unrea-
sonable to require the packet to age at each hop,
each node can decrement the age field with pseu-
dorandomly generated probability x, where x is
the fractional number of units the packet was held.

If the age field in the AR P ANET had been
forced to decrease in this way, the packets would
have died out by themselves without human inter-
vention, especially since the malfunctioning
hardware failed completely soon after generating
the offending packets. Instead, human interven-
tion with a lot of effort by people very familiar
with the implementation was required to fix the
problem, even after it was diagnosed.

3.2.2. Parameter Settings
Another possible problem with the ARPANET

aging mechanism is the criticality of parameter
settings. MAX-AGE must be enough larger than
MAX-INT to ensure that the new Link State
Packet will reach all reachable nodes before the
old packet expires. Propagation time across a hop
can be much longer than expected because of long
queues, contention for shared (e.g., CSMA) links,
or if a packet must be retransmitted several times
because of transmission errors. Also, a packet
might age more quickly than the source expects,
due to a distant node having a faster-running
clock. Thus [MAX-AGE minus MAX-INT] must
be fairly large.

If MAX-INT is set very small, the overhead of
having every node issuing Link State Packets so
frequently might be excessive. This overhead be-
comes more severe as the network grows in size.
Thus it is desirable for MAX-INT to be as large as
possible.

If MAX-AGE is set very large, to give more
room for setting the MAX-INT parameter, it will
take longer to purge the net of old Link State
Packets. This can be a problem in the ARPANET
scheme because a node is not allowed to restart
until all its old Link State Packets have timed out.
Thus in the ARPANET scheme, since RESTART-
TIME must be greater than MAX-AGE, MAX-
A G E must be kept as small as possible.

Thus the goals are:
1. Minimize MAX-AGE (to enable nodes to re-

start in reasonable time).
2. Maximize [MAX-AGE minus MAX-INT] (to

prevent routing disruption if a Link State Packet
expires before the next one reaches all parts of
the net).

3. Maximize MAX-INT (to cut down on control
traffic overhead).
These are basically conflicting goals, making

the parameter settings very critical, if there even
are settings that are reasonable. Although there
may be parameter settings that are satisfactory for
the current ARPANET, the tight bounds and in-
terrelationships of the various timers make it dif-
ficult or impossible to export the design to a
network with different characteristics, and might
even pose a problem as the ARPANET evolves.

The solution is to remove the restriction (to be
described in the section " R E S T A R T - T I M E
Elimination") that nodes must remain dormant for

400 R. Perlman / Fault-Tolerant Broadcast of Routing Information

RESTART-TIME after restarting.
Given that nodes do not have to wait RE-

START-TIME, MAX-AGE now is needed just to
recover from low-probability events, so it can be
set to the maximum amount of time considered
tolerable for the net to recover from a low-proba-
bility event. For most networks, a value on the
order of an hour is quite reasonable for this pur-
pose.

Given that the MAX-AGE parameter is much
longer, the MAX-INT interval can be set much
longer as well. A value of half MAX-AGE is very
safe and reasonable, so MAX-INT can be on the
order of a half-hour, as contrasted with being on
the order of a minute under the AR P ANET
scheme.

Thus the amount of control traffic is vastly
reduced, due to increasing MAX-INT, and there is
a large safe space for setting the two parameters
MAX-AGE and MAX-INT.

3.2.3. Premature Aging
Another potential problem is that a node D

could corrupt the age field in S's Link State Packet,
or age the packet incorrectly so that the age is
almost zero. Then S's packet might not make it
through the entire network before it expires. Then
the network can disagree about the contents of S's
packet until S issues a new Link State Packet, and
routing can be incorrect during that time.

Also, since the aging mechanism is only an
estimate, a large skew can develop among the
estimated ages of a Link State Packet in different
parts of the net.

Any problem that might occur because of dif-
ferent portions of the net disagreeing about when
a Link State Packet has expired will be rectified
once the source issues a new Link State Packet.
However, it is safer and less timer-dependent to
ensure that the nodes synchronize the event of
packet expiration.

Synchronization can be accomplished with the
same flooding mechanism used for propagation of
routing information. When node D notices that its
copy of S's Link State Packet has aged to zero, D
refloods the packet, with age zero, to D's neigh-
bors. If a node N receives S's Link State Packet
with zero age, which has the same sequence num-
ber as the stored packet from S, N treats the
received packet as a "new" packet, allows it to
supersede the stored copy, and N floods the infor-

mation to its neighbors. Thus the entire net will be
forced to age the packet to zero virtually simulta-
neously. If S is indeed alive and well, it will
discover that the network is impatient for new
information (by receipt of its own zero-aged
packet), and S will issue a new Link State Packet.

3.2.4. Old Packets
Another potential problem is that old Link

State Packets are kept in the database, but not
propagated. Since this information is not ex-
changed, nodes A and B can have different infor-
mation in their databases about node S. This
condition will remain until a new Link State Packet
is received from S, which may not occur because S
might be unreachable. If the information is used in
routing calculation, incorrect routing can result.
This will usually not be a problem because if a
new Link State Packet has not been received from
S, S is probably not reachable and its Link State
Packet will not affect the routing. However, it is
more consistent to either declare the information
useless and erase it, or propagate it to ensure that
all nodes agree.

An important reason for erasing the informa-
tion is that a node, due to hardware fault or even
malice, can issue Link State Packets with random
source IDs. Unless some mechanism exists to purge
bad data, these Link State Packets would remain
forever, cluttering up the databases of the other
nodes.

Expiration synchronization as described above
requires a node D to hold onto an expired packet
until it has successfully flooded the packet to its
neighbors. However, it is safe for D to discard the
packet after MAX-AGE time units after D de-
cided the packet expired.

Thus the expiration rules are:
1. If the age field on S's Link State Packet expires

while in memory, flood the packet, with age
field zero, to all neighbors.

2. If S's Link State Packet is received with age
zero, then:
1. If the sequence number matches the se-

quence number of the stored and unexpired
Link State Packet for S, accept the expired
copy and flood it.

2. If the sequence number does not match the
sequence number of the stored Link State
Packet, or if there is no Link State Packet
stored for S, ignore the received Link State
Packet

R. Perlman / Fault-Tolerant Broadcast of Routing Information 401

3. If MAX-AGE has elapsed since the packet
expired in memory, or since an expired copy of
the packet was accepted from a neighbor, dis-
card the packet.

3.2.5. Negative Ages
Another potential problem is that if MAX-AGE

is considerably less than the maximum value that
can fit into the age field, a source, due to hardware
error or other causes, could issue a bad Link State
Packet with a value in the age field much larger
than MAX-AGE. Then when the source was re-
paired, its old, bad Link State Packets would not
time out within MAX-AGE. There are numerous
methods of preventing this from happening, given
that the problem is recognized. One method (used
in the ARPANET) is to mandate that MAX-AGE
be the largest value that can 7~hysically be ex-
pressed in the field.

3.2.6. RESTART-TIME Elimination
In the ARPANET, a node must wait RE-

START-TIME upon restarting. Three modifica-
tions to the ARPANET scheme eliminate this
restriction:
1. send a stored Link State Packet to neighbor N

in response to receipt of an older Link State
Packet received from N;

2. use a lollipop-shaped sequence number space
instead of a circular space;

3. have a quick method of obtaining all current
information upon restart.
First we discuss the response to an older Link

State Packet. If a node restarts, and chooses a
sequence number that looks older than the se-
quence number it had been using before, its new
packets will not be believed until the old ones time
out. The rule in the ARPANET is that a node
must wait, upon restarting, the amount of time it
takes for all old packets it had issued to time out
before it is allowed to issue new packets.

This approach has the consequence that a node
is forced to wait some amount of time before
reentering the network. On the ARPANET, it was
assumed (falsely) that after 90 seconds all old
packets would have timed out. Even if the AR-
PANET design were fixed by forcing the age to
increase at each hop as suggested (so that it could
be assumed that all old packets would die out in
some finite time), this solution would still be un-
acceptable in many networks because of the large

amount of time that would be necessary to wait
upon restart. In the ARPANET, with a relatively
small diameter and low delay lines, the amount of
time might be tolerable, but in other networks the
amount of time could easily be on the order of a
half hour. [As explained above, RESTART-TIME
> MAX-AGE > (MAX-INT + Propagation Time
+ Maximum Possible Aging Error). If Propaga-
tion Time and /o r Aging Error is large, and /o r if
the network cannot tolerate a small value for
MAX-INT, then RESTART-TIME must be large.]

A method of eliminating the RESTART-TIME
restriction is to modify the third flooding rule to:
3. If the received packet is older than the stored

packet, send the stored packet back across the
link upon which the older packet was received.
In this way, if node A is using a sequence

number for itself that looks old to any portion of
the net, A will be informed of the sequence num-
ber that the rest of the network believes. Then A
should (sometimes) switch to the newer-looking
sequence number.

We must guard against the case where, due to
past history, three sequence numbers j, k, and l are
extant in the network, with j < k < l <j . If A
always switched to a newer-looking sequence num-
ber every time A heard on one, A would switch
between j, k, l, j and the numbers would
never age out because A would be constantly
issuing new packets with each sequence number.
Node A must never issue sequence numbers differ-
ing by n/2 or more within MAX-AGE time. Thus
within a time period of MAX-AGE, A may make
jumps in the sequence number space totaling a
parameter J, set to at most n/2 minus the number
of Link State Packets A can issue within MAX-
AGE. Thus J < n/2 - (MAX-AGE/MIN-INT) .

Thus no matter what the previous history is, all
A's old Link State Packets will die out within
MAX-AGE, and A's real Link State Packets will
then be believed.

And in the case that a previous untimed-out
Link State Packet has sequence number s, which is
closer than J to that which A is using, A can
immediately switch to sequence number s + 1 and
have its Link State Packets believed.

Next we discuss a lollipop-shaped sequence
number space. With a circular sequence number
space, there is no sequence number less than all
other sequence numbers. Suppose there were a
sequence number, s, less than all others. Then,

402 R. Perlman / Fault-Tolerant Broadcast of Routing Information

when a node A restarted, it could use sequence
number s, and if any previously issued sequence
number t was extant in the network, A would, by
the scheme above, hear about it. A could safely
switch to using sequence number t + 1, and the
packet it had previously issued with sequence
number s would not be mistaken for more recent
since s was assumed to be less than any other
sequence number.

However, A might have time to issue several
Link State Packets before hearing that it had been
previously using sequence number t. The solution
is a lollipop-shaped sequence number space, where
sequence numbers start at some value, say minus
k, and increment up to 0, and proceed from there
to a circular space of non-negative numbers. The
value k must be large enough so that A could not
possibly issue k Link State Packets before any old
Link State Packets it might have issued previously
would age out. In other words, k must be more
than the number of Link State Packets A can issue
during MAX-AGE (k > M A X - A G E / M I N - I N T) .

The rules for sequence numbers in a lollipop
shaped space are: Sequence numbers start at some
value, say - k , and proceed to a circular space
where numbers vary between 0 and n. Sequence
number a LT b if and only if:
1. a < O a n d a < b , or
2. a > O , a < b , a n d b - a < n / 2 , or
3. a > O , b > O , a > b , a n d a - b > n / 2 .
Using a lollipop shaped sequence number space
has the advantage that A can start with sequence
number - k , and if A hears any other sequence
number for itself A can immediately switch to
that. The restriction in jump to J pertains only to
the circular portion of the sequence number space.
Thus the lollipop space makes it much less likely
that a problem would occur in which A would
have to wait for MAX-AGE to elapse, for its old
Link State Packets to time out, before its new ones
would be believed.

In fact, the only events which could cause A to
have to wait MAX-AGE are:

A. Some node, due to incorrect operation, in
the past issued Link State Packets with source ID
A, and sequence numbers all around the circular
space.

B. An absurd sequence of carefully timed re-
starts by A and network partitions occurred. An
example:
1. The network partitions East-West after A issues

sequence #0 , with A in East.
2. A issues b more Link State Packets before

MAX-AGE has elapsed, so that East has se-
quence ~ b for A, and West has sequence ~ 0
for A, with no packets yet expired.

3. A restarts and the network partition ends at
about the same time.

4. A is informed of West's sequence # 0 first, and
issues a Link State Packet with sequence 1.

5. The network again partitions.
6. A is then informed of the sequence ~b , and

issues a Link State Packet with :~b + 1, and
subsequently issues c more Link State Packets
before MAX-AGE has elapsed. Thus East will
have ~ b + c + 1 for A, and West will have ~ I
for A.
If this sequence of events repeats, the gap be-

tween sequence numbers on unexpired packets can
increase arbitrarily. Anyway, both these events are
very low-probability events.

Next we discuss obtaining current information
upon restart. When a node restarts, it needs to
reacquire the Link State Packets it had received
and acknowledged before it crashed.

The ARPANET a.ddresses this problem by re-
quiring all nodes to issue Link State Packets fairly
frequently (every 60 seconds). When a node re-
starts, it first waits 90 seconds, with the assump-
tion that during that time it will hear Link State
Packets from all other nodes in the network.

However, for some networks, the overhead of
artificially requiring each node to frequently issue
Link State Packets, even if their contents have not
changed, may be excessive.

A simple solution is to have a special packet
that a node can send to a neighbor that means,
"Assume I have not acknowledged any Link State
Packets, so send them all to me." Then a node will
not need to wait upon restart, and nodes will not
be required to send Link State Packets at such a
frequent rate just to solve the restart problem.

An alternative to a special packet is to have
node A mark node B as not having acknowledged
any packets when the line to B goes down. Then A
will automatically send all packets to B when the
line comes back up. The only disadvantage of this
scheme over the special packet scheme is that if it
was really the line to B that went down, and not
node B itself, then it would be unnecessary for A
to resend all the information to B, that B had
previously acknowledged, when the line came back
up.

R. Perlman / Fault-Tolerant Broadcast of Routing Information 403

When the line from A to B comes up, it will be
clogged for a time CLOG-TIME with routing mes-
sages while A sends one Link State Packet for each
node in the network to B. This is not a problem
because:

1. CLOG-TIME (the amount of time to send s
packets, where s is the number of nodes in the net)
will be orders of magnitude less than the amount
of time a restarting node would be required to wait
under the RESTART-TIME scheme. Depending
on s and the speed of the link, CLOG-TIME
should be at most on the order of a few seconds.

2. The link from A to B was down for some
duration which would probably be orders of mag-
nitude longer than CLOG-TIME, so the clog of
routing messages upon restart of a link would go
unnoticed.

3. CLOG-TIME is much less than the amount
of time it takes for a Link State Packet to propa-
gate throughout the entire net. Any traffic travers-
ing link A-B is likely to encounter routing loops
until the Link State Packets issued by A and B
notifying the net of the newly recovered link reach
all parts of the net. Thus it is probably desirable,
and certainly not undesirable, for traffic to get
held up for CLOG-TIME when the link recovers.

4. When a link recovers, it is desirable to wait
some amount of time to ensure it stays up.
CLOG-TIME is probably very close to that amount
of time. It is beneficial to exercise the link, by
sending lots of packets when it first comes up,
before issuing a Link State Packet to the rest of
the net declaring the link up.

3.2.7. Restarts
There is still a problem associated with restart-

ing of a node. For a period of time MAX-AGE
after node A restarts, there is the possibility that
there are still packets around the network, with
age less than MAX-AGE, issued by A before the
restart. The sequence number negotiation decribed
above does not solve the complete problem. There
are three cases:

1. The sequence number A is now using is greater
than the sequence number used before the restart. In
this case, A's new packets will supersede the old
ones, and there is no problem.

2. The sequence number A is now using is less
than the sequence number used before the restart. In
this case, by the third flooding rule above, A will
hear back the old packet, and will issue a new

Link State Packet with sequence number one
greater than the one heard (except in the very rare
case that A has already made jumps in the circular
sequence number space totaling J, and MAX-AGE
must elapse before this case is solved). Thus except
after very low-probability events, A will im-
mediately skip to a sequence number big enough
to supersede the old packets, and this case is not a
problem.

3. The sequence number A is now using is the

same as the sequence number used before the restart.
There are two possible causes:
i. A previously had time only to issue one Link

State Packet (# -k) before crashing. When A
restarts, it again restarts with sequence :~ -k .

ii. A previously issued two Link State Packets,
with sequence numbers b and b + 1, before it
crashed. The b + 1 packet did not yet propagate
throughout the net. When A restarts, A is in-
formed of sequence number b first, and switches
to :~b + 1.

If A uses the same sequence number that already
exists in the net, A's new Link State Packets will
be treated as duplicates and ignored.

If nothing is done about the third case, the
network may have inconsistent databases until A
issues a new Link State Packet (MAX-INT). Since
this problem is a relatively low-probability event,
it might be reasonable to allow MAX-INT to
elapse before it is solved. However, there is a
solution to the problem.

The solution is not to treat a Link State Packet
from A as being a duplicate merely because the
sequence number matches the stored Link State
Packet in the database, but to compare the data to
ensure that the Link State Packet is, indeed, a
duplicate. If it turns out that the data does not
match, but the sequence numbers do, A must be
informed, so that A can issue a Link State Packet
with the next sequence number, which will super-
sede the packets that the network disagrees about.

But informing A is not a simple matter of
sending a message to A, since it is very likely that
routing to A will not work. (The network disagrees
about the contents of A's Link State Packet.) Thus
some means of flooding must be used to get the
information back to A.

The solution is to include a "confusion" bit in
each Link State Packet. A Link State Packet with
sequence number n and the confusion bit set is
treated as having a sequence number between n
and n + 1.

404 R. Perlman / Fault-Tolerant Broadcast of Routing Information

If node D's stored Link State Packet for A has
sequence number n, and another Link State Packet
for A arrives with sequence number n and differ-
ent data, D sets the confusion bit on A's Link
State Packet, and floods the packet with the
"newer" sequence number (n, plus confusion). If
node D has a Link State Packet for A with se-
quence number n, and a Link State Packet for A
arrives with sequence number n and the confusion
bit, D accepts the packet as newer and floods it. If
node D has a Link State Packet for A with se-
quence number n and the confusion bit, and a
Link State Packet arrives with sequence number
n + 1, the arrived Link State Packet is treated as
newer and flooded. Thus the confusion bit will get
flooded in the same manner as a Link State Packet.
When A gets the information that there is confu-
sion about its sequence number n, A will issue a
Link State Packet with sequence number n + 1,
unless the information is out of date, since the last
Link State Packet A issued had sequence number
greater than n. If the information is out of date, A
simply ignores it.

Since the flooding scheme involves receiving
many duplicates, it may be undesirable to require
that every node check each Link State Packet for
duplicates. There are two possible optimizations:

1. If a data checksum is included as recom-
mended below, nodes need only compare the data
checksum field, and do not have to compare the
entire contents of the packets.

2. The problem can occur only for a period of
MAX-AGE after a node restarts. A Link State
Packet can contain a bit marking it as having been
issued by a node which has been up for less than
MAX-AGE. Link State Packets which are not so
marked do not need to be compared.

3.2.8. Eliminating Corruption
To guard against fields in a Link State Packet

from being corrupted in memory by distant nodes,
a data checksum field can be added to the packet.
This checksum should be computed by the source
node and never recomputed by any other node.
That implies that the age field and the confusion
bit, which are modified by other nodes, must not
be included in the checksum.

Luckily, corruption of the age field is not a very
serious event. If protection is deemed important
for the age field, it can be provided by including

two copies of the age field. For added safety, one
copy should be the one's complement of the other,
making it extremely unlikely that any hardware
fault would corrupt both copies in a consistent
manner.

Luckily, corruption of the confusion bit is also
not a serious event. If some node incorrectly set
the confusion bit on S's packet, the Link State
Packet with the confusion bit would propagate
throughout the net, eventually reaching S, which
would issue a new Link State Packet. Having a
node incorrectly clear the confusion bit on S's
packet is not a serious event unless it prevents S
from receiving a copy of its own packet with the
confusion bit set. Preventing S from receiving a
copy is a very low-probability event since it re-
quires all of the following to occur:
• S restarts with a sequence number still extant in

the network. (This can happen easily if S just
had time to issue one Link State Packet, -~ - k ,
before going down. This can also happen, but is
less likely, if S had issued two Link State
Packets, # b and # b + 1, right before crashing,
and S recovered before # b + 1 had time to
propagate throughout the net, and when S re-
starts, it is informed of #b , but not of ~ b + 1.)

• A node D corrupts the confusion bit, but noth-
ing else in the packet that would cause the
data-checksum to catch the problem.

• The corruption occurs before D has propagated
the packet.

• D does not subsequently receive a duplicate of
the packet with the confusion bit set.

• The network topology is such that S is reacha-
ble from the portion of the network that dis-
covered the confusion, only through D.
This makes the event of sufficiently low proba-

bility that it is tolerable to wait MAX-INT (during
which time S will issue a new Link State Packet),
for the network to recover.

It is important to guard against a node A, due
to hardware problems, issuing a Link State Packet
claiming to be a different source node. Before
issuing a Link State Packet A must check the ID
in the Link State Packet it is about to issue against
a copy of its ID stored elsewhere, to ensure that
they match. In this way, if A has a mistaken
notion of its own ID, or if A is pointing to the
wrong place in memory for its packet, the mistake
will probably be caught.

R. Perlman / Fault - Tolerant Broadcast of Routing Information 405

4. Summary

This pape r presents a scheme for d is t r ibut ing
rou t ing in format ion a round a network. The scheme
is c o m p a r e d to the current A R P A N E T scheme.
Advan tages of the scheme over the current AR-

P A N E T scheme are:
1. There are no art i f icial de lays imposed on nodes

upon restart .
2. Nodes do not need to f requent ly generate rout-

ing traffic in the absence of topologica l changes.
3. There is less rel iance upon timers. Timers that

do exist are invoked only as backup after very
low-probab i l i ty events. There is a large safe
space from which to choose t imer values.

4. Error condi t ions are less l ikely to occur, and
those that do occur are fixed by the network

within reasonable t ime without human inter-

vention, no mat te r how low-probab i l i ty the
event was that caused the error, once the of-
fending h a r d w a r e / s o f t w a r e is repai red or
removed.

References

[l] J. McQuillan et al., "The New Routing Algorithm for the
ARPANET", IEEE Transactions on Communications, May
1980.

[2] E.C. Rosen, "The Updating Protocol of ARPANET's New
Routing Algorithm", Computer Networks, Vol. 4, Nr. l
(1980), 11-20.

[3] E.C. Rosen, "Vulnerabilities of Network Control Protocols:
An Example", Computer Communication Review, July
1981.

