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ABSTRACT

IP networks today require massive effort to configure and-man
age. Ethernet is vastly simpler to manage, but does not beale
yond small local area networks. This paper describes amake
tive network architecture called SEATTLE that achieves libst

of both worlds: The scalability of IP combined with the sirojfily

of Ethernet. SEATTLE provides plug-and-play functionahtia
flat addressing, while ensuring scalability and efficienmyotigh
shortest-path routing and hash-based resolution of héstnia-
tion. In contrast to previous work on identity-based rogti8 EAT-
TLE ensures path predictability and stability, and simetifnet-
work management. We performed a simulation study driven by
real-world traffic traces and network topologies, and useullgb

to evaluate a prototype of our design based on the Click anBRXO
open-source routing platforms. Our experiments show tEXTS
TLE efficiently handles network failures and host mobilityhile
reducing control overhead and state requirements by rgugld
orders of magnitude compared with Ethernet bridging.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Network]: Network Archi-
tecture and Design; C.2.2Cpmputer-Communication Net-
work]: Network Protocols; C.2.5¢omputer-Communication
Network]: Local and Wide-Area Networks

General Terms

Design, Experimentation, Management

Keywords

Enterprise network, Routing, Scalablity, Ethernet

1. INTRODUCTION

Ethernet stands as one of the most widely used networkitng tec
nologies today. Due to its simplicity and ease of configorati
many enterprise and access provider networks utilize Bétexs

an elementary building block. Each host in an Ethernet is as-

signed a persistent MAC address, and Ethernet bridges attom
ically learn host addresses and locations. These “plugptad
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semantics simplify many aspects of network configuratiotat F
addressing simplifies the handling of topology changes as h
mobility, without requiring administrators to reassigrdegsses.

However, Ethernet is facing revolutionary challenges. ajcsl
layer-2 networks are being built on an unprecedented sodle/ih
highly demanding requirements in terms of efficiency andlava
ability. Large data centers are being built, comprising drads
of thousands of computers within a single facility [1], andim
tained by hundreds of network operators. To reduce energig.co
these data centers employ virtual machine migration angtada
varying workloads, placing additional requirements origge.g.,
host mobility, fast topology changes). Additionally, largnetro
Ethernet deployments contain over a million hosts and tétiga-
sands of bridges [2]. Ethernetis also being increasingyajed in
highly dynamic environments, such as backhaul for wiretess-
pus networks, and transport for developing regions [3].

While an Ethernet-based solution becomes all the more impor
tant in these environments because it ensures serviceaiytind
simplifies configuration, conventional Ethernet has sonitgcat
limitations. First, Ethernet bridging relies on networideflood-
ing to locate end hosts. This results in large state requiresraamt
control message overhead that grows with the size of theanktw
Second, Ethernet forces paths to comprispanning tree Span-
ning trees perform well for small networks which often do have
many redundant paths anyway, but introduce substantificies-
cies on larger networks that have more demanding requirenfian
low latency, high availability, and traffic engineeringngily, crit-
ical bootstrapping protocols used frequently by end hastsh as
Address Resolution Protocol (ARP) and Dynamic Host Conéigur
tion Protocol (DHCP), rely orbroadcasting This not only con-
sumes excessive resources, but also introduces seculrigrabil-
ities and privacy concerns.

Network administrators sidestep Ethernet's inefficiestimlay
by interconnecting small Ethernet LANs using routers ragrthe
Internet Protocol (IP). IP routing ensures efficient andifflexuse
of networking resources via shortest-path routing. It &las con-
trol overhead and forwarding-table sizes that are propoati to
the number of subnets (i.e., prefixes), rather than the numwibe
hosts. However, introducing IP routing breaks many of th&rde
able properties of Ethernet. For example, network adnmatists
must now subdivide their address space to assign IP prefixessa
the topology, and update these configurations when the nieties
sign changes. Subnetting leads to wasted address spadaband
rious configuration tasks. Although DHCP automates hostesdd
configuration, maintaining consistency between DHCP seraed
routers still remains challenging. Moreover, since IP addes are
not persistent identifiers, ensuring service continuitsoss loca-
tion changes (e.g., due to virtual machine migration or pays



mobility) becomes more challenging. Additionally, accesstrol
policies must be specified based on the host’s current posdind
updated when the host moves.

Alternatively, operators may use Virtual LANs (VLANS) toital
IP subnets independently of host location. While the owadhef
address configuration and IP routing may be reduced by poovis
ing VLANSs over a large number of, if not all, bridges, doing so
reduces benefits of broadcast scoping, and worsens daie-giff&
ciency due to larger spanning trees. Efficiently assignih@Ns
over bridges and links must also consider hosts’ commuinitat
and mobility patterns, and hence is hard to automate. Mereov
since hosts in different VLANS still require IP to communtieavith
one another, this architecture still inherits many of thallemges
of IP mentioned above.

In this paper, we address the following questitmit possible to
build a protocol that maintains the same configuration-foeeper-
ties as Ethernet bridging, yet scales to large networks&nswer,
we present a Scalable Ethernet Architecture for Large Briters
(SEATTLE). Specifically, SEATTLE offers the following faaes:

A one-hop, network-layer DHT:SEATTLE forwards packets
based on end-host MAC addresses. However, SEATTLE does
require each switch to maintain state for every hoet,does it re-
quire network-wide floods to disseminate host locationstead,
SEATTLE uses the global switch-level view provided by a link
state routing protocol to form a one-hop DHT [4], which stotlee
location of each host. We use this network-layer DHT to build
a flexible directory service which also perforraddress resolu-
tion (e.g., storing the MAC address associated with an IP address
and more flexible service discovery (e.g., storing the l&zsied
DNS server or printer within the domain). In addition, to yioe
stronger fault isolation and to support delegation of adshiative
control, we present a hierarchical, multi-level one-hopTDH

Traffic-driven location resolution and cachingTo forward pack-
ets along shortest paths and to avoid excessive load on the- di
tory service, switches cache responses to queries. Inpeiser
networks, hosts typically communicate with a small nhumbkr o
other hosts [5], making caching highly effective. Furthere
SEATTLE also provides a way to piggyback location inforroati
on ARP replies, which eliminates the need for location netsmh
when forwarding data packets. This allows data packetsrézitly
traverse the shortest path, making the network’s forwarghav-
ior predictable and stable.

A scalable, prompt cache-update protocdInlike Ethernet which
relies on timeouts or broadcasts to keep forwarding talyetou
date, SEATTLE proposes an explicit and reliable cache eplai-
tocol based on unicast. This ensures that all packets airech=
based on up-to-date state while keeping control overhead lio
contrast to conventional DHTS, this update process is tjré&dy-
gered by network-layer changes, providing fast reactioesi. For
example, by observing link-state advertisements, switaheter-
mine when a host’s location is no longer reachable, and #vice
invalid entries. Through these approaches, SEATTLE sesmiyle
supports host mobility and other dynamics.

Despite these features, our design remains compatibleexith
isting applications and protocols running at end hosts. exam-
ple, SEATTLE allows hosts to generate broadcast ARP and DHCP
messages, and internally converts them into unicast quirie di-
rectory service. SEATTLE switches can also handle geneg] (
non-ARP and non-DHCP) broadcast traffic through loop-fred- m
ticasting. To offer broadcast scoping and access contEATSLE
also provides a more scalable and flexible mechanism thavsll
administrators to create VLANSs without trunk configuration

1.1 Related work

Our quest is to design, implement, and evaluate a practeal r
placement for Ethernet that scaledagge and dynamimetworks.
Although there are many approaches to enhance Etherngs- brid
ing, none of these are suitable for our purposes. RBridges [6
7] leverage a link-state protocol to disseminate infororatbout
both bridge connectivity and host state. This eliminatesribed
to maintain a spanning tree and improves forwarding pathdUC
Ethernet [8] also leverages link-state and replaces estibroad-
casting by propagating host information in link-state upda
Viking [9] uses multiple spanning trees for faster faultaeery,
which can be dynamically adjusted to conform to changingl.loa
SmartBridges [10] allows shortest-path forwarding by ofitey
the network topology, and monitoring which end host is dtéaicto
each switch. However, its control-plane overheads anégéore-
quirements are similar to Ethernet, as every end host'srimdition
is disseminated to every switch. Though SEATTLE was insfine
the problems addressed in these works, it takes a radidélyeht
approach thatliminatesnetwork-wide dissemination of per-host
information. This results in substantially improved cofplane
scalability and data-plane efficiency. While there has heark on
using hashing to support flat addressing conducted in phveailh
our work [11, 12], these works do not promptly handle host dy-
namics, require some packets to be detoured away from thesho
path or be forwarded along a spanning tree, and do not support
erarchical configurations to ensure fault/path isolatiod the del-
egation of administrative control necessary for large nekta.

The design we propose is also substantially different frem r
cent work on identity-based routing (ROFL [13], UIP [14],dan
VRR [15]). Our solution is suitable for building a practicahd
easy-to-manage network for several reasons. First, thres@ps
approaches determine paths based on a hash of the destmatio
identifier (or the identifier itself), incurring a stretchryadty (which
is unbounded in the worst case). In contrast, SEATTLE duss
perform identity-based routing. Instead, SEATTLE usesltgi®n
to map a MAC address to a host’s location, and then uses the loc
tion to deliver packets along thehortest pattto the host. This re-
duces latency and makes it easier to control and predictonktve-
havior. Predictability and controllability are extrematyportant in
real networks, because they make essential managemen{eagk
capacity planning, troubleshooting, traffic engineeripgssible.
Second, the path between two hosts in a SEATTLE network does
not change as other hosts join and leave the network. Thigaub
tially reduces packet reordering and improves constancyattf
performance. Finally, SEATTLE employs traffic-driven cexhof
host information, as opposed to the traffic-agnostic cagléng.,
finger caches in ROFL) used in previous works. By only caching
information that is needed to forward packets, SEATTLE ifign
icantly reduces the amount of state required to deliver gack
However, our design also consists of several generic coemien
such as the multi-level one-hop DHT and service discovergtme
anism, that could be adapted to the work in [13, 14, 15].

Roadmap: We summarize how conventional enterprise networks
are built and motivate our work in Section 2. Then we describe
our main contributions in Sections 3 and 4 where we introduce
very simple yet highly scalable mechanism that enablestesstor
path forwarding while maintaining the same semantics asra#t.

In Section 5, we enhance existing Ethernet mechanisms t@ mak
our design backwards-compatible with conventional Eteerive
then evaluate our protocol using simulations in Sectiondsaamim-
plementation in Section 7. Our results show that SEATTLHesca
to networks containing two orders of magnitude more hoss th
a traditional Ethernet network. As compared with ROFL, SEAT



TLE reduces state requirements required to achieve reblydoa
stretch by a factor of ten, and improves path stability byertban
three orders of magnitude under typical workloads. SEATald6
handles network topology changes and host mobility withsogr
nificantly increasing control overhead.

2. TODAY'S ENTERPRISE AND ACCESS
NETWORKS

To provide background for the remainder of the paper, and to
motivate SEATTLE, this section explains why Ethernet bindg
does not scale. Then we describe hybrid IP/Ethernet neaamidl
VLANS, two widely-used approaches which improve scalapili
over conventional Ethernet, but introduce management texityy
eliminating the “plug-and-play” advantages of Ethernet.

2.1 Ethernet bridging

An Ethernet network is composed sfégmentseach comprising
a single physical layér Ethernetoridgesare used to interconnect
multiple segments into a multi-hop network, namely a LANnfie
ing a singlebroadcast domainEach host is assigned a unique 48-
bit MAC (Media Access Control) address. A bridge learns how t
reach hosts by inspecting the incoming frames, and assugihie
source MAC address with the incoming port. A bridge storés th
information in aforwarding tablethat it uses to forward frames
toward their destinations. If the destination MAC addressiot
present in the forwarding table, the bridge sends the framallo
outgoing ports, initiating a domain-wide flood. Bridgescafkood
frames that are destined to a broadcast MAC address. Sihee-Et
net frames do not carry a TTL (Time-To-Live) value, the existe
of multiple paths in the topology can lead bwoadcast storms
where frames are repeatedly replicated and forwarded albmap.
To avoid this, bridges in a broadcast domain coordinate neopzte
a spanning tree [16]. Administrators first select and configure a
singleroot bridge then, the bridges collectively compute a span-
ning tree based on distances to the root. Links not presethiein
tree are not used to carry traffic, causing longer paths agfdi-in
cient use of resources. Unfortunately, Ethernet-bridgetvarks
cannot grow to a large scale due to following reasons.

Globally disseminating every host's location:Flooding and
source-learning introduce two problems in a large brodddas
main. First, the forwarding table at a bridge can grow vergda
because flat addressing increases the table size progdiyitmthe
total number of hosts in the network. Second, the controfiwesd
required to disseminate each host’s information via flogdian be
very large, wasting link bandwidth and processing resaurSince
hosts (or their network interfaces) power up/down (mauatdy-
namically to reduce power consumption), and change locagita-
tively frequently, flooding is an expensive way to keep pesthn-
formation up-to-date. Moreover, malicious hosts can itibelly
trigger repeated network-wide floods through, for examMAC
address scanning attacks [17].

Inflexible route selection: Forcing all traffic to traverse a single
spanning tree makes forwarding more failure-prone andsléad
suboptimal paths and uneven link loads. Load is especiajly tn
links near the root bridge. Thus, choosing the right rooddpeiis
extremely important, imposing an additional administ@burden.
Moreover, using a single tree for all communicating paiegher
than shortest paths, significantly reduces the aggregateghput
of a network.

In modern switched Ethernet networks, a segment is justrat-poi
to-point link connecting an end host and a bridge, or a pair of
bridges.

Dependence on broadcasting for basic operationBHCP and
ARP are used to assign IP addresses and manage mappings be-
tween MAC and IP addresses, respectively. A host broadeasts
DHCP-discovery message whenever it believes its netwaoaklat
ment point has changed. Broadcast ARP requests are geherate
more frequently, whenever a host needs to know the MAC addres
associated with the IP address of another host in the sanagl-bro
cast domain. Relying on broadcast for these operationsadegr
network performance. Moreover, every broadcast messagebau
processed by every end host; since handling of broadcasefra

is often application or OS-specific, these framesetandled by

the network interface card, and instead must interrupt td {18].

For portable devices on low-bandwidth wireless links, inéng

ARP packets can consume a significant fraction of the aJailab
bandwidth, processing, and power resources. Moreoveydhef
broadcasting for ARP and DHCP opens vulnerabilities forimal
cious hosts as they can easily launch ARP or DHCP floods [8].

2.2 Hybrid IP/Ethernet architecture

One way of dealing with Ethernet’s limited scalability isttoild
enterprise and access provider networks out of multiple AN
terconnected byP routing. In thesehybrid networks, each LAN
contains at most a few hundred hosts that collectively fomfPa
subnet Communication across subnets is handled via certain fixed
nodes calledlefault gatewaysEach IP subnet is allocated &a
prefix and each host in the subnet is then assigned an IP address
from the subnet'’s prefix. Assigning IP prefixes to subnetd, ast
sociating subnets with router interfaces is typically a oarpro-
cess, as the assignment must follow the addressing higrareh
must reduce wasted namespace, and must consider futurd use o
addresses to minimize later reassignment. Unlike a MACesdqr
which functions as a hoglentifier, an IP address denotes the host's
currentlocationin the network.

The biggest problem of the hybrid architecture is its masson-
figuration overhead. Configuring hybrid networks today espnts
an enormous challenge. Some estimates put 70% of an esgerpri
network’s operating cost as maintenance and configurad®op-
posed to equipment costs or power usage [19]. In addition, in
volving human administrators in the loop increases readiime
to faults and increases potential for misconfiguration.

Configuration overhead due to hierarchical addressingin IP
router cannot function correctly until administrators e sub-
nets on router interfaces, and direct routing protocolsdieeetise
the subnets. Similarly, an end host cannot access the rietwer
til it is configured with an IP address corresponding to thie-su
net where the host is currently located. DHCP automateshest-
configuration, but introduces substantial configuratioerbead for
managing the DHCP servers. In particular, maintaining istescy
between routers’ subnet configuration and DHCP serverg'eadd
allocation configuration, or coordination across distréuUDHCP
servers are not simple. Finally, network administratorstnuon-
tinually revise this configuration to handle network chage

Complexity in implementing networking policiesAdministrators
today use a collection of access controls, QoS (Quality of Se
vice) controls [20], and other policies to control the waylgts
flow through their networks. These policies are typicallyiruzd
based on IP prefixes. However, since prefixes are assigned bas
the topology, changes to the network design require thelegm
to be rewritten. More significantly, rewriting networkinglties
must happen immediately after network design changes t@pte
reachability problems and to avoid vulnerabilities. Idgadmin-
istrators should only need to update policy configuratiohemthe
policy itself, not thenetwork changes.



Limited mobility support: Supporting seamless host mobility is
becoming increasingly important. In data centers, migpatair-
tual machines are being widely deployed to improve power effi
ciency by adapting to workload, and to minimize serviceufision
during maintenance operations. Large universities orrprises
often build campus-wide wireless networks, using a wireckba
haul to support host mobility across access points. To ensen-
vice continuity and minimize policy update overhead, it ighty
desirable for a host to retain its IP address regardless dbit-
tion in these networks. Unfortunately, hybrid networks stoain
host mobility only within a single, usually small, subnet.d data
center, this can interfere with the ability to handle loaitep seam-
lessly; in wireless backhaul networks, this can cause sedisrup-
tions. One way to deal with this is to increase the size of stgn
by increasing broadcast domains, introducing the scalioblpms
mentioned in Section 2.1.

2.3 Virtual LANs

VLANSs address some of the problems of Ethernet and IP net-
works. VLANs allow administrators to group multiple hostas
ing the same networking requirements into a single broadtas
main. Unlike a physical LAN, a VLAN can be defindagically,
regardless of individual hosts’ locations in a network. Mil$\can
also be overlapped by allowing bridges (not hosts) to be genfi
ured with multiple VLANs. By dividing a large bridged netwkor
into several appropriately-sized VLANSs, administratcas ceduce
the broadcast overhead imposed on hosts in each VLAN, and als
ensure isolation among different host groups. Compareld Wit
VLANs simplify mobility, as hosts may retain their IP addses
while moving between bridges in the same VLAN. This also re-
duces policy reconfiguration overhead. Unfortunately, \NsANn-
troduces several problems:

Trunk configuration overhead:Extending a VLAN across multi-
ple bridges requires the VLAN to be trunked (provisioned@ath
of the bridges participating in the VLAN. Deciding which diges
should be in a given VLAN must consider traffic and mobility-pa
terns to ensure efficiency, and hence is often done manually.

Limited control-plane scalability: Although VLANs reduce the
broadcast overhead imposed on a particular end host, lsrjgige
visioned with multiple VLANs must maintain forwarding-tab
entries and process broadcast traffic émery active host inev-
ery VLAN visible to themselves. Unfortunately, to enhance re-
source utilization and host mobility, and to reduce trunkfip
uration overhead, VLANS are often provisioned larger thaces-
sary, worsening this problem. A large forwarding table cboapes
bridge design, since forwarding tables in Ethernet bridgesypi-
cally implemented using Content-Addressable Memory (CAdw)
expensive and power-intensive technology.

Insufficient data-plane efficiencylLarger enterprises and data cen-
ters often have richer topologies, for greater reliabiind perfor-
mance. Unfortunately, a single spanning tree is used in¥bAN

to forward packets, which prevents certain links from baisgd.
Although configuring a disjoint spanning tree for each VLAY [
21] may improve load balance and increase aggregate thpatigh
effective use of per-VLAN trees requires periodically nrayithe
roots and rebalancing the trees, which must be manuallytegda
as traffic shifts. Moreover, inter-VLAN traffic must be rodteia

IP gateways, rather than shortest physical paths.

3. NETWORK-LAYER ONE-HOP DHT

The goal of a conventional Ethernet is to route packets tcsa de
tination specified by a MAC address. To do this, Ethernetgasd

collectively provide end hosts with a service that maps MAEE a
dresses to physical locations. Each bridge implementsérnigce

by maintaining next-hop pointers associated with MAC adsies

in its forwarding table, and relies on domain-wide floodiadgéep
these pointers up to date. Additionally, Ethernet alsonadlbosts

to look up the MAC address associated with a given IP addngss b
broadcasting\ddress Resolution ProtocGARP) messages.

In order to provide the same interfaces to end hosts as cenven
tional Ethernet, SEATTLE also needs a mechanism that mamta
mappings between MAC/IP addresses and locations. To szale t
large networks, SEATTLE operates a distributed directenyise
built using aone-hop, network-level DHWe use ane-hopDHT
to reduce lookup complexity and simplify certain aspectaetf
work administration such as traffic engineering and trostbet-
ing. We use anetwork-levelapproach that stores mappings at
switches, so as to ensure fast and efficient reaction to miefiai-
ures and recoveries, and avoid the control overhead of aatepa
directory infrastructure. Moreover, our network-levepapach al-
lows storage capability to increase naturally with netwside, and
exploitscachingto forward data packets directly to the destination
without needing to traverse any intermediate DHT hops [32, 2

3.1 Scalable key-value management with
a one-hop DHT

Our distributed directory has two main parts. First, rugnin
a link-state protocol ensures each switch can observe ladrot
switches in the network, and allows any switch to route amgot
switch along shortest paths. Second, SEATTLE uskash func-
tion to map host information to a switch. This host information is
maintained in the form ofgy, valug¢. Examples of these key-value
pairs are MAC address, locatignand (P address, MAC addreks

3.1.1 Link-state protocol maintaining switch topology

SEATTLE enables shortest-path forwarding by running a-link
state protocol. However, distributirend-hostinformation in link-
state advertisements, as advocated in previous prop&dis 10,

7], would lead to serious scaling problems in the large netemve
consider. Instead, SEATTLE’s link-state protocol mainsaonly
the switchlevel topology, which is much more compact and sta-
ble. SEATTLE switches use the link-state information to poite
shortest paths for unicasting, and multicast trees fordwasting.

To automate configuration of the link-state protocol, SERET
switches run a discovery protocol to determine which ofrtlieks
are attached to hosts, and which are attached to other switch
Distinguishing between these different kinds of links isxedy
sending control messages that Ethernet hosts do not respond
This process is similar to how Ethernet distinguishes dwisdrom
hosts when building its spanning tree. To identify themsein the
link-state protocol, SEATTLE switches determine their amique
switch IDswithout administrator involvement. For example, each
switch does this by choosing the MAC address of one of itg-inte
faces as its switch ID.

3.1.2 Hashing key-value pairs onto switches

Instead of disseminating per-host information in linktstad-
vertisements, SEATTLE switches learn this information mnoa-
demand fashion, via a simple hashing mechanism. This irgerm
tion is stored in the form ofkey= k,value= v) pairs. Apublisher
switch s, wishing to publish gk, v) pair via the directory service
uses a hash functiofi to mapk to a switch identifiet (k) = ry,
and instructs switchy, to store the mappingk, v). We refer tory,
as theresolverfor k. A different switchs, may then look up the
value associated with by using the same hash function to iden-
tify which switch isk’s resolver. This works because each switch
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of (kv)

Figure 1: Keys are consistently hashed onto resolver swit@s (s;). Figure 2: Hierarchical SEATTLE hashes keys ontoregions

knows all the other switches’ identifiers via link-state adise- may store its location or address information. Other sveiscban
ments from the routing protocol, and hengeworks identically then reach the printer using the hash of the string. Serviwas
across all switches. Switch, may then forward a lookup request  also encode additional attributes, such as load or netveation,
to r to retrieve the value. Switchs, may optionally cache the  as simple extensions. Multiple servers can redundantlistexg

result of its lookup, to reduce redundant resolutions. Alhtcol themselves with a common string to implement anycasting- Se
messages, including lookup and publish messages, arestimiith vices can be named using techniques shown in previous w6tk [2
reliable delivery. 3.2 Responding to topology changes

Reducing control overhead with consistent hashing§vhen the
set of switches changes due to a network failure or recogere
keys have to be re-hashed to different resolver switchesnifne
mize this re-hashing overhead, SEATTLE utiliasnsistent Hash-
ing [24] for F. This mechanism is illustrated in Figure 1. A con-
sistent hashing function maps keyshios such that the change of
the bin set causes minimal churn in the mapping of keys ta lhins
SEATTLE, each switch corresponds a bin, and a host’s infaoma
corresponds to a key. Formally, given a Set {s1, s2, ..., s, } Of
switch identifiers, and a kely,

The switch-level topology may change if a new switch/link is
added to the network, an existing switch/link fails, or aywasly
failed switch/link recovers. These failures may or maypantition
the network into multiple disconnected components. Linkifas
are typically more common than switch failures, and paniiare
very rare if the network has sufficient redundancy.

In the case of a link failure/recovery that does not paritéo
network, the set of switches appearing in the link-state dags
not change. Since the hash functignis defined with the set of
switches in the network, the resolver a particular key mapsifi
F(k) = argminys,es{D(H(k), H(s:))} not change. Hence all that needs to be done is to update the lin
state map to ensure packets continue to traverse new dhuatbs.

In SEATTLE, this is simply handled by the link-state protbco

However, if a switch fails or recovers, the set of switchethim
link-state map changes. Hence there may be some keyisose
old resolverr{!? differs from a new resolver?*®. To deal with
this, the value(k, v) must be moved from{'® to +7°*. This is
handled by having the switch, that originally published: mon-
itor the liveness ofk’s resolver through link-state advertisements.
Whens,, detects thatp<* differs fromrg'?, it republishesk, v)
to r2¢¥. The value(k,v) is eventually removed from2'? after a
timeout. Additionally, when a value denotes a location, such as a
switch id s, ands goes down, each switch scans the list of locally-
stored(k, v) pairs, and remove all entries whose valuequalss.
Note this procedure correctly handles network partitioesalise
the link-state protocol ensures that each switch will be ablsee
only switches present in its partition.

where™ is a regular hash function, arfd(x, y) is a simple met-
ric function computing the counter-clockwise distancearfroto y

on the circular hash-space Bf. This meansF maps a key to the
switch with the closest identifier not exceeding that of tbg kn
the hash space 6f. As an optimization, a key may be addition-
ally mapped to the next: closest switches along the hash ring, to
improve resilience to multiple failures. However, in oualmation,
we will assume this optimization is disabled by default.

Balancing load with virtual switches:The scheme described so
far assumes that all switches are equally powerful, andenkawve-

end switches will need to service the same load as more polwerf
switches. To deal with this, we propose a new scheme based on
running multiplevirtual switcheon each physical switch. A single
switch locally creates one or more virtual switches. Thecwinay

then increase or decrease its load by spawning/destroyieset

virtual switches. Unlike techniques used in traditional Txor . ) . .
load balancing [23], it is1ot necessary for our virtual switches to 3.3 Supporting hierarchy with a multi-level,

be advertised to other physical switches. To reduce sizenkf | one-hop DHT

state advertisements, instead of advertising every Viswiéch in The SEATTLE design presented so far scales to large, dynamic
the link-state pl’OtOCOl, switches Only advertise the nunubevir- networks [27] However’ since this design runs a Sing|eN0m_

tual switches they are currently running. Each switch tioeally wide link-state routing protocol, it may be inappropriate fiet-
computes virtual switch IDs using the following techniquall works with highly dynamic infrastructure, such as netwdrksle-

switches use the same functi@l{s, i) that takes as input a switch  veloping regions [3]. A single network-wide protocol magabe
|dent|f|er8 and a n_umbef,_ and outputs a neW .|de.nt|f|er unique to inappropriate if network operators wish to provide stranfzeilt
the inputs. A physical switchy only advertises in link-state adver-  jsolation across geographic regions, or to divide up adstriaiive

tisements its own physical switch identifief, and the numbeL control across smaller routing domains. Moreover, when ATSE
of virtual switches it is currently running. Every switchrcthen TLE network is deployed over a wide area, the resolver cadeld |
determine the virtual identifiers ab by computingR (s, i) for far both from the source and destination. Forwarding loskoyer

1 <4 < L. Note that it is possible to automate determining a |ong distances increases latency and makes the lookup mame p
desirable number of virtual switches per physical switc$].[2 to failure. To deal with this, SEATTLE may be configured hier-
Enabling flexible service discoverythis design also enables more archically, by leveraging enulti-level, one-hop DHTThis mecha-
flexible service discovery mechanisms without the need tiopa nism is illustrated in Figure 2.

network-wide broadcasts. This is done by utilizing the hastt- A hierarchical network is divided into severadgions and a

tion F to map a string defining the service to a switch. For example, backboneproviding connectivity across regions. Each region is
a printer may hash the strif@RINTER” to a switch, at which it connected to the backbone via its olarder switchand the back-
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3. Storing
(macq, sq)

bone is composed of the border switches of all regions. indédion
about regions is summarized and propagated in a manneeasiil
areasin OSPF. In particular, each switch in a region knows the
identifier of the region’s border switch, because the bostgtch
advertises its role through the link-state protocol. Inhsaa en-
vironment, SEATTLE ensures that only inter-region lookpe
forwarded via the backbone while all regional lookups anecthed
within their own regions, and link-state advertisements anly
propagated locally within regions. SEATTLE ensures thislbfin-
ing a separateegional andbackbonehash ring. When &k, v) is
inserted into a regio® and is published to a regional resolvgr
(i.e., a resolver fok in regionP), i additionally forwardg(k, v)
to one of the regiorP’s border switche$”. Thenb® hashesk
again onto the backbone ring and publisklesv) to another back-
bone switchh®, which is a backbone resolver farand a border
switch of regionQ at the same time. Switdif’ storesk’s informa-
tion. If a switch in regionk wishes to lookup(k, v), it forwards
the lookup first to its local resolvet?, which in turn forwards it to
bT, andb™ forwards it tob,?. As an optimization to reduce load on
border switches)? may hashk and store(k, v) at a switch within
its own region@, rather than storingk, v) locally. Since switch
failures are not propagated across regions, each publstiezh
periodically sends probes to backbone resolvers that tisdmiof
its region. To improve availability(k, v) may be stored at multi-
ple backbone resolvers (as described in Section 3.1.2)naiftiple
simultaneous lookups may be sent in parallel.

4. SCALING ETHERNET WITH
A ONE-HOP DHT

packet tor,. Sincer, may be several hops away, encapsulates
the packet with an outer header witfis address as the destination.
Switch r, then looks upz’s location s, and forwards the packet
on towardss,. In order to limit the number of data packets travers-
ing the resolverr, also notifiess, thata’s current location is,.
Switch s, then caches this information. While forwarding the first
few packets of a flow via a resolver switch increases pathtleng
in the next section we describe an optimization that alloatad
packets to traverse only shortest paths, by piggy-backingtion
information on ARP replies.

Note SEATTLE manages per-host information via reactiveres
lution, as opposed to the proactive dissemination scheraé s
previous approaches [8, 6, 10]. The scaling benefits of #s r
active resolution increase in enterprise/data-centegiscprovider
networks because most hosts communicate with a small number
of popular hosts, such as mail/file/Web servers, printest? gate-
ways, and Internet gateways [5]. To prevent forwardingasfilom
growing unnecessarily large, the access switches can appbus
cache-management policies. For correctness, howevecatties-
management scheme must not evict the host information of the
hosts that are directly connected to the switch or are mgidtwith
the switch for resolution. Unlike Ethernet bridging, cachisses
in SEATTLE do not lead to flooding, making the network resista
to cache poisoning attacks (e.g., forwarding table overéfithack)
or a sudden shift in traffic. Moreover, those switches thatreot
directly connected to end hosts (i.e., aggregation or aeitelses)
do not need to maintain any cached entries.

4.2 Host address resolution

In conventional Ethernet, a host with an IP packet first bcaats
an ARP request to look up the MAC address of the host owning
the destination IP address contained in the request. Toneaha
scalability, SEATTLE avoids broadcast-based ARP opematidn
addition, we extend ARP to return both tlegationand the MAC
address of the end host to the requesting switch. This alitates
packets following an ARP query to directly traverse shangpashs.

SEATTLE replaces the traditional broadcast-based ARP with
an extension to the one-hop DHT directory service. In pafttic
lar, switches useF with an IP address as the key. Specifically,
when host: arrives at access switeh, the switch learna’s IP ad-
dressip, (using techniques described in Section 5.1), and computes

The previous section described the design of a distributed F (iPa) = va. The result of this computation is the identifier of an-

network-level directory service based on a one-hop DHThis t
section, we describe how the directory service is used tuigeo
efficient packet delivery and scalable address resolutitva.first
briefly describe how to forward data packets to MAC addresses
Section 4.1. We then describe our remaining contributiansopti-
mization that eliminate the need to look up host locatiome®HT
by piggy-backing that information on ARP requests in Sect@®,
and a scalable dynamic cache-update protocol in Section 4.3

4.1 Host location resolution

Hosts use the directory service described in Section 3 te pub
lish and maintain mappings between their MAC addresseshaaid t
current locations. These mappings are used to forward cetie: p
ets, using the procedure shown in Figure 3. When a hasith
MAC addressnac, first arrives at its access switeh, the switch
must publisha’s MAC-to-location mapping in the directory ser-
vice. Switchs, does this by computing-(mac,) = rq, and in-
structingr, to store(maca, s« ). We refer tor, as thelocation re-
solverfor a. Then, if some hosgk connected to switck, wants to
send a data packet taac,, b forwards the data packet t@, which
in turn computesF(maca) = rq. Switchs, then and forwards the

other switchv,. Finally, s, informswv, of (ip,, mac,). Switchv,,
theaddress resolvefor hosta, then uses the tuple to handle future
ARP requests foip, redirected by other remote switches. Note
that hosta’s location resolver (i.e F(macq)) may differ froma’s
address resolver (i.eF (ipa)).

Optimizing forwarding paths via ARPFor hosts thatissue an ARP
request, SEATTLE eliminates the need to perform forwardiiag
the location resolver as mentioned in Section 4.1. This iedayy
having the address resolver swite¢halso maintain the location of
a (i.e., sg) in addition tomac,. Upon receiving an ARP request
from some hosb, the address resolvey, returns bothmac, and
sq back tob's access switch,. Switchs; then caches,, for future
packet delivery, and returnsac, to hostb. Any packets sent by
to a are then sent directly along the shortest path.to

It is, however, possible that hostlready hasnac, in its ARP
cache and immediately sends data frames destineaute, with-
out issuing an ARP request in advance. Even in such a casmas |
as thes; also maintaing’s location associated withvac,, s, can
forward those frames correctly. To ensure access switchesec
the same entries as hosts, the timeout value that an accash sw
applies to the cached location information should be lattygn the



ARP cache timeout used by end hdstblote that, even if the cache
and the host become out of sync (due to switch reboot, e€ATS
TLE continues to operate correctly because switches cavees
a host’s location by hashing the host's MAC address to thé&shos
location resolver.

4.3 Handling host dynamics

Hosts can undergo three different kinds of changes in a SEAT-
TLE network. First, a host may change location, for exampie i
has physically moved to a new location (e.g., wireless hfiydb
its link has been plugged into a different access switchf ibis a
virtual machine and has migrated to a new hosting systemathat
lows the VM to retain its MAC address. Second, a host may ohang
its MAC address, for example if its NIC card is replaced, isi
VM and has migrated to a new hosting system that requiresfihe V
to use the host's MAC address, or if multiple physical maekin
collectively acting as a single server or router (to ensigh avail-
ability) experience a fail-over event [28]. Third, a hostynehange
its IP address, for example if a DHCP lease expires, or if tst is
manually reconfigured. In practice, multiple of these clesngay
occur simultaneously. When these changes occur, we neexfo k
the directory service up-to-date, to ensure correct patidatery.

SEATTLE handles these changes by modifying the contents of
the directory service vimsert, delete andupdateoperations. An
insert operation adds a ne\, v) pair to the DHT, a delete opera-
tion removes 4k, v) pair from the DHT, and the update operation
updates the value associated with a given kéy First, in the case
of a location change, the hastmoves from one access switgfi?
to anothers;, ™. In this cases;, " inserts a new MAC-to-location
entry. Sinceh’'s MAC address already exists in the DHT, this action
will updatei’s old location with its new location. Second, in the
case of a MAC address changdes access switch,, inserts an IP-
to-MAC entry containingh’s new MAC address, causings old
IP-to-MAC mapping to be updated. Since a MAC address is also
used as a key of a MAC-to-location mapping, deletesh’s old
MAC-to-location mapping and inserts a new mapping, respalgt
with the old and new MAC addresses as keys. Third, in the chse o

Updating remote hosts’ cachesin addition to updating con-
tents of the directory service, some host changes requioenin

ing otherhostsin the system about the change. For example, if a
hosth changes its MAC address, the new mappifg,, mac, ")
must be immediately known to other hosts who happened te stor
(ipn, macs'®) in their local ARP caches. In conventional Ethernet,
this is achieved by broadcastinggaatuitous ARP requestrigi-
nated byh [29]. A gratuitous ARP is an ARP request contain-
ing the MAC and IP address of the host sending it. This request
is not a query for a reply, but is instead a notification to upda
other end hosts’ ARP tables and to detect IP address cortiticts
the subnet. Relying on broadcast to update other hostslyclear
does not scale to large networks. SEATTLE avoids this prable
by unicasting gratuitous ARP packets only to hosts with lidva
mappings. This is done by having maintain aMAC revocation

list. Upon detectingh’'s MAC address change, switch, inserts
(ipn, macy'®, macy®™) in its revocation list. From then on, when-
eversy, receives a packet whose source or destingtidh M AC')
address pair equal@py,, macl'?), it sends aunicastgratuitous
ARP request containingips, macp*) to the source host which
sent those packets. Note that, when bbth MAC address and
location change at the same time, the revocation informagiare-
ated ath's old access switch by’s address resolven, = F(ipn).

To minimize service disruptiors,, also informs the source host’s
ingress switch of(macy*™, sp) so that the packets destined to
macy,®” can then be directly delivered tg,, avoiding an addi-
tional location lookup. Note this approach to updating resARP
caches does not requisg to look up each packet’s IP and MAC
address pair from the revocation list becasisean skip the lookup
in the common case (i.e., when its revocation list is emEpyries
from the revocation list are removed after a timeout set kemthe
ARP cache timeout of end hosts.

5. PROVIDING ETHERNET-LIKE
SEMANTICS

To be fully backwards-compatible with conventional Ettetrn

an IP address change, we need to ensure that future ARP teques SEATTLE must act like a conventional Ethernet from the pecsp

for i's old IP address are no longer resolvechte MAC address.
To ensure thisg;, deletesh’s old IP-to-MAC mapping and insert
the new one. Finally, if multiple changes happen at oncealtioere
steps occur simultaneously.

Ensuring seamless mobilityAs an example, consider the case of a
mobile host» moving between two access switche®? ands ™.

To handle this, we need to upddtis MAC-to-location mapping to
point to its new location. As described in Section 4;15% inserts
(macp, sy into 7, upon arrival ofh. Note that the location re-
solverry, selected byF (macy, ) doesnotchange whet’s location
changes. Meanwhiless'® deletes(macy,, s3'¢) when it detects:
is unreachable (either via timeout or active polling). Atially,
to enable prompt removal of stale information, the locat&solver

5, informs ¢ that (macy,, s5'?) is obsoleted bymacy,, s7**).

However, host locations cached at other access switches mus
be kept up-to-date as hosts move. SEATTLE takes advantage o

the fact that, even after updating the information-gt s’ may

receive packets destined kobecause other access switches in the
network might have the stale information in their forwagltables.

Hence, whers$'? receives packets destinedtoit explicitly noti-
fies ingress switches that sent the misdelivered packeis ofew
locations*. To minimize service disruptions3’® also forwards

those misdelivered packet§“".

2The default setting of the ARP cache timeout in most common
operating systems ranges 10 to 20 minutes.

tive of end hosts. First, the way that hosts interact withribisvork

to bootstrap themselves (e.g., acquire addresses, alldahes to
discover their presence) must be the same as Ethernet. Gecon
switches have to support traffic that uses broadcast/rasttieth-
ernet addresses as destinations. In this section, we bedww to
perform these actions without incurring the scalabilitalidnges

of traditional Ethernet. For example, we propose to elitg@na
broadcasting from the two most popular sources of broadcafst
fic: ARP and DHCP. Since we described how SEATTLE switches
handle ARP without broadcasting in Section 4.2, we discidg 0
DHCP in this section.

5.1 Bootstrapping hosts

Host discovery by access switchddthen an end host arrives at a
SEATTLE network, its access switch needs to discover th&shos

fMAC and IP addresses. To discover a new host's MAC address,

SEATTLE switches use the same MAC learning mechanism as con-
ventional Ethernet, except that MAC learning is enabled aml

the ports connected to end hosts. To learn a new host's |Rssldr
or detect an existing host’s IP address change, SEATTLEbest
shoop on gratuitous ARP requests. Most operating systems ge
erate a gratuitous ARP request when the host boots up, tlt's hos
network interface or links comes up, or an address assigntitet
interface changes [29]. If a host does not generate a gratuit
ARP, the switch can still learn of the host’s IP address viaoph

ing on DHCP messages, or sending out an ARP request only on



the port connected to the host. Similarly, when an end hdstda larly used in hotel/motel networks [32]. Unlike PVLANS, hever,

disconnects from the network, the access switch is resplentar groups can be extended over multiple bridges. Finally, wim@n

detecting that the host has left, and deleting the hosttsinétion cast reachability between two groups is allowed, traffigdeen the
from the network. groups takes the shortest path, without traversing defaibéways.
Host configuration without broadcastingFor scalability, SEAT- Multicast-based group-wide broadcasting: Some applications

TLE resolves DHCP messages without broadcasting. When-an ac may rely on subnet-wide broadcasting. To handle this, alat
cess switch receives a broadcast DHCP discovery messagefro  cast packets within a group are delivered through a muttitas

end host, the switch delivers the message directly to a DHBRS sourced at a dedicated switch, namelypraadcast root of the

via unicast, instead of broadcasting it. SEATTLE implersehis group. The mapping between a group and its broadcast root is
mechanism using the existing DHCP relay agent standard [30] determined by usingt to hash the group’s identifier to a switch.
This standard is used when an end host needs to communidhte wi Construction of the multicast tree is done in a manner smda

a DHCP server outside the host's broadcast domain. Theatnd |IP multicast, inheriting its safety (i.e., loop freedompafficiency
proposes that a host’s IP gateway forward a DHCP discoveay to (i.e., to receive broadcast only when necessary). When &lswi
DHCP server via IP routing. In SEATTLE, a host’s access dwitc first detects an end host that is a member of grguthe switch

can perform the same function with Ethernet encapsulaficness issues a join message that is carried up to the nearest giaftqn
switches can discover a DHCP server using a similar apprtzach  the tree toward;’s broadcast root. When a host departs, its access
the service discovery mechanism in Section 3.1.2. For elgrie switch prunes a branch if necessary. When an end hgssénds
DHCP server hashes the string “DHCP_SERVER” to a switch, and a broadcast packet, its access switch marks the packeiveittd
then stores its location at that switch. Other switches fbemard forwards it alongg’'s multicast tree.

DHCP requests using the hash of the string. Separating unicast reachability from broadcast domairis: addi-

5.2 Scalable and flexible VLANS tion to handling broadcast traffic, groups in SEATTLE alsovide

a namespace upon which reachability policies for unicaffi¢rare
defined. When a host arrives at an access switch, the hostip gr
membership is determined by its access switch and publisitbeé
host’s resolvers along with its location information. Asseontrol
policies are then applied by a resolver when a host atterofpiek
up a destination host’s information.

SEATTLE completely eliminates flooding of unicast packets.
However, to offer the same semantics as Ethernet bridgiB§TS
TLE needs to support transmission of packets senthmadcast
address Supporting broadcasting is important because some appli-
cations (e.g., IP multicast, peer-to-peer file sharing o, etc.)
rely on subnet-wide broadcasting. However, in large ndte/to
which our design is targeted, performing broadcasts in #mes 6. SIMULATIONS
style as Ethernet may significantly overload switches andice )

data plane efficiency. Instead, SEATTLE provides a mechanis In this section, we start by describing our simulation emwvir

which is similar to, but more flexible than, VLANS. ment. Next, we describe SEATTLE'’s performance under work-
In particular, SEATTLE introduces a notion gfoup. Similar !oads _collected from several real op(_erational _netwo_rks. thee

to a VLAN, a group is defined as a set of hosts who share the investigate SEATTLE’s performance in dynamic environnseloy

same broadcast domain regardless of their location. Uitke generating host mobility and topology changes.

ernet bridging, however, a broadcast domain in SEATTLE da¢s 6.1 Methodology
limit unicast layer-2 reachability between hosts becauSEAT-
TLE switch can resolve any host's address or location withely-

ing on broadcasting. Thus, groups provide several additiben-
efits over VLANSs. First, groups do not need to be manually as-
signed to switches. A group is automatically extended tecav

switch as soon as a member of that group arrves at the slwitch of host movement patterns. Unfortunately, network adriaters
Second, a group is not forped to correspond to gsmgle IPespibn . (understandably) were not able to share this detailed rimditipn
and_ hence may span multiple s_u_bn_ets or a portion of a_sulfnet, ' with us due to privacy concerns, and also because they tiypita
desired. Third, unicast reachabllltylln layer-2 betyveen tirfer- not log events on such large scales. Hence, we leveragetlaeas
enttgrcl)up? may be aIIIOtheccij (?r .restn(r:]t.eg) depending on mﬁ? where possible, and supplemented them with syntheticdrate
contro! policy — aruie set detining which groups can commaltac generate the synthetic traces, we made realistic assumsplmout

W';[]hW?;Ch.a.tbet\;veen the groups. | benefits that ard twm workload characteristics, and varied these charactsist mea-
€ Tlexibility Of groups ensures severa’ benetits that ar sure the sensitivity of SEATTLE to our assumptions.

achieve with conventional Ethernet bridging and VLANs. Whe In our packet-level simulator, we replayed packet tracds co

agroup Is aligned W't.h a subnet, _and unicast reachabllrlwm lected from the Lawrence Berkeley National Lab campus ne¢wo
two different groups |s_not permltted by default, groupsvidie by Pang et. al. [33]. There are four sets of traces, eachatetle
exactly the same functionality as VLANS. However, groupa ca over a period of 10 to 60 minutes, containing traffic to andrfro

inﬁlude_ atrllargetnurT(be_rt;f etrr]1d hO.StS andt C?n Ibe ext(z?de_d (th any'roughly 9,000 end hosts distributed over 22 different stsriehe
where in the network without harming control-plane scaiban end hosts were running various operating systems and afiplis,

data-plane efficiency. Moreover, when groups are definedilas s including malware (some of which engaged in scanning). Biuev

sets of an IP subnet, and inter-group reachability is pitddbeach L ; e s
. ; . ) ate sensitivity of SEATTLE to network size, we artificiallyjécted
group is equivalent to a private VLAN (PVLAN), which are pepu additional hoysts into the trace. We did this by creating Zv’setr-

3The way administrators associate a host with corresporgfingp tual hosts, which communicated with a set of random desbinst

is beyond the scope of this paper. For Ethernet, manageryent s while preserving the d|str|but|qn O.f Qesglnatlon-leveppd};rlty of
tems that can automate this task (e.g., mapping an end hoisnor  the original traces. We also tried injecting MAC scanniniaekts

to a VLAN) are already available [31], and SEATTLE can employ and artificially increasing the rate at which hosts send.[17]

the same model. We measured SEATTLE'’s performance on four representative

To evaluate the performance of SEATTLE, we would ideallg lik
to have several pieces of information, including complayet-two
topologies from a number of representative enterprisesaanéss
providers, traces of all traffic sent on every link in thejpatogies,
the set of hosts at each switch/router in the topology, andaet
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Figure 4: (a) Effect of cache timeout inAP-largewith 50K hosts (b) Table size increase iDC (b) Control overhead in AP-large These figures contain
error bars showing confidence intervals for each data pointA sufficient number of simulation runs reduced these intervés.

topologies. Campusis the campus network of a large (roughly
40,000 students) university in the United States, comgiri1l7
routers and switches. AP-small (AS 3967) is a small access
provider network consisting of 87 routers, alB-large(AS 1239)

is a larger network with 315 routers [34]. Because SEATTLE

work. First, the fraction of packets that require data-ehilocation
lookups (i.e., lookups not piggy-backed on ARPS) is very &owd
decreases quickly with larger timeout. Even for a very sttirae-

out value of60 seconds, ove9.98% of packets are forwarded
without a separate lookup. We also confirmed that the number o

switches are intended to replace both IP routers and Etherne data packets forwarded via location resolvers drops to adren

bridges, the routers in these topologies are considereBHAFB.E
switches in our evaluation. To investigate a wider rangeneiren-
ments, we also constructed a model topology cdll€lwhich rep-
resents a typical data center network composed of founfelshed
core routers each of which is connected to a mesh of twentagne
gregation switches. This roughly characterizes a commoséd
topology in data centers [1].

Our topology traces were anonymized, and hence lack infor-

using timeout values larger th@®0 seconds (i.e., roughly equal
to the ARP cache timeout at end hosts). Also control overhead
to maintain the directory decreases quickly, whereas theuam

of state at each switch increases moderately with largezdirn
Hence, in a network with properly configured hosts and reasign
small (e.g., less tha2% of the total number of hosts in this topol-
ogy) forwarding tables, SEATTLE always offers shorteshpat

Forwarding table size:Figure 4b shows the amount of state per

mation about how many hosts are connected to each switch. Toswitch in theDC topology. To quantify the cost of ingress caching,

deal with this, we leveraged CAIDA Skitter traces [35] to gbly
characterize this number for networks reachable from thermet.
However, since the CAIDA skitter traces form a sample regmes
tative of the wide-area, it is not clear whether they applyhe
smaller-scale networks we model. Hence B andCampuswe
assume that hosts are evenly distributed across leafdexithes.
Given a fixed topology, the performance of SEATTLE and Eth-
ernet bridging can vary depending on traffic patterns. Tantifya
this variation we repeated each simulation run 25 times, @od
the average of these runs with 99% confidence intervals. &ar e
run we vary a random seed, causing the number of hosts pehswit
and the mapping between hosts and switches to change. @widiti
ally for the cases of Ethernet bridging, we varied spanniegs by
randomly selecting one of the core switches as a root brige.
simulations assume that all switches are part of the sanazlbast
domain. However, since our traffic traces are captured ih eac
the 22 different subnets (i.e., broadcast domains), thfctizat-
terns among the hosts preserve the broadcast domain basidar
Thus, our simulation network is equivalent to a VLAN-based-n
work where a VLAN corresponds to an IP subnet, and all nof-lea
Ethernet bridges are trunked with all VLANSs to enhance nitbil

6.2 Control-plane Scalability

Sensitivity to cache eviction timeoutSEATTLE caches host in-
formation to route packets via shortest paths and to elimine
dundant resolutions. If a switch removes a host-infornmagao-
try before a locally attached host does (from its ARP cactia),
switch will need to perform a location lookup to forward dpteck-
ets sent by the host. To eliminate the need to queue datatpacke
at the ingress switch, those packets are forwarded througtaa
tion resolver, leading to a longer path. To evaluate thisatffwe
simulated a forwarding table management policy for swiscthat
evicts unused entries after a timeout. Figure 4a shows pesaitce
of this strategy across different timeout values in ielargenet-

we show SEATTLE's table size with and without cachi&EA_CA
and SEA_NOCAespectively). Ethernet requires more state than
SEATTLE without caching, because Ethernet stores actiwtsho
information entries at almost every bridge. In a networkhwst
switches andh hosts, each Ethernet bridge must be provisioned
to store an entry for each destination, resultingifsh) state re-
quirements across the network. SEATTLE requires @) state
since only the access and resolver switches need to stagdonc
information for each host. In this particular topology, SHAE
reduces forwarding-table size by roughly a facto2®f Although

not shown here due to space constraints, we find that these gai
increase to a factor di4 in AP-large because there are a larger
number of switches in that topology. While the use of caching
drastically reduces the number of redundant location utisois,

we can see that it increases SEATTLE's forwarding-table big
roughly a factor ofl.5. However, even with this penalty, SEAT-
TLE reduces table size compared with Ethernet by roughlgi@fa

of 16. This value increases to a factor4if in AP-large

Control overhead: Figure 4c shows the amount of control over-
head generated by SEATTLE and Ethernet. We computed this
value by dividing the total number of control messages oller a
links in the topology by the number of switches, then divigly
the duration of the trace. SEATTLE significantly reducestomn
overhead as compared to Ethernet. This happens becausadEthe
generates network-wide floods for a significant number okpac
ets, while SEATTLE leverages unicast to disseminate hast-lo
tion. Here we again observe that use of caching degradesrperf
mance slightly. Specifically, the use of cachi&E@_CAincreases
control overhead roughly from.1 to 1 packet per second as com-
pared tdSEA_NOCAnN a network containing0K hosts. However,
SEA_C#s overhead still remains a factor of roughl900 less than

in Ethernet. In general, we found that the difference in admver-
head increased roughly with the number of links in the nekwor
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Comparison with id-based routing approachegve implemented
the ROFL, UIP, and VRR protocols in our simulator. To ensure a
fair comparison, we used a link-state protocol to constuset-
paths [15] along shortest paths in UIP and VRR, and created a
UIP/VRR node at a switch for each end host the switch is at-
tached to. Performance of UIP and VRR was quite similar to
performance of ROFL with an unbounded cache size. Figure 5a
shows the average relative latency penaltysteetch of SEATTLE

and ROFL [13] in theAP-large topology. We measured stretch
by dividing the time the packet was in transit by the delaynglo
the shortest path through the topology. Overall, SEATTLEum
smaller stretch than ROFL. With a cache sizelof0, SEATTLE
offers a stretch of roughly.07, as opposed to ROFL4.9. This
happens becausgwhen a cache miss occurs, SEATTLE resolves
location via a single-hop rather than a multi-hop lookupd @
SEATTLE's caching is driven by traffic patterns, and hostain
enterprise network typically communicate with only a snmaiin-

ber of popular hosts. Note that SEATTLE's stretch remains be
low 5 even when a cache size(s Hence, even with worst-case
traffic patterns (e.g., every host communicates with akéottosts,
switches maintain very small caches), SEATTLE still ensusa-
sonably small stretch. Finally, we compgpath stability with
ROFL in Figure 5b. We vary the rate at which hosts leave and
join the network, and measure path stability as the numbgmefs

a flow changes its path (the sequence of switches it trayerstse
presence of host churn. We find that ROFL has over three ooflers
magnitude more path changes than SEATTLE.

6.3 Sensitivity to network dynamics

Effect of network changes:Figure 5¢ shows performance during
switch failures. Here, we cause switches to fail randomlighw
failure inter-arrival times drawn from a Pareto distriloutiwith

a = 2.0 and varying mean values. Switch recovery times are
drawn from the same distribution, with a mean36fseconds. We
found SEATTLE is able to deliver a larger fraction of packiéizn
Ethernet. This happens because SEATTLE is able to uselgliln
the topology to forward packets, while Ethernet can onlyvénd
over a spanning tree. Additionally, after a switch failugthernet
must recompute this tree, which causes outages until theegso
completes. Although forwarding traffic through a locatiesalver

in SEATTLE causes a flow’s fate to be shared with a larger numbe
of switches, we found that availability remained highemttizat of
Ethernet. Additionally, using caching improved availapifurther.

Effect of host mobility: To investigate the effect of physical or vir-
tual host mobility on SEATTLE performance, we randomly move
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time for switches to evict stale location information, aedrh the
host’s new location. Although some host operating systemmads
cast a gratuitous ARP when a host moves, this increasesdasiad
overhead. In contrast, SEATTLE provides both low loss andd+
cast overhead by updating host state via unicasts.

7. IMPLEMENTATION

To verify SEATTLE’s performance and practicality through a
real deployment, we built a prototype SEATTLE switch using t
open-source routing software platforms: user-levitk [36] and
XORP[37]. We also implemented a second version of our proto-
type using kernel-level Click [38]. Section 7.1 descrikies $truc-
ture of our design, and Section 7.2 presents evaluatioftsesu

7.1 Prototype design

Figure 7 shows the overall structure of our implementation.
SEATTLE's control plane is divided into two functional mdds:
i) maintaining the switch-level topology, aiijilmanaging end-host
information. We used XORP to realize the first functional med
and used Click to implement the second. We also extended Clic
to implement SEATTLE's data-plane functions, includingnsis-
tent hashing and packet encapsulation. Our control andpdiate
modifications to Click are implemented as t8eattleSwitctele-
ment shown in Figure 7.
SEATTLE control plane: First, we run a XORP OSPF process at
each switch to maintain a complete switch-level network nide
XORP RIBD (Routing Information Base Daemon) constructs its
routing table using this map. RIBD then installs the routialle
into the forwarding plane process, which we implement witibikC
Click uses this table, namelextHopTablgto determine a next
hop. The FEA (Forwarding Engine Abstraction) in XORP han-
dles inter-process communication between XORP and Cliak. T

hosts between access switches. We drew mobility times from a maintain host information, a SeattleSwitch utilizdd@stLocTable

Pareto distribution witly = 2.0 and varying means. For high mo-
bility rates, SEATTLE's loss rate is lower than Ethernetite 6).
This happens because when a host moves in Ethernet, it @kes s

which is populated with three kinds of host information: tf& out-
bound port for every local host; (b) the location for everynoge
host for which this switch is a resolver; and (c) the locafimnev-
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ery remote host cached via previous lookups. For each iasert
or deletion of a locally-attached host, the switch generateorre-
sponding registration or deregistration message. Adtitlg, by
monitoring the changes of the NextHopTable, the switch aan d
tect whether the topology has changed, and host re-retijstria
required accordingly. To maintain IP-to-MAC mappings tpjsort
ARP, a switch also maintains a separate table in the conmakp
This table contains only the information of local hosts asshote
hosts that are specifically hashed to the switch. When otofyyme
switch is first started up, a simple neighbor-discovery quot is
run to determine which interfaces are connected to othdckes,
and over each of these interfaces it initiates an OSPF sesEie
link weight associated with the OSPF adjacency is by defaailto
be the link latency. If desired, another metric may be used.

SEATTLE data plane:To forward packets, an ingress switch first
learns an incoming packet's source MAC address, and if sacgs
adds the corresponding entry in HostLocTable. Then thechwit
looks up the destination MAC address in the HostLocTable and
checks to see if) the host is locally attached) the host is remote,
and its location is cached, dir) the host is explicitly registered
with the switch. In the case @i ) the switch needs to send a host
location notification to the ingress. In all cases, the dwiteen
forwards the packet either to the locally attached destingbr en-
capsulates the packet and forwards it to the next hop towsed t
destination. Intermediate switches can then simply fodviae en-
capsulated packet by looking up the destination in theitNegT-
ables. In addition, if the incoming packet is an ARP requi,
ingress switch executes the hash functiro look up the corre-
sponding resolver’s id, and re-writes the destination & ith, and
delivers the packet to the resolver for resolution.

7.2 Experimental results

Next, we evaluate a deployment of our prototype implementa-
tion on Emulab. To ensure correctness, we cross-validatesdim-
ulator and implementation with various traces and top@sgand
found that average stretch, control overhead, and tabéefsim
implementation results were withB% of the values given by the
simulator. We first present a set of microbenchmarks to etalu
per-packet processing overheads. Then, to evaluate dgaarha
SEATTLE network, we measure control overhead and switde sta
requirements, and evaluate switch fail-over performance.

Packet processing overheadable 1 shows per-packet processing
time for both SEATTLE and Ethernet. We measure this as the tim
from when a packet enters the switch’s inbound queue, tarie t

tent hashing (which takes aroug@ us) is required only for ARP
requests. Hence, SEATTLE requires less overall processimg
on paths longer thaf.03 switch-level hops. In comparison, we
found the average number of switch-level hops between lhosts
real university campus networkcémpus to be overs for the vast
majority of host pairs. Using our kernel-level implemeitgatof
SEATTLE, we were able to fully saturatelaGbps link.

Table 1: Per-packet processing time in micro-sec.

learn | look-up | encap look-up Total

‘ ” src ‘ host tbl ‘ nexthoptbl” |
SEA-ingress|| 0.61 0.63 0.67 0.62 2.53
SEA-egress - 0.63 - - 0.63
SEA-others - - 0.67 0.67
ETH 0.63 0.64 - 1.27

Effect of network dynamics:To evaluate the dynamics of SEAT-
TLE and Ethernet, we instrumented the switch’s internad datuc-
tures to periodically measure performance informatioguFés 8a
and 8b show forwarding-table size and control overheages
tively, measured over one-second intervals. We can seSH®AT-
TLE has much lower control overhead when the systems are first
started up. However, SEATTLE’s performance advantagesotio n
come from cold-start effects, as it retains lower contraérbread
even after the system converges. As a side note, the fomgardi
table size in Ethernet is not drastically larger than thaBBRAT-
TLE in this experiment because we are running on a small four
node topology. However, since the topology has ten linksl i

ing links to hosts), Ethernet’s control overhead remairtss&an-
tially higher. Additionally, we also investigate perfornee by in-
jecting host scanning attacks [17] into the real traces vesl dier
evaluation. Figure 8b includes the scanning incidencesroed at
around 300 and 600 seconds, each of which involves a singlke ho
scanning 5000 random destinations that do not exist in ttveank.

In Ethernet, every scanning packet sent to a destinatioargtss a
network-wide flood because the destination is not existieguilt-

ing in sudden peaks on it’s control overhead curve. In SEAETL
each scanning packet generates one unicast lookup (eesctn-
ning data packet itself) to a resolver, which then discdrdpticket.

Fail-over performance:Figure 8c shows the effect of switch fail-
ure. To evaluate SEATTLE's ability to quickly republish hofor-
mation, here we intentionally disable caching, induceifa# of the
resolver switch, and measure throughput of TCP when allgiack
are forwarded through the resolver. We set the OSPF heko-int
val to 1 second, and dead interval to 3 seconds. After thdvesso
fails, there is some convergence delay before packets atevise
the new resolver. We found that SEATTLE restores connegtivi
quickly, typically on the order of several hundred milliseds after
the dead interval. This allows TCP to recover within seveesl-
onds, as shown in Figure 8c-i. We found performance duriitg fa
ures could be improved by having the access switch registash
with the next switch along the ring in advance, avoiding adi-ad
tional re-registration delay. When a switch is repairedréhs also
a transient outage while routes move back over to the neviverso
as shown in Figure 8c-ii. In particular, we were able to invero
convergence delay during recoveries by letting switchesgiicoe
to forward packets through the old resolver for a grace gerln

it is ready to be moved to an outbound queue. We break this time contrast, optimizing Ethernet to attain low (a few sec) evgence
down into the major components. From the table, we can s¢e tha delay exposes the network to a high chance of broadcast storm

an ingress switch in SEATTLE requires more processing thme t

in Ethernet. This happens because the ingress switch hasap-e
sulate a packet and then look up the next-hop table with therou
header. However, SEATTLE requires less packet processiag o
head than Ethernet at non-ingress hops, as intermediategaests
switches do not need to learn source MAC addresses, andseonsi

making it nearly impossible to realize in a large network.

8. CONCLUSION

Operators today face significant challenges in managing and
configuring large networks. Many of these problems arism ftioe
complexity of administering IP networks. Traditional Ethet is
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