Ruby Programming Language

Closures

Sapna Jain

Nov 30, 2004

Sapna Jain Ruby Programming Language Closures



Ruby Programming Language

Ruby is an object oriented programming language. Every bit of
data is an object, even the primitive data types are also objects.

Ruby is a multi-paradigm programming language, it allows to
program procedurally, object-orientated or functionally.

Ruby support blocks and closures.

Sapna Jain Ruby Programming Language Closures



O Blocks are nameless functions. Basically we can pass nameless
function to another function, and then that function can
invoke the nameless function.

@ In C the same functionality is provided by function pointers.
We can pass a function pointer as parameter to other
function, which can invoke function using function pointers.

Sapna Jain Ruby Programming Language Closures



Blocks Vs Function Pointers

With function pointers, we have to explicitly specify that a
function will accept function pointer as argument.

But, in Ruby block is considered as an implicit argument, and thus
any function can call block using yield keyword.

Sapna Jain Ruby Programming Language Closures



Use of Blocks

@ Blocks must follow a method invocation:
invocation do ... end
invocation

Blocks remember their variable context, and are full closures.

Blocks are invoked via yield and may be passed arguments.

© 00

Brace form has higher precidence and will bind to the last
parameter if invocation made w/o parens.

@ do/end form has lower precidence and will bind to the
invocation even without parens.

Sapna Jain Ruby Programming Language Closures



Closures

In programming languages, a closure is an abstraction representing
a function, plus the lexical environment (see static scoping) in
which the function was created, and its application to arguments.
A closure results in a fully closed term: one with no free variables
left.

Closures typically appear in languages that allow functions to be
"first-class” values in other words, such languages allow functions
to be passed as arguments, returned from function calls, bound to
variable names, etc., just like simpler types such as strings and
integers.

Sapna Jain Ruby Programming Language Closures



What makes a block a closure?

A closure object has code to run, the executable, and state around
the code, the scope. So you capture the environment, namely the
local variables, in the closure. As a result, you can refer to the
local variables inside a closure. Even after the function has
returned, and its local scope has been destroyed, the local variables
remain in existence as part of the closure object. When no one
refers to the closure anymore, it's garbage collected, and the local
variables go away.

So the local variables are basically being shared between the closure

and the method. If the closure updates the variable, the method
sees it. And if the method updates the variable, the closure sees it.

Sapna Jain Ruby Programming Language Closures



Benefits of closure

You can reconvert a closure back into a block, so a closure can be
used anywhere a block can be used. Often, closures are used to
store the status of a block into an instance variable, because once
you convert a block into a closure, it is an object that can by
referenced by a variable. And of course closures can be used like
they are used in other languages, such as passing around the object
to customize behavior of methods. If you want to pass some code
to customize a method, you can of course just pass a block. But if
you want to pass the same code to more than two methods — this
is a very rare case, but if you really want to do that — you can
convert the block into a closure, and pass that same closure object
to multiple methods.

Sapna Jain Ruby Programming Language Closures



Example of closure

Let we have a user interface with two buttons. bStart =

Button.new(" Start”)
bPause = Button.new(” Pause™)

4.

What happens when the user presses one of our buttons? In the
Button class, the hardware folks rigged things so that a callback
method, buttonPressed, will be invoked. The obvious way of
adding functionality to these buttons is to create subclasses of
Button and have each subclass implement its own buttonPressed
method.

Sapna Jain Ruby Programming Language Closures



Example Continued...

class StartButton j Button
def initialize
super("Start”) #invoke Button's initialize
end
def buttonPressed
do start actions...
end
end
bStart = StartButton.new

Sapna Jain Ruby Programming Language Closures



Example Continued...

Problem with previous code

There are two problems here.

@ This will lead to a large number of subclasses. If the interface
to Button changes, this could involve us in a lot of
maintenance.

@ The actions performed when a button is pressed are expressed
at the wrong level; they are not a feature of the button, but
are a feature of the jukebox that uses the buttons. We can fix
both of these problems using blocks.

Sapna Jain Ruby Programming Language Closures



Example Continued...

class JukeboxButton | Button
def initialize(label, &action)
super(label)
@action = action
end
def buttonPressed
@action.call(self)
end
end
bStart = JukeboxButton.new("Start”) songlList.start
bPause = JukeboxButton.new(" Pause”) songlList.pause

Sapna Jain Ruby Programming Language Closures



Example Continued...

The key to all this is the second parameter to
JukeboxButton#initialize. If the last parameter in a method
definition is prefixed with an ampersand (such as &action), Ruby
looks for a code block whenever that method is called. That code
block is converted to an object of class Proc and assigned to the
parameter. You can then treat the parameter as any other variable.
In our example, we assigned it to the instance variable @action.
When the callback method buttonPressed is invoked, we use the
Proc#call method on that object to invoke the block. So what

exactly do we have when we create a Proc object? The interesting
thing is that it's more than just a chunk of code. Associated with
a block (and hence a Proc object) is all the context in which the
block was defined: the value of self, and the methods, variables,
and constants in scope. Part of the magic of Ruby is that the
block can still use all this original scope information even if the
environment in which it was defined would otherwise have




Example of method proc

This example uses the method proc, which converts a block to a
Proc object.

def nTimes(aThing)
return proc —n— aThing * n
end
pl = nTimes(23)
pl.call(3) 69
pl.call(4) 92
p2 = nTimes("Hello ")
p2.call(3) "Hello Hello Hello "

The method nTimes returns a Proc object that references the
method's parameter, aThing. Even though that parameter is out
of scope by the time the block is called, the parameter remains
accessible to the block.

Sapna Jain Ruby Programming Language Closures



References

@ Artima Developers
http://www.artima.com/intv/closures2.html

@ Programming Ruby
http://www.rubycentral.com/book/tut_containers.html

@ Ruby Programming Language
http://en.wikipedia.org/wiki/Ruby_programming_language

Sapna Jain Ruby Programming Language Closures



