n = 2;
K = 11;
randn('state',0);
P = randn(n,K);
fprintf(1,'Minimizing the sum of the squares the distances to fixed points...');
cvx_begin
variable x(2)
minimize ( sum( square_pos( norms(x*ones(1,K) - P,2) ) ) )
cvx_end
fprintf(1,'Done! \n');
disp('------------------------------------------------------------------');
disp('The optimal point location is: ');
disp(x);
disp('The average location of the fixed points is');
disp(sum(P,2)/K);
disp('They are the same as expected!');
Minimizing the sum of the squares the distances to fixed points...
Calling SDPT3: 88 variables, 46 equality constraints
For improved efficiency, SDPT3 is solving the dual problem.
------------------------------------------------------------
num. of constraints = 46
dim. of sdp var = 22, num. of sdp blk = 11
dim. of socp var = 33, num. of socp blk = 11
dim. of linear var = 22
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version predcorr gam expon scale_data
HKM 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime
-------------------------------------------------------------------
0|0.000|0.000|1.0e+01|1.1e+01|4.6e+03| 1.100000e+02 0.000000e+00| 0:0:00| chol 1 1
1|0.854|0.860|1.5e+00|1.6e+00|9.5e+02| 8.596987e+01 -1.058415e+02| 0:0:00| chol 1 1
2|1.000|1.000|1.9e-06|1.0e-02|1.3e+02| 4.110764e+01 -8.490538e+01| 0:0:00| chol 1 1
3|0.978|0.982|9.4e-07|1.2e-03|2.4e+01|-7.230670e+00 -3.138282e+01| 0:0:00| chol 1 1
4|1.000|1.000|2.2e-07|1.0e-04|8.5e+00|-1.347951e+01 -2.199622e+01| 0:0:00| chol 1 1
5|0.912|0.910|3.5e-08|1.8e-05|1.1e+00|-1.633531e+01 -1.742632e+01| 0:0:00| chol 1 1
6|1.000|1.000|9.6e-09|1.0e-06|3.3e-01|-1.657765e+01 -1.691125e+01| 0:0:00| chol 1 1
7|0.956|0.956|3.9e-09|1.4e-07|1.7e-02|-1.667823e+01 -1.669482e+01| 0:0:00| chol 1 1
8|0.984|0.984|1.7e-09|1.3e-08|2.7e-04|-1.668304e+01 -1.668331e+01| 0:0:00| chol 1 1
9|0.989|0.989|3.3e-11|4.9e-10|3.1e-06|-1.668312e+01 -1.668312e+01| 0:0:00| chol 1 1
10|0.996|0.995|2.0e-13|9.4e-12|4.0e-08|-1.668312e+01 -1.668312e+01| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations = 10
primal objective value = -1.66831188e+01
dual objective value = -1.66831189e+01
gap := trace(XZ) = 4.01e-08
relative gap = 1.17e-09
actual relative gap = 1.14e-09
rel. primal infeas = 1.95e-13
rel. dual infeas = 9.35e-12
norm(X), norm(y), norm(Z) = 1.9e+01, 8.1e+00, 1.1e+01
norm(A), norm(b), norm(C) = 1.1e+01, 4.3e+00, 6.3e+00
Total CPU time (secs) = 0.22
CPU time per iteration = 0.02
termination code = 0
DIMACS: 4.2e-13 0.0e+00 2.0e-11 0.0e+00 1.1e-09 1.2e-09
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +16.6831
Done!
------------------------------------------------------------------
The optimal point location is:
0.0379
0.0785
The average location of the fixed points is
0.0379
0.0785
They are the same as expected!