Convex Optimization — Boyd & Vandenberghe

1. Introduction

e mathematical optimization

e |east-squares and linear programming
e convex optimization

e example

e course goals and topics

e nonlinear optimization

e brief history of convex optimization

In layman’'s terms, the mathematical science of Optimization 1s the study
of how to make a good choice when confronted with conflicting requirements.
The qualifier conver means: when an optimal solution is found, then it is

guaranteed to be a best solution; there is no better choice.

Mathematical optimization

(mathematical) optimization problem

minimize  fy(x)
subject to  fi(x) <b;, t=1,....m

e v = (x1,...,x,): optimization variables
e fo: R" — R: objective function

e fi:R" =R, 1=1,...,m: constraint functions

optimal solution x* has smallest value of f, among all vectors that

satisfy the constraints
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Examples

portfolio optimization
e variables: amounts invested in different assets
e constraints: budget, max./min. investment per asset, minimum return

e objective: overall risk or return variance

device sizing in electronic circuits

e variables: device widths and lengths
e constraints: manufacturing limits, timing requirements, maximum area

e objective: power consumption

data fitting

e variables: model parameters
e constraints: prior information, parameter limits

e objective: measure of misfit or prediction error
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Solving optimization problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

e least-squares problems
e linear programming problems

e convex optimization problems
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solving least-squares problems

e analytical solution: x* = (ATA)_]AszemNr]Q J_F CIDQ ’Qﬂm
e reliable and efficient algorithms and software “lum
e computation time proportional to n2k (A € R**™); less if structured

e a mature technology

using least-squares

e |east-squares problems are easy to recognize

¢ a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear programming

minimize ¢’z

subject to alx <b;, i=1,...,m

solving linear programs

no analytical formula for solution

reliable and efficient algorithms and software

computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving £1- or £,,-norms, piecewise-linear functions)
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Convex optimization problem

For L 1A% -b|/ fo Leosl squarce
ks S"‘(‘*)S by minimize | 0) /_7" o inear progrem
subject to | fi(x) < by, 1=1,...,m

£.027< by CY)

E () <b
e objective afw? constraint functions are convex: & «£;(l) 1 ﬁf\.(j)

A :[:\] - )
- CoveX . (ar B0 < afi(z) + BF( .
(m Co bIHAhoﬂ f;( + y) < fz( ) + fa(z)(‘h

b Y’;‘wl foa+8=1a>08>0 (0(' Be ["J‘D ® \Q_,

a’{)‘_< b‘ e includes least-squares problems and linear programs as special cases (At éj
=y

V-
} sed: :9 Y shet |d ve defined ok .eadr\ wn
oot foe M (O:!EL?haHOY\ Axx by, . Doman wust hoave

Some ‘Jfofuuj w};\c\ wo.'w\“ cal\ <0¢We£‘|l®

solving convex optimization problems

e no analytical solution
e reliable and efficient algorithms

e computation time (roughly) proportional to max{n* n?m, F}, where F’
is cost of evaluating f;'s and their first and second derivatives

e almost a technology

using convex optimization

e often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization
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Brief history of convex optimization

theory (convex analysis): cal900-1970

algorithms

e 1947: simplex algorithm for linear programming (Dantzig)

1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
1970s: ellipsoid method and other subgradient methods

1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

late 1980s—now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
e before 1990: mostly in operations research; few in engineering

e since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . . ); new problem classes
(semidefinite and second-order cone programming, robust optimization)
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Convex optimization problem

minimize  folx)
subject to  fi(z) <t <=1,...,m
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Convex Optimization — Boyd & Vandenberghe

2. Convex sets

e affine and convex sets

e some important examples

e operations that preserve convexity

e generalized inequalities

e separating and supporting hyperplanes

e dual cones and generalized inequalities
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Affine set

line through x4, xo: all points

r =0z +(1—0)x (0 € R)

affine set: contains the line through any two distinct points in the set

N h\ g«o\m
example: solution set of linear equations {z | Az = b} f{}’:a* o) ebvp 30

(conversely, every affine set can be expressed as solution set of system of ome

linear equations) &Ya.
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0 or 1 solution

Figure 3.3: Summary of the properties of the solutions to the system of equations
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Thws:

The system of equations Ax = b is solvable when b is in the column space

C'(A).
Another way of describing solvability 1s:
The system of equations Ax = b is solvable if a combination of the rows of

A produces a zero row, the requirement on b is that the same combination of
the components of b has to yield zero.

Sfe\?s to S‘na '7‘fayhcu\a-('.

. Xparticular—: Set all free variables (corresponding to columns with no piv-
ots) to (. In the example above, we should set 2 =0 and x4 = 0.

2. Solve Ax = b for pivot variables.
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