$$
\begin{aligned}
& \min f(x) \\
& x \in D \\
& \text { oik } g_{i}(x) \leqslant 0 \quad i=1 \ldots m
\end{aligned}
$$

(The general dual problem \& its geometric intepreta -lion)
Pg $292, \sec 4 \cdot 4 \cdot 3$ of $\begin{gathered}\text { http://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConv } \\ \text { exOptimization.pdf }\end{gathered}$
Consider the set:

$$
\mathcal{I}=\left\{(\mathbf{s}, z) \mid \mathbf{s} \in \Re^{m}, z \in \Re, \exists \mathbf{x} \in \mathcal{D} \text { with } g_{i}(\mathbf{x}) \leq s_{i} \forall 1 \leq i \leq m, f(\mathbf{x}) \leq z\right\}
$$

$$
\begin{aligned}
& \max \quad \alpha \\
& \text { subject to } \quad \mathcal{H}_{\lambda, \alpha}^{+} \supseteq \mathcal{I} \\
& \max \quad \alpha \\
& \text { subject to } \quad \lambda^{T} . \mathbf{s}+z \geq \alpha \forall(\mathbf{s}, z) \in \mathcal{I} \\
& \begin{array}{ll}
\max & \alpha \\
\text { subject to } & \lambda^{T} \cdot \mathbf{s}+z \geq \alpha \forall(\mathbf{s}, z) \in \mathcal{I}
\end{array} \\
& \lambda \geq 0 \\
& \left\{\begin{array}{l}
\text { If } f \alpha_{b} \text { sol to (b), } \\
\text { set } \lambda^{\top} g\left(x_{b}\right)+f\left(x_{b}\right)=\alpha_{b} \\
\text { then } s=g\left(x_{b}\right) z=f\left(x_{b}\right) \\
\text { is son to } a \text { of equivalence }
\end{array}\right. \\
& \text { complete proof of equivalence } \\
& \begin{cases}\text { subject to } & \lambda^{T} . \mathbf{g}(\mathbf{x})+f(\mathbf{x}) \geq \alpha \forall \mathbf{x} \in \mathcal{D} \\
& \lambda \geq \mathbf{0}\end{cases} \\
& \lambda \geq \mathbf{0}
\end{aligned}
$$

Prob. $A_{\alpha} \leq B_{\alpha} \stackrel{\text { re }}{=}\left\{\alpha \mid \lambda^{\top} s+2 \geq \alpha \forall(s, z) \in I\right\} \leq\left\{\alpha \mid \lambda^{\top} g(x)+f(x) \gamma \alpha \forall x \in D\right\}$ For if $\lambda^{\prime} g(x)+f(x)<\alpha$ for some $\alpha \& x$ then for $(s, z)=[g(\alpha), f(a)) \in I, \lambda^{\prime} s+z<\alpha \Rightarrow \alpha \phi A \alpha$ $B_{\alpha} \subseteq A_{\alpha}$ ie $\left\{\alpha \mid \lambda^{\top} g(x)+f(x) \geq \alpha \forall x \in D\right\} \subseteq\left\{\alpha \mid \lambda^{\top} s+z \geqslant \alpha \forall(s, 2) \in I\right\}$ for if $x^{\pi} g(x)+f(x) \geq \alpha$ \& $x \in D$ then since for each $(5,2) \in I, \exists(g(x),(a)) \leq(\pi, 2)$, $\lambda^{\top} S+2 \geqslant \alpha$ ie $\alpha \in A_{\alpha}$

$\max \quad \alpha$

subject to $L(\mathbf{x}, \lambda) \geq \alpha \forall \mathbf{x} \in \mathcal{D}$

$$
\lambda \geq \mathbf{0}
$$

Since, $L^{*}(\lambda)=\min _{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda)$, we can deal with the equivalent

$$
\begin{array}{ll}
\max & \alpha \\
\text { subject to } & L^{*}(\lambda) \geq \alpha \\
& \lambda \geq \mathbf{0}
\end{array}
$$

This problem can be restated as
$L^{*}(\lambda)$
subject to $\quad \lambda \geq \mathbf{0}$

Q: What is desirable of the set I for zero duality gap?
Ans: $\exists(0, \alpha) \in I$ and λ sit $\lambda^{\top} s+z \geqslant \alpha \forall(s, z) \in I$ $\&$ Intersection of I with z axis is closed below
$\Leftrightarrow \exists$ a supporting hyperplane to I at $(0, \alpha)$ E) \& Intersection of I with z axis is closed below (w th ($0, \alpha$) being boundary pt)
 to I at every boundary pant

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0, b$ such that

$$
a^{T} x \leq b \text { for } x \in C, \quad a^{T} x \geq b \text { for } x \in D
$$

the hyperplane $\left\{x \mid a^{T} x=b\right\}$ separates C and D
strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_{0} :

$$
\left\{x \mid a^{T} x=a^{T} x_{0}\right\}
$$

where $a \neq 0$ and $a^{T} x \leq a^{T} x_{0}$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Proof (from separating hyperplane theorem):
(a) interior $(C) \neq \phi$ (so that int $\left.(C) \cap\left\{x_{0}\right\}=\phi\right)$ Apply separating hyperplane theorem to sets $C^{\prime} \leq\left\{x_{0}\right\}$ and $D^{\prime}=$ interior (C) strict separation not applicable since $\operatorname{int}(C)$ is open
This inequality extends $a^{\top} x_{0} \leqslant b$ This inequality extends
to all bound arr (limit prs), combined: $a^{\top} x_{0}=b$
leading to $a^{\top} x_{0} \geqslant b$
(b) $\operatorname{int}(c)=\phi$
\Rightarrow Fry hyperplane containing that affine set contains $C \& x_{0}$ (How: Rove)
\Rightarrow This hyperplane is a trivial supporting hyperplane

H/w: Let $C \subseteq \mathbb{R}^{n}$ be an convex set. There exists a hyperplane H that contains x if $\operatorname{int}(c)=\phi$
Prof: $\operatorname{int}(C)=\phi \Rightarrow \exists$ hyperplane H sit $C C H$ we will prove by contradiction. Suppose there is no hyperplane H sot $C \subseteq H$. Let $x_{0}, x_{1}, x_{2} \ldots x_{n} \in C$ Consider $y_{i}=x_{i}-x_{0} \quad i=1 \cdot \cdot n$. If $y_{i}^{\prime} s$ were linearly dependent, then $\exists \alpha_{1} \cdot \alpha_{n} \in \mathbb{R}$ not all 0 st

$$
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \text { ie (for every } x_{i}, a^{\top} x_{i} \leq b
$$

ape offnely dependent e all lie an the
$\Rightarrow x_{1} . . x_{n}$ \& their convex combinations all lie an the hyperplane $a^{\hat{a}} x=b$
\Rightarrow Contradicts assumption that \exists no hyperplane $H \geq C$
$\therefore y_{1} . . y_{n}$ are linearly independent \& span \mathbb{R}^{n}
Now for $\alpha_{0} \ldots \alpha_{n} \in[0,1] 4 \sum_{i=0}^{n} \alpha_{i}=1, z=\sum_{i=0}^{n} \alpha_{i} x_{i} \in X$
$z=x_{0}+\sum_{i=1}^{n} \alpha_{i} y_{i}$ which is a representation for any $z \in C$ with $\sum_{i=1}^{n} \alpha_{i} \leq 1$ \& $\alpha_{i} \in[0,1]$
Fix a point $\hat{z}=x_{0}+\sum_{i=1}^{n} \hat{\alpha}_{i} y_{i}$

For any z near \hat{z}, it has representation
$\leftrightarrow Z=x_{0}+\sum_{i=1}^{n} \beta_{i} y_{i}$ (since $z-x_{0} \in R^{n} \& y_{1} \cdot . y_{n}$ is a basis for $\left(\mathbb{R}^{n}\right)$
with β_{i}^{\prime} s close to $\alpha_{i}^{\prime} s \forall i$
As $z \rightarrow \hat{z}_{1}, \beta_{i} \rightarrow \alpha_{i}$ for each if $\left.\sum \beta_{i}<1\right\} \because y_{i} \ldots y_{n}$ is basis for \mathbb{R}^{n}
\Rightarrow In other words, C contains a ball with center at \hat{z} and sufficiently small radius.
$\Rightarrow z \in \operatorname{int}(C)$ contradicting that $\operatorname{nt}(C)=\phi$
$\operatorname{Int}(c) \neq \phi \Rightarrow$ No hyperplane H contains C part
Let $x \in \operatorname{int}(c)$. Then $\exists \delta>0$ sot

$$
B_{2 \delta}(x)=\left\{y \mid\|y-x\|_{2} \leq 2 \delta\right\} \subseteq C
$$

$\Rightarrow \exists \cap$ point $x+\delta e_{i} e_{i}=(0, \ldots 1,0 \ldots 0)$ s.t $x+\delta e_{i} \in C$
\Rightarrow If Hyperperplane $H_{\lambda, \alpha}$ passes through x (re $\lambda^{\top} x=\alpha$) then if it contains $x+\delta e_{i}$

$$
\lambda^{\top}\left(x+\delta e_{i}\right)=\lambda^{i} x+\delta\left(\lambda^{\top} e_{i}\right)=\alpha+\delta \lambda_{i}=\alpha
$$

which requires $\lambda_{i}=0 \quad \forall i$. That is \exists no hyperplane in R^{n} that contains $B_{28}(x)$ or even C

Reason why $\sum \alpha_{i} y_{i}=0 \Rightarrow x_{1} \ldots x_{n}$ lie on a hyperplane (not all α_{i}^{\prime} 's are zero) \& $y_{i}=x_{i}-x_{0}$

$$
\begin{aligned}
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \Leftrightarrow \sum_{i=1}^{n} \alpha_{i} x_{i}=x_{0} \sum_{i=1}^{n} \alpha_{i} \Leftrightarrow\left(x_{1} \ldots x_{n}\right) \text { lib on } \\
& \text { (not all } \alpha_{i}=0 \text {) } \\
& \text { Linear dependence of } y_{i}^{\prime} s \text { will } \alpha_{i}=0 \quad \neq 0 \text { (re an fine subsonace } \\
& \text { Affine dependence of } \frac{1}{2} \text { in } n-1 \text { in } \\
& \text { of } x_{0}, x_{1} \ldots x_{n} \quad \mathbb{R}^{n} 7
\end{aligned}
$$

since $\sum_{i=0}^{\eta} \beta_{i} x_{i}=0$
whee $\sum_{i=0}^{n} \beta_{i}=0$

$$
\begin{aligned}
& \& \beta_{i}=\alpha_{i} \text { for } i=1 . n \\
& \& \beta_{0}=-\sum \alpha_{i}
\end{aligned}
$$

$V_{0} . V_{n}$ are affinely dependent if one of them can be expressed as an affine combination of the others

$$
\left.\begin{array}{rl}
\Leftrightarrow V_{0}= & \sum_{i=1}^{n} \lambda_{i} V_{i} \Leftrightarrow \sum_{i=0}^{n} \beta_{i} V_{i}=0 \quad\left(\beta_{i}=\lambda_{i} \quad i=1.0 n \& \beta_{0}\right.
\end{array}=-1 . \sum_{i=1}^{n} \lambda_{i}\right)
$$

http://www.math.bgu.ac.il/~shakhar/teaching/combinatorial_geometry_file

Aside: We just saw connection between "lInear dependence" \& "affine dependence" Is there a "convex dependence?"
Cavatheodory theorem: Let $S \subset \mathbb{R}^{n}$ \& let $\operatorname{dim}(\operatorname{conv}(s))=m$. Then, every point $x \in \operatorname{conv}(s)$ is a convex combination of almost mol points from S (Proof in section B.2.1 of Nemirovski)

$$
\frac{\operatorname{dim}(C)}{C \subseteq \mathbb{R}^{n}}=\operatorname{dim}(\operatorname{aff}(C))=\operatorname{dim}(\underbrace{V)}_{\operatorname{afd}(C)=V+a}
$$

$\min _{x \in D} f(x) \quad$ (Going back to I) set $g_{i}(x) \leqslant 0 \quad i=1 \ldots m$
(The general dual problem \& its geometric intepreta -Lion)
$\lg 292 \sec 4 \cdot 4 \cdot 3$ of http://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConv
Consider the set:

$$
\mathcal{I}=\left\{(\mathbf{s}, z) \mid \mathbf{s} \in \Re^{m}, z \in \Re, \exists \mathbf{x} \in \mathcal{D} \text { with } g_{i}(\mathbf{x}) \leq s_{i} \forall 1 \leq i \leq m, f(\mathbf{x}) \leq z\right\}
$$

Q: When is I convex?
Ans: $I=\left\{(s, z) \mid s \in \mathbb{R}^{m}, z \in \mathbb{R}, \exists x \in D\right.$ sot $g_{i}(x) \leq s_{i} i=1.0 m$

$$
f(x) \leq z\}
$$

I is projection/restriction of the epigraph of the rector valued fin $\bar{f}(x)=\left[\begin{array}{l}f(x) \\ g_{1}(x) \\ g_{m}(x)\end{array}\right]$

$$
\operatorname{epi}(\bar{f})=\left\{(x, s, z) \mid x \in D, f(x) \leq z, g_{i}(x) \leq s_{i} \quad i=1, \cdot m\right\}
$$

(in general, wr.l a generalized inequality $\frac{\swarrow}{k}$,

$$
\operatorname{epp}_{k}(\bar{f})=\{(x, t) \mid x \in D, \bar{f}(x) \leq t\}
$$

Based on midsem Q2@, ep (\bar{f}) is convex OR closure under affine transform More properties on following
Q: When is epi (\bar{f}) convex? I is convex $\left.\frac{1}{}(5,1) \times\{x\rangle\right)$ $\left(S_{1} 2\right) \times(S, 2)$ converse does not hold. Inverse mage of Api($\bar{f})$ is NoT epi (f)

BEGIN: SUPPLEMENTARY NOTES FOR CONVEX SETS

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity

- intersection
- affine functions
- perspective function
- linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex
example:

$$
S=\left\{x \in \mathbf{R}^{m}| | p(t) \mid \leq 1 \text { for }|t| \leq \pi / 3\right\}
$$

where $p(t)=x_{1} \cos t+x_{2} \cos 2 t+\cdots+x_{m} \cos m t$
for $m=2$:

Operations that preserve convexity
practical methods for establishing convexity of a set C

1. apply definition

Show that $\forall x_{1}, x_{2} \in C, \forall 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C$
2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity

- intersection
- affine functions
- perspective function

Tow may want

- linear-fractional functions

3. Empirical [Exposimontal [homework]
the intersection of (any number of) convex sets is convex
show that s_{i}^{n} is convex example:

$$
S=\left\{x \in \mathbf{R}^{m}| | p(t) \mid \leq 1 \text { for }|t| \leq \pi / 3\right\} \text { using this property }
$$

Polyhedra

solution set of finitely many linear inequalities and equalities

$$
A x \preceq b, \quad C x=d
$$

$\left(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq\right.$ is componentwise inequality)

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- \mathbf{S}^{n} is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$: positive semidefinite $n \times n$ matrices

$$
X \in \mathbf{S}_{+}^{n} \quad \Longleftrightarrow \quad z^{T} X z \geq 0 \text { for all } z
$$

\mathbf{S}_{+}^{n} is a convex cone

- $\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succ 0\right\}:$ positive definite $n \times n$ matrices
example: $\left[\begin{array}{ll}x & y \\ y & z\end{array}\right] \in \mathbf{S}_{+}^{2}$

Polyhedra

solution set of finitely many linear inequalities and equalities

$$
A x \preceq b, \quad C x=d
$$

$\left(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq\right.$ is componentwise inequality)

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- \mathbf{S}^{n} is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$: positive semidefinite $n \times n$ matrices

$$
X \in \mathbf{S}_{+}^{n} \quad \Longleftrightarrow z^{T} X z \geq 0 \text { for all } z
$$

\mathbf{S}_{+}^{n} is a convex cone

- $\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succ 0\right\}$: positive definite $n \times n$ matrices
example: $\left[\begin{array}{ll}x & y \\ y & z\end{array}\right] \in \mathbf{S}_{+}^{2}$

(a) Convex hall $(5)=$ set of all convex denoted conv(s) combinations of pto ins
(b) Convex hull $(s)=$ smallest convex set denoted conv(s) that contains 5 [Prove as $n / \omega]$
Also: The idea of a convex combination can be generalised to include infinite sums, integrals, and, in the most general form, probability distributions

(s) set of all coniclaffine combination of pto in s
S is called basis of vector space V if $\operatorname{lin}-\operatorname{span}(S)=V$ S is called affine? basis of affine set A if afff(s) s is called conically spanning sat of cone K if conic(s) $=K$
S is called convexly spanning set of convex set C $=C$

Let $S=\{(1,0,0),(0,1,0),(0,0,1)\}$
what is if hull (s)? What is conichull (s)? What is convex hull (s)

Further notes:
(i) conic (s) is not always closed. Eg: $\begin{gathered}S=\text { circle passing through }(0,0)) \\ S \subseteq R^{2}\end{gathered}$ $S \subseteq \mathbb{R}^{2}$
$\operatorname{conic}(S)=$ open half space containing S

$$
U\{0,0\}
$$

(2) K is a convex cone if $k=$ conic (k)

(3) Similarly conv(s) is not always closed

1) Recall that if $S=$ linear vector space $C V \& B$ is its basis, $S=$ linear $\operatorname{spin}(B)=\left\{1 \in V \mid\langle v, b\rangle_{V}=0 V\right.$ where B^{\perp} is basis for S^{\perp} $\left.b \in B^{1}\right\}$

Assuming V is an loner product space

$$
\begin{aligned}
& \text { eg: if } V=\mathbb{R}^{n} \&\langle a, b\rangle=a^{n} b \\
& \left\{v \in \mathbb{R}^{n} \mid\langle v, b\rangle=0 \forall b \in B^{n}\right\} \\
& \left.\equiv v \in \mathbb{R}^{n} \mid P v=0\right\} \\
& \text { sot } \operatorname{rank}(P)+\operatorname{dim}(S)=n
\end{aligned}
$$

2) Recall that if $A=$ affine set $\leq v \& B$ is -its basis, $A=$ affinespan $(B)=\left\{v \in V \mid\langle v, b\rangle=c_{b} \forall b \in B^{\perp}\right\}$ where B^{\perp} is basis for S^{\perp} white

$$
A=a+s
$$

$$
\text { (can be cortex) } \left.\begin{array}{rl}
a s
\end{array}\right)=\left\{\begin{array}{l}
\left\{v \in R^{n} \mid\langle v, b)_{v}=c \forall b \in R^{\perp}\right\} \\
\\
s \in \operatorname{rank}(P)+\operatorname{dim}(A)=n
\end{array}\right.
$$

Q: What about dual representations of conic sets?

Summary of dual descriptions
If V is a vector space with inner product \langle,$\rangle then$
(a) $L \subseteq V$ is a [linear) subspace with finite dimension

Primal description: $L=\operatorname{lin}$ _span (basis (L))
Dual description: (1)Describe in terms of dual of its dual L^{*} to which it is 150 mophic (see page 10 of 2015-5.pdf)
(2) Describe in terms of basis of its orthogonal complement $L \frac{1}{}$

$$
\begin{aligned}
& L^{\frac{1}{\prime}}=\{v \in V \mid\langle v, u\rangle=0 \forall u \in L\} \\
& L=\left\{u \in V \mid\langle u, v\rangle=0 \quad \forall v \in \text { basis }\left(L^{\perp}\right)\right\} \\
& \text { Claim: } L^{\frac{1}{2}}=\text { dual_cone }^{L} L \text {) }
\end{aligned}
$$

Note: Linear subspace is a cone
(b) $A \subseteq V$ is affine set with finite basis (of the subspace shifted to give you A)
Let $A=L+b$ (stiffed linear subspace, $b \in V$)
Primal desorption: $A=L+b \leq$ of (affine-basis (A))
Dual description: $A=\left\{v \in V \mid\langle v, u\rangle=\alpha_{u} \nmid u \in\right.$ basis $\left.\left(L^{-}\right)\right\}$
Recall $A x=b$ description of affine

$$
\begin{aligned}
\text { Recall } A x & =\left[\begin{array}{l}
u_{1} \in \text { basis }\left(L^{\perp}\right) \\
\text { sets } . . . A \\
u_{2 \in} \in \text { basis }\left(L^{L}\right) \\
u_{k} \in \text { basis }\left(L^{1}\right)
\end{array}\right] \\
b & =\left[\begin{array}{c}
\alpha u_{1} \\
\alpha u_{2} \\
\vdots \\
\alpha u_{k}
\end{array}\right]
\end{aligned}
$$

(c) $C \subseteq V$ is a closed convez cone Pamal description: $C=$ conic (conic_span_set (C)) Dual description:- $c=\left\{v \in V \mid\langle w, u\rangle \geqslant 0 \quad \forall u \in C^{*}\right\}$

OR

$$
C=\left\{v \in V \mid\langle v, u\rangle \geqslant 0 \forall u \in \text { ornic_span_set }\left(C^{*}\right)\right\}
$$

Prof: By defn of $C^{n}, y \neq 0$ is the normal of a hatsspace centaining C if $y \in C$

Eg:

Consider closed convex cone $K \leq \mathbb{R}^{2}$
Primal descriptions:
(1) $K=$ conic $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$, cartesian coordinates
(2) $K=\left\{\left(r \cos \theta_{1} r \sin \theta\right) \mid r \geqslant 0, \theta_{1} \leq \theta \leq \theta_{2}\right\}$
K is pointed as long as $\theta_{2}-\theta_{1}<180^{\circ}$ Polar coordinates
Dual description:

$$
k^{x}=\left\{y \in R^{2} \mid x^{7} y \geqslant 0 \forall x \in K\right\}
$$

$=\left\{\begin{array}{l}\text { intersection of all half spaces } \\ \text { passing through origin and coin }\end{array}\right.$ $K\}=\left\{\begin{array}{l}\text { intersection of extreme half } \\ \text { spaces }\end{array}\right.$
spaces defined by extreme rays\}

$$
=\left\{y \mid y_{1} \cos \theta_{1}+y_{2} \sin \theta_{1} \geqslant 0 \text { AND } y_{1} \cos \theta_{2}+y_{2} \sin \theta_{2} \geqslant 0\right\}
$$

In fact, K is also "proper": What will $x \underset{k}{\widehat{k}}$ y mead?
(d) $C \subseteq V$ is a closed convex set

Primal description:

$$
C=\operatorname{conv}(\text { convex }- \text { spanning }-\operatorname{set}(C))
$$

Dual description:

$$
\begin{aligned}
C= & \{v \in v \mid\langle v, u\rangle \leqslant 1 \forall u \in \operatorname{Polar}(C)\} \\
& \text { Polar }(C)=\{u \mid\langle u, v\rangle \leqslant 1 \quad \forall v \in C\}
\end{aligned}
$$

Claim: C is closed \& convex containing

$$
\begin{gathered}
\pi \\
C=\operatorname{polar}(\operatorname{polar}(c))
\end{gathered}
$$

By deft: $y \in \operatorname{Polar}(c), x \in C \Rightarrow\langle y, x\rangle \leqslant 1$

$$
\Rightarrow \quad\left(\subseteq \operatorname{Polar}\left(P_{r} \mid a+(C)\right)\right.
$$

Now let $\exists \bar{x} \in \operatorname{Polar}(\operatorname{Polar}(C)) \backslash C$ we need the separation the which states

Since C is nonempty, converse 4 closed $\& \bar{x} \notin C \quad \bar{x}$ can be "strongly separated" from C. That is, $\exists b$ sit

$$
\langle b, \bar{x}\rangle \geqslant \sup _{x \in C}\langle b, a\rangle
$$

Now $O \in C \Rightarrow$ the LHS is positive Using $a=\lambda b$ for some $\lambda>0$, we can get

$$
\langle a, \bar{x}\rangle>1 \geqslant \sup _{x \in C}\langle a, x\rangle
$$

This is a contradiction since $1 \geqslant \sup _{x \in a}\langle a, x\rangle$ imphes that $a \in$ Polar (c) But $\langle a, \bar{x}\rangle>1$ contradicts that $\bar{x} \in$ polar (Polar (c))

Kelly's Theorem

Let C be a finite family of convex sets in \boldsymbol{R}^{π} such that, for $\mathrm{k} \leq \mathrm{n}+1$, any k (set) members of C have a nonempty intersection. Then the intersection of all (set) members of C is nonempty.]

Lintersection of any \# of sets unto the dimension (n) of the space is non.emply
\Rightarrow intersection of all sets is non.mply

Affine function

suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine $\left(f(x)=A x+b\right.$ with $\left.A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}\right)$

- the image of a convex set under f is convex

$$
S \subseteq \mathbf{R}^{n} \text { convex } \quad \Longrightarrow \quad f(S)=\{f(x) \mid x \in S\} \text { convex }
$$

- the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$
C \subseteq \mathbf{R}^{m} \text { convex } \quad \Longrightarrow f^{-1}(C)=\left\{x \in \mathbf{R}^{n} \mid f(x) \in C\right\} \text { convex }
$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\left\{x \mid x_{1} A_{1}+\cdots+x_{m} A_{m} \preceq B\right\}$ (with $A_{i}, B \in \mathbf{S}^{p}$)
- hyperbolic cone $\left\{x \mid x^{T} P x \leq\left(c^{T} x\right)^{2}, c^{T} x \geq 0\right\}$ (with $P \in \mathbf{S}_{+}^{n}$)

Perspective and linear-fractional function

perspective function $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$:

$$
P(x, t)=x / t, \quad \operatorname{dom} P=\{(x, t) \mid t>0\}
$$

images and inverse images of convex sets under perspective are convex
linear-fractional function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$:

$$
f(x)=\frac{A x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

images and inverse images of convex sets under linear-fractional functions are convex

example of a linear-fractional function

$$
f(x)=\frac{1}{x_{1}+x_{2}+1} x
$$

END: SUPPLEMENTARY NOTES
 FOR CONVEX SETS

Q: When is I convex!
Ans: $I=\left\{(s, z) \mid s \in \mathbb{R}^{m}, z \in \mathbb{R}, \exists x \in D\right.$ st $g_{i}(x) \leq s_{i} i=1 . \cdot m$

$$
f(x) \leqslant z\}
$$

I is projection/restriction of the epigraph of the vector valued in $\bar{f}(x)=\left[\begin{array}{l}f(x) \\ g_{1}(x) \\ \dot{g}_{m}(x)\end{array}\right]$

$$
\operatorname{epi}(\bar{f})=\left\{(x, s, z) \mid x \in D, f(x) \leq z, g_{i}(x) \leq s_{i} \quad i=1 \ldots m\right\}
$$

$\left\{\begin{array}{l}\text { in general, writ a generalized inequality } \frac{\leq}{k}, \\ \operatorname{eppi}_{k}(\bar{f})=\left\{(x, t) \mid x \in D, \bar{f}(x) \frac{\leq}{k} t\right\}\end{array}\right.$
Based on midsem Q2@, ep (\bar{f}) is convex OR closure under affine transform \mathbb{Z} More properties on following I is convex
Q: When is epi (\bar{f}) convex?
Ans: api (\bar{f}) is convex if $\left(f, g_{i} . \cdot g_{m}\right)=\bar{f}$ is convert is each of $f_{1}, g_{1} . g_{m}$ are convex

3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition λ^{50}
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if f is a convex set and

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

for $x, y \in \operatorname{dom} f, x \neq y, 0<\theta<1$

What abl vector of functions $(x \in D$ where D $\left(f, g_{0} \cdot g_{m}: D \rightarrow R\right)$ is convex $)$ $f(x)=\left[\begin{array}{l}f(x) \\ g_{1}(x) \\ g_{n}(x)\end{array}\right]$, one notion is that each $f_{1} g_{i}$ are convert

$$
\text { x) } \stackrel{10}{\cong} \bar{f}\left(\theta x_{1} f(1-\theta) x_{2}\right) \leqslant \theta \bar{f}\left(x_{1}\right)+(1-\theta) \bar{f}\left(x_{2}\right)
$$

Generalised notion of
K-Cowresely of \bar{f}
component wise ineq. ie generalised nil with $k=\mathbb{R}_{t}^{n}$
(if $K=R_{++}^{n}$ you get strict convexity)

$$
\bar{f}\left(\theta x_{1}+(1-\theta) x_{2}\right) \underset{k}{\underset{k}{f}\left(x_{1}\right)+(1-\theta) \bar{f}\left(x_{2}\right)}
$$

k
$\substack{k \\ \text { proper cone }}$
Epigraph of k-convex fo $\bar{f}=\{(z, x) \mid \bar{f}(x) \underset{k}{\underset{k}{x}}, z\}$

Convexity with respect to generalized inequalities

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is K-convex if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y) \preceq_{K} \theta f(x)+(1-\theta) f(y)
$$

for $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$
example $f: \mathbf{S}^{m} \rightarrow \mathbf{S}^{m}, f(X)=X^{2}$ is \mathbf{S}_{+}^{m}-convex
proof: for fixed $z \in \mathbf{R}^{m}, z^{T} X^{2} z=\|X z\|_{2}^{2}$ is convex in X, i.e.,

$$
z^{T}(\theta X+(1-\theta) Y)^{2} z \leq \theta z^{T} X^{2} z+(1-\theta) z^{T} Y^{2} z
$$

for $X, Y \in \mathbf{S}^{m}, 0 \leq \theta \leq 1$
therefore $(\theta X+(1-\theta) Y)^{2} \preceq \theta X^{2}+(1-\theta) Y^{2}$

Examples on \mathbf{R}

convex:

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$, for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^{p}$ on \mathbf{R}, for $p \geq 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}
concave:
- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbf{R}^{n} and $\mathbf{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbf{R}^{n}

- affine function $f(x)=a^{T} x+b$
- norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1 ;\|x\|_{\infty}=\max _{k}\left|x_{k}\right|$

examples on $\mathbf{R}^{m \times n}(m \times n$ matrices $)$

- affine function

$$
f(X)=\operatorname{tr}\left(A^{T} X\right)+b=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b
$$

- spectral (maximum singular value) norm

$$
f(X)=\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}
$$

Epigraph and sublevel set
α-sublevel set of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
\text { epi } f=\left\{(x, t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

f is convex if and only if epi f is a convex set
 Thnk: When is epi (f) closed?
when is epi (\bar{f}) closed?

