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BEGIN: SUPPLEMENTARY 
NOTES FOR CONVEX SETS



Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1 − θ)x2 ∈ C

2. show that C is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

• intersection
• affine functions
• perspective function
• linear-fractional functions

Convex sets 2–11

Intersection

the intersection of (any number of) convex sets is convex

example:
S = {x ∈ Rm | |p(t)| ≤ 1 for |t| ≤ π/3}

where p(t) = x1 cos t + x2 cos 2t + · · · + xm cos mt

for m = 2:
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Polyhedra

solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

(A ∈ Rm×n, C ∈ Rp×n, � is componentwise inequality)

a1 a2
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a4

a5

P

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

• Sn is set of symmetric n × n matrices

• Sn
+ = {X ∈ Sn | X � 0}: positive semidefinite n × n matrices

X ∈ Sn
+ ⇐⇒ zTXz ≥ 0 for all z

Sn
+ is a convex cone

• Sn
++ = {X ∈ Sn | X ≻ 0}: positive definite n × n matrices

example:
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Affine function

suppose f : Rn → Rm is affine (f(x) = Ax + b with A ∈ Rm×n, b ∈ Rm)

• the image of a convex set under f is convex

S ⊆ Rn convex =⇒ f(S) = {f(x) | x ∈ S} convex

• the inverse image f−1(C) of a convex set under f is convex

C ⊆ Rm convex =⇒ f−1(C) = {x ∈ Rn | f(x) ∈ C} convex

examples

• scaling, translation, projection

• solution set of linear matrix inequality {x | x1A1 + · · · + xmAm � B}
(with Ai, B ∈ Sp)

• hyperbolic cone {x | xTPx ≤ (cTx)2, cTx ≥ 0} (with P ∈ Sn
+)

Convex sets 2–13

Perspective and linear-fractional function

perspective function P : Rn+1 → Rn:

P (x, t) = x/t, domP = {(x, t) | t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : Rn → Rm:

f(x) =
Ax + b

cTx + d
, dom f = {x | cTx + d > 0}

images and inverse images of convex sets under linear-fractional functions
are convex

Convex sets 2–14
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Convex Optimization — Boyd & Vandenberghe

3. Convex functions

• basic properties and examples

• operations that preserve convexity

• the conjugate function

• quasiconvex functions

• log-concave and log-convex functions

• convexity with respect to generalized inequalities

3–1

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1
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Convexity with respect to generalized inequalities

f : Rn → Rm is K-convex if dom f is convex and

f(θx + (1 − θ)y) �K θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , 0 ≤ θ ≤ 1

example f : Sm → Sm, f(X) = X2 is Sm
+ -convex

proof: for fixed z ∈ Rm, zTX2z = ‖Xz‖2
2 is convex in X, i.e.,

zT (θX + (1 − θ)Y )2z ≤ θzTX2z + (1 − θ)zTY 2z

for X,Y ∈ Sm, 0 ≤ θ ≤ 1

therefore (θX + (1 − θ)Y )2 � θX2 + (1 − θ)Y 2

Convex functions 3–31



Examples on R

convex:

• affine: ax + b on R, for any a, b ∈ R

• exponential: eax, for any a ∈ R

• powers: xα on R++, for α ≥ 1 or α ≤ 0

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: x log x on R++

concave:

• affine: ax + b on R, for any a, b ∈ R

• powers: xα on R++, for 0 ≤ α ≤ 1

• logarithm: log x on R++

Convex functions 3–3

Examples on Rn and Rm×n

affine functions are convex and concave; all norms are convex

examples on Rn

• affine function f(x) = aTx + b

• norms: ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk|

examples on Rm×n (m × n matrices)

• affine function

f(X) = tr(ATX) + b =

m
∑

i=1

n
∑

j=1

AijXij + b

• spectral (maximum singular value) norm

f(X) = ‖X‖2 = σmax(X) = (λmax(X
TX))1/2
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Epigraph and sublevel set

α-sublevel set of f : Rn → R:

Cα = {x ∈ dom f | f(x) ≤ α}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : Rn → R:

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}

epi f

f

f is convex if and only if epi f is a convex set

Convex functions 3–11

Jensen’s inequality

basic inequality: if f is convex, then for 0 ≤ θ ≤ 1,

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

extension: if f is convex, then

f(E z) ≤ E f(z)

for any random variable z

basic inequality is special case with discrete distribution

prob(z = x) = θ, prob(z = y) = 1 − θ

Convex functions 3–12


