In summary:
(1) epi(f) is closed \& convex

$$
f \text { is lower } \begin{gathered}
\text { lily } \\
\text { semi-cts }
\end{gathered} \& \begin{gathered}
\text { convex }
\end{gathered}
$$

(2) If f is convex, it is cts on the relative interior of it domain (\& \therefore lower semi-cts on the relative interior of its domain)
Discontinuities possible only on relative boundary
(3) Thus, for a convex f, for ensuring (note pt (4)) api (f), you need to take care of lower semi-continuity of f particularly on the relative boundary of its domain.
(4) In particular, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex on \mathbb{R}^{n} then f (its epigraph) is closed convex \& so are its level sett $\{x \mid f(a) \leq a\} \forall a$
(1)

$$
\begin{align*}
& D:\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}<1, x_{3}=0\right\} \tag{2}\\
& \begin{array}{l}
f\left(x_{1} x_{2} x_{3}\right) \text { on } D=x_{1}^{2}+x_{22}^{2}+x^{2} \\
\&=0 \text { at } x_{1}^{2}+x_{2}^{2}=1
\end{array} \\
& \mathcal{S}^{2}=0 \text { at } x_{1}^{2}+x_{2}^{3}=1
\end{align*}
$$

2 examples of. Sis discontinuous

Definition 35 [Convex Function]: A function $f: \mathcal{D} \rightarrow \Re$ is convex if \mathcal{D} is a convex set and

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{D} \quad 0 \leq \theta \leq 1(\tag{4.31}
\end{equation*}
$$

Figure 4.37 illustrates an example convex function. A function $f: \mathcal{D} \rightarrow \Re$ is strictly convex if \mathcal{D} is convex and

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y})<\theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})) \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{D} \quad 0 \leq \theta \leq 1(4.32)
$$

A function $f: \mathcal{D} \rightarrow \Re$ is called uniformly or strongly convex if \mathcal{D} is convex and there exists a constant $c>0$ such that

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}))-\frac{1}{2} c \theta(1-\theta)\|\mathbf{x}-\mathbf{y}\|^{2} \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{D}
$$

function at convex combination is less than convex combination If fin values \& a factor dependant on distance between the pto

$\begin{aligned} \text { Figure 4.37: Example of convex function. } & \begin{aligned} & 7 \text { strong conker } x i t y \text { implies } \\ & \text { Slivet convexity }\end{aligned}\end{aligned}$

Restriction of a convex function to a line
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(t)=f(x+t v), \quad \operatorname{dom} g=\{t \mid x+t v \in \operatorname{dom} f\}
$$

is convex (in t) for any $x \in \operatorname{dom} f, v \in \mathbf{R}^{n}$
can check convexity of f by checking convexity of functions of one variable example. $f: \mathbf{S}^{n} \rightarrow \mathbf{R}$ with $f(X)=\log \operatorname{det} X, \operatorname{dom} X=\mathbf{S}_{++}^{n}$

$$
\begin{aligned}
& g(t)=\log \operatorname{det}(X+t V)=\underbrace{\log \operatorname{det} X}+\log \operatorname{det}\left(I+t X^{-1 / 2} V X^{-1 / 2}\right) \\
& \\
& \text { constant } \\
& \text { where } \lambda_{i} \text { are the eigenvalues of } X^{-1 / 2} V X^{-1 / 2} \\
& g \text { is concave in } t \text { (for any choice of } X \succ 0, V \text {); hence } f \text { is concave }
\end{aligned}
$$

What about closedness? H/w

Norm is used here for convenience. You can use nbrho in general topological sp
inion 25 [Local maximum]: A function f of n variables has a local maximum at \mathbf{x}^{0} if $\exists \epsilon>0$ such that $\forall\left\|\mathbf{x}-\mathbf{x}^{0}\right\|<\epsilon$. $f(\mathbf{x}) \leq f\left(\mathbf{x}^{0}\right)$. In other words, $f(\mathbf{x}) \leq f\left(\mathbf{x}^{0}\right)$ whenever \mathbf{x} lies in some circular disk around x^{0}.

For global max /men, you need condition for all $x \in D$
inion 26 [Local minimum]: A function f of n variables has a local minimum at \mathbf{x}^{0} if $\exists \epsilon>0$ such that $\forall\left\|\mathbf{x}-\mathbf{x}^{0}\right\|<\epsilon . f(\mathbf{x}) \geq f\left(\mathbf{x}^{0}\right)$. In other words, $f(\mathbf{x}) \geq f\left(\mathbf{x}^{0}\right)$ whenever \mathbf{x} lies in some circular disk around

Definition 29 [Global maximum]: A function f of n variables, with domain $\mathcal{D} \subseteq \Re^{n}$ has an absolute or global maximum at \mathbf{x}^{0} if $\forall \mathbf{x} \in \mathcal{D}, f(\mathbf{x}) \leq$ $f\left(\overline{\mathbf{x}^{0}}\right)$.

Definition 30 [Global minimum]: A function f of n variables, with domain $\mathcal{D} \subseteq \Re^{n}$ has an absolute or global minimum at \mathbf{x}^{0} if $\forall \mathbf{x} \in \mathcal{D}, f(\mathbf{x}) \geq$ $f\left(\overline{\mathbf{x}^{0}}\right)$.

Figure 4.16: Plot of $f\left(x_{1}, x_{2}\right)=3 x_{1}^{2}-x_{1}^{3}-2 x_{2}^{2}+x_{2}^{4}$, showing the various local maxima and minima of the function.

Multiple local minima \& maxima
No global minimum/ maximum (unbounded above \& below)

Theorem 69 Let $f: \mathcal{D} \rightarrow \Re$ be a convex function on a convex domain \mathcal{D}. Any point of locally minimum solution for f is also a point of its globally minimum solution.
Proof: Suppose $\mathbf{x} \in \mathcal{D}$ is a point of local minimum and let $\mathbf{y} \in \mathcal{D}$ be a point of global minimum. Thus, $f(\mathbf{y})<f(\mathbf{x})$. Since \mathbf{x} corresponds to a local minimum, there exists an $\epsilon>0$ such that

$$
\forall \mathbf{z} \in \mathcal{D},\|\mathbf{z}-\mathbf{x}\| \leq \epsilon \Rightarrow f(\mathbf{z}) \geq f(\mathbf{x})
$$

Consider a point $\mathbf{z}=\theta \mathbf{y}+(1-\theta) \mathbf{x}$ with $\theta=\frac{\epsilon}{2\|\mathbf{y}-\mathbf{x}\|}$. Since \mathbf{x} is a point of local minimum (in a ball of radius ϵ), and since $f(\mathbf{y})<f(\mathbf{x})$, it must be that $\|\mathbf{y}-\mathbf{x}\|>\epsilon$. Thus, $0<\theta<\frac{1}{2}$ and $\mathbf{z} \in \mathcal{D}$. Furthermore, $\|\mathbf{z}-\mathbf{x}\|=\frac{\epsilon}{2}$. Since f is a convex function

$$
f(\mathbf{z}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})
$$

Since $f(\mathbf{y})<f(\mathbf{x})$, we also have

$$
\theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})<f(\mathbf{x})
$$

The two equations imply that $f(\mathbf{z})<f(\mathbf{x})$, which contradicts our assumption that \mathbf{x} corresponds to a point of local minimum. That is f cannot have a point of local minimum, which does not coincide with the point \mathbf{y} of global minimum. \sqcap exists, then global min y should exist since oleo if global min does not exist then by $\mathrm{s} \cdot \mathrm{t}$ $f(y)<f(x)$
(since of w x would have been global min] \& then one con prove \exists $z=\theta x+(1-\theta) y$ $5 \cdot 1 \quad 2 \in B_{E} \&$ $f(z)<f(x) \cdots a$ contradiction

Theorem 70 Let $f: \mathcal{D} \rightarrow \Re$ be a strictly convex function on a convex domain \mathcal{D}. Then f has a unique point corresponding to its global minimum. (ie if there exists global
Proof: Suppose $\mathbf{x} \in \mathcal{D}$ and $\mathbf{y} \in \mathcal{D}$ with $\mathbf{y} \neq \mathbf{x}$ are two points of global minimum. That is $f(\mathbf{x})=f(\mathbf{y})$ for $\mathbf{y} \neq \mathbf{x}$. The point $\frac{\mathbf{x}+\mathbf{y}}{2}$ also belongs to the convex set \mathcal{D} and since f is strictly convex, we must have

$$
f\left(\frac{\mathbf{x}+\mathbf{y}}{2}\right)<\frac{1}{2} f(\mathbf{x})+\frac{1}{2} f(\mathbf{y})=f(\mathbf{x})
$$

which is a contradiction. Thus, the point corresponding to the minimum of f must be unique.

Eg. $f(x)=-\log x$ is strictly convex without any global min

GRADIENT,

\&

HESSIAN

Definition 22 [Directional derivative]: The directional derivative of $f(\mathbf{x})$ at \mathbf{x} in the direction of the unit vector \mathbf{v} is

$$
\begin{equation*}
D_{\mathbf{v}} f(\mathbf{x})=\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+h \mathbf{v})-f(\mathbf{x})}{h} \tag{4.12}
\end{equation*}
$$

provided the limit exists.
PAGES 231 TO 239 OF
http://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf
As a special case, when $\mathbf{v}=\mathbf{u}^{k}$ the directional derivative reduces to the partial derivative of f with respect to x_{k}.

$$
D_{\mathbf{u}^{k}} f(\mathbf{x})=\frac{\partial f(\mathrm{x})}{\partial x_{k}} \text {, }\left\{\begin{array}{l}
\text { abl io } \\
\text { de }+v a \cos \\
\cos
\end{array}\right.
$$

Theorem 57 If $f(\mathbf{x})$ is a differentiable function of $\mathbf{x} \in \Re^{n}$, then f has a directional derivative in the direction of any unit vector \mathbf{v}, and

Definition 23 [Gradient Vector]: If f is differentiable function of $\mathbf{x} \in \Re^{n}$, then the gradient of $f(\mathbf{x})$ is the vector function $\nabla f(\mathbf{x})$, defined as:

$$
\nabla f(\mathbf{x})=\left[f_{x_{1}}(\mathbf{x}), f_{x_{2}}(\mathbf{x}), \ldots, f_{x_{n}}(\mathbf{x})\right]
$$

The directional derivative of a function f at a point \mathbf{x} in the direction of a unit vector \mathbf{v} can be now written as

$$
D_{v} f(x)=\nabla^{\top} f(x) v \leq\|\nabla f(2)\|\|v\|
$$

Theorem 58 Suppose f is a differentiable function of $\mathbf{x} \in \Re^{n}$. The maximum value of the directional derivative $D_{\mathbf{v}} f(\mathbf{x})$ is $\| \nabla f(\mathbf{x} \|$ and it is so when \mathbf{v} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

What does the gradient $\nabla f(\mathbf{x})$ tell you about the function $f(\mathbf{x})$? We will illustrate with some examples. Consider the polynomial $f(x, y, z)=x^{2} y+z \sin x y$ and the unit vector $\mathbf{v}^{T}=\frac{1}{\sqrt{3}}[1,1,1]^{T}$. Consider the point $p_{0}=(0,1,3)$. We will compute the directional derivative of f at p_{0} in the direction of \mathbf{v}. To do this, we first compute the gradient of f in general: $\nabla f=\left[2 x y+y z \cos x y, x^{2}+x z \cos x y, \sin x ?\right.$ Evaluating the gradient at a specific point $p_{0}, \nabla f(0,1,3)=[3,0,0]^{T}$. The directional derivative at p_{0} in the direction \mathbf{v} is $D_{\mathbf{v}} f(0,1,3)=[3,0,0] \cdot \frac{1}{\sqrt{3}}[1,1,1]^{T}=$ $\sqrt{3}$. This directional derivative is the rate of change of f at p_{0} in the direction \mathbf{v}; it is positive indicating that the function f increases at p_{0} in the direction \mathbf{v}. All our ideas about first and second derivative in the case of a single variable carry over to the directional derivative.

Figure 4.12: 10 level curves for the function $f\left(x_{1}, x_{2}\right)=x_{1} e^{x_{2}}$.
Consider the function $f\left(x_{1}, x_{2}\right)=x_{1} e^{x_{2}}$. Figure 4.12 shows 10 level curves for this function, corresponding to $f\left(x_{1}, x_{2}\right)=c$ for $c=1,2, \ldots, 10$. The idea behind a level curve is that as you change \mathbf{x} along any level curve, the function value remains unchanged, but as you move \mathbf{x} across level curves, the function value changes.

Theorem 59 Let $f: \mathcal{D} \rightarrow \Re$ with $\mathcal{D} \in \Re^{n}$ be a differentiable function. The gradient ∇f evaluated at \mathbf{x}^{*} is orthogonal to the tangent hyperplane (tangent line in case $n=2$) to the level surface of f passing through \mathbf{x}^{*}.

En of tangent hyperplane at $\left(x_{1}^{4}, x_{2}^{*}\right)$ is $\left\{\left(x_{1}, x_{2}\right) \mid \nabla f\left(x_{1,}^{+}, x_{2}^{*}\right)\right.$

Figure 4.13: The level curves from Figure 4.12 along with the gradient vector at $(2,0)$. Note that the gradient vector is perpendicular to the level curve $x_{1} e^{x_{2}}=2$ at $(2,0)$.

Consider the same plot as in Figure 4.12 with a gradient vector at $(2,0)$ as shown in Figure 4.13. The gradient vector $[1,2]^{T}$ is perpendicular to the tangent hyperplane to the level curve $x_{1} e^{x_{2}}=2$ at $(2,0)$. The equation of the tangent hyperplane is $\left(x_{1}-2\right)+2\left(x_{2}-0\right)=0$ and it turns out to be a tangent line.
$f\left(x_{1}, x_{2}, \dot{x}_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}^{2}$

Figure 4.15: Level surface $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=3$. The gradient at $(1,1,1)$, drawn as a bold line, is perpendicular to the tangent plane to the level surface at $(1,1,1)$, whereas, the dotted line, though passing through $(1,1,1)$ is not perpendicular to the same tangent plane.
3. Let $f\left(x_{1}, x, x_{3}\right)=x_{1}^{2} x_{2}^{3} x_{3}^{4}$ and consider the point $\mathbf{x}^{0}=(1,2,1)$. We will find the equation of the tangent plane to the level surface through \mathbf{x}^{0}. The level surface through \mathbf{x}^{0} is determined by setting f equal to its value evaluated at \mathbf{x}^{0}; that is, the level surface will have the equation $x_{1}^{2} x_{2}^{3} x_{3}^{4}=1^{2} 2^{3} 1^{4}=8$. The gradient vector (normal to tangent plane) at

$$
(1,2,1) \text { is }\left.\nabla f\left(x_{1}, x_{2}, x_{3}\right)\right|_{(1,2,1)}=\left.\left[2 x_{1} x_{2}^{3} x_{3}^{4}, 3 x_{1}^{2} x_{2}^{2} x_{3}^{4}, 4 x_{1}^{2} x_{2}^{3} x_{3}^{3}\right]^{T}\right|_{(1,2,1)}=
$$

$[16,12,32]^{T}$. The equation of the tangent plane at \mathbf{x}^{0}, given the normal vector $\nabla f\left(\mathbf{x}^{0}\right)$ can be easily written down: $\nabla f\left(\mathbf{x}^{0}\right)^{T} .\left[\mathbf{x}-\mathbf{x}^{0}\right]=0$ which turns out to be $16\left(x_{1}-1\right)+12\left(x_{2}-2\right)+32\left(x_{3}-1\right)=0$, a plane in $3 D$.
4. Consider the function $f(x, y, z)=\frac{x}{y+z}$. The directional derivative of f in the direction of the vector $\mathbf{v}=\frac{1}{\sqrt{14}}[1,2,3]$ at the point $x^{0}=(4,1,1)$ is $\left.\nabla^{T} f\right|_{(4,1,1)} \cdot \frac{1}{\sqrt{14}}[1,2,3]^{T}=\left.\left[\frac{1}{y+z},-\frac{x}{(y+z)^{2}},-\frac{x}{(y+z)^{2}}\right]\right|_{(4,1,1)} \cdot \frac{1}{\sqrt{14}}[1,2,3]^{T}=$ $\left[\frac{1}{2},-1,-1\right] \cdot \frac{1}{\sqrt{14}}[1,2,3]^{T}=-\frac{9}{2 \sqrt{14}}$. The directional derivative is negative, indicating that the function decreases along the direction of \mathbf{v}. Based on theorem 58, we know that the maximum rate of change of a function at a point \mathbf{x} is given by $\|\nabla f(\mathbf{x})\|$ and it is in the direction $\frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}$. In the example under consideration, this maximum rate of change at \mathbf{x}^{0} is $\frac{3}{2}$ and it is in the direction of the vector $\frac{2}{3}\left[\frac{1}{2},-1,-1\right]$.
5. Let us find the maximum rate of change of the function $f(x, y, z)=x^{2} y^{3} z^{4}$ at the point $\mathbf{x}^{0}=(1,1,1)$ and the direction in which it occurs. The gradient at \mathbf{x}^{0} is $\left.\nabla^{T} f\right|_{(1,1,1)}=[2,3,4]$. The maximum rate of change at \mathbf{x}^{0} is therefore $\sqrt{29}$ and the direction of the corresponding rate of change is $\frac{1}{\sqrt{29}}[2,3,4]$. The minimum rate of change is $-\sqrt{29}$ and the corresponding direction is $-\frac{1}{\sqrt{29}}[2,3,4]$.
6. Let us determine the equations of (a) the tangent plane to the paraboloid $\mathcal{P}: x_{1}=x_{2}^{2}+x_{3}^{2}+2$ at $(-1,1,0)$ and (b) the normal line to the tangent plane. To realize this as the level surface of a function of three variables, we define the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2}^{2}-x_{3}^{2}$ and find that the paraboloid \mathcal{P} is the same as the level surface $f\left(x_{1}, x_{2}, x_{3}\right)=-2$. The normal to the tangent plane to \mathcal{P} at \mathbf{x}^{0} is in the direction of the gradient vector $\nabla f\left(\mathbf{x}^{0}\right)=$ $[1,-2,0]^{T}$ and its parametric equation is $\left[x_{1}, x_{2}, x_{3}\right]=[-1+t, 1-2 t, 0]$. The equation of the tangent plane is therefore $\left(x_{1}+1\right)-2\left(x_{2}-1\right)=0$.

Figure 4.17: The paraboloid $f\left(x_{1}, x_{2}\right)=9-x_{1}^{2}-x_{2}^{2}$ attains its maximum at $(0,0)$. The tanget plane to the surface at $(0,0, f(0,0))$ is also shown, and so is the gradient vector ∇F at $(0,0, f(0,0))$.

We can embed the graph of a function of n variables as the 0 -level surface of a function of $n+1$ variables. More concretely, if $f: \mathcal{D} \rightarrow \Re, \mathcal{D} \subseteq \Re^{n}$ then we define $F: \mathcal{D}^{\prime} \rightarrow \Re, \mathcal{D}^{\prime}=\mathcal{D} \times \Re$ as $F(\mathbf{x}, z)=f(\mathbf{x})-z$ with $\mathbf{x} \in \mathcal{D}^{\prime}$. The function f then corresponds to a single level surface of F given by $F(\mathbf{x}, z)=0$. In other words, the 0 -level surface of F gives back the graph of f. The gradient of F at any point (\mathbf{x}, z) is simply, $\nabla F(\mathbf{x}, z)=\left[f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}},-1\right]$ with the first n components of $\nabla F(\mathbf{x}, z)$ given by the n components of $\nabla f(\mathbf{x})$. We note that the level surface of F passing through point $\left(\mathbf{x}^{0}, f\left(\mathbf{x}^{0}\right)\right.$ is its 0 -level surface, which is essentially the surface of the function $f(\mathbf{x})$. The equation of the tangent hyperplane to the 0 -level surface of F at the point $\left(\mathbf{x}^{0}, f\left(\mathbf{x}^{0}\right)\right.$ (that is, the tangent hyperplane to $f(\mathbf{x})$ at the point $\left.\mathbf{x}_{0}\right)$, is $\nabla F\left(\mathbf{x}^{0}, f\left(\mathbf{x}^{0}\right)\right)^{T} .\left[\mathbf{x}-\mathbf{x}^{0}, z-\right.$ $\left.f\left(\mathbf{x}^{0}\right)\right]^{T}=0$. Substituting appropriate expression for $\nabla F\left(\mathbf{x}^{0}\right)$, the equation of the tangent plane can be written as

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} f_{x_{i}}\left(\mathbf{x}^{0}\right)\left(x_{i}-x_{i}^{0}\right)\right)-\left(z-f\left(\mathbf{x}^{0}\right)\right)=0 \\
& \text { as, } \quad\left(\begin{array}{c}
\text { \& }
\end{array}\right) \\
& \quad\left(\sum_{i=1}^{n} f_{x_{i}}\left(\mathbf{x}^{0}\right)\left(x_{i}-x_{i}^{0}\right)\right)+f\left(\mathbf{x}^{0}\right)=z
\end{aligned}
$$

or equivalently as,

As an example, consider the paraboloid, $f\left(x_{1}, x_{2}\right)=9-x_{1}^{2}-x_{2}^{2}$, the corresponding $F\left(x_{1}, x_{2}, z\right)=9-x_{1}^{2}-x_{2}^{2}-z$ and the point $x^{0}=\left(\mathrm{x}^{0}, z\right)=(1,1,7)$ which lies on the 0 -level surface of F. The gradient $\nabla F\left(x_{1}, x_{2}, z\right)$ is $\left[-2 x_{1},-2 x_{2},-1\right]$, which when evaluated at $x^{0}=(1,1,7)$ is $[-2,-2,-1]$. The equation of the tangent plane to f at x^{0} is therefore given by $-2\left(x_{1}-1\right)-2\left(x_{2}-1\right)+7=z$.

Theorem 60 If $f(\mathbf{x})$ defined on a domain $\mathcal{D} \subseteq \Re^{n}$ has a local maximum or minimum at \mathbf{x}^{*} and if the first-order partial derivatives exist at \mathbf{x}^{*}, then $f_{x_{i}}\left(\mathrm{x}^{*}\right)=0$ for all $1 \leq i \leq n$.

Definition 27 [Critical point]: A point \mathbf{x}^{*} is called a critical point of a function $f(\mathbf{x})$ defined on $\mathcal{D} \subseteq \Re^{n}$ if

1. If $f_{x_{i}}\left(\mathbf{x}^{*}\right)=0$, for $1 \leq i \leq n$.
2. OR $f_{x_{i}}\left(\mathrm{x}^{*}\right)$ fails to exist for any $1 \leq i \leq n$.

A procedure for computing all critical points of a function f is:

1. Compute $f_{x_{i}}$ for $1 \leq i \leq n$.
2. Determine if there are any points where any one of $f_{x_{i}}$ fails to exist. Add such points (if any) to the list of critical points.
3. Solve the system of equations $f_{x_{i}}=0$ simultaneously. Add the solution points to the list of saddle points.

Definition 28 [Saddle point]: A point \mathbf{x}^{*} is called a saddle point of a function $f(\mathbf{x})$ defined on $\mathcal{D} \subseteq \Re^{n}$ if \mathbf{x}^{*} is a critical point of f but \mathbf{x}^{*} does not correspond to a local maximum or minimum of the function.

First-order condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
1st-order condition: differentiable f with convex domain is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x) \in \mathbf{S}^{n}$,

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots, n
$$

exists at each $x \in \operatorname{dom} f$
2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

- if $\nabla^{2} f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

