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Definition 35 [Convex Function]: A function f: D — R is conver if D is

a conver set and

fox+(1—0)y) <Of(x)+(1—-0)f(y) VxyeD 0<0<1(431)

Figure 4.37 illustrates an example conver function. A function f : D — R
is strictly convex if D is conver and

flox+(1=0)y) <0f(x)+(1-8)f(y) VxyeD 0<6<1(4.32)

A function f : D — R is called uniformly or strongly conver if D is convex
and there exists a constant ¢ > 0 such that

f(6x+ (1= 8)y) < 0f(x) + (1 - 8)f(y)) = 5e8(1 - O)[x —y|F Vx,yeD
\/\/——_
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Restriction of a convex function to a line

f :R"™ — R is convex if and only if the function g : R — R,

Ly S g

g(t) = f(z + tv), domg = {t|xz+tv € dom f}

is convex (in t) for any x € dom f, v € R"
can check convexity of f by checking convexity of functions of one variable

example. f:S" — R with f(X) =logdet X, dom X =S’} |

_ _ —1/2y, v —1/2
g(t) =logdet(X + tV) \lgg_gg_t_g_(\-i— logdet(I +tX ™~ /*VX~/%)

= logdetX—i—Zlog(l—i—t)\i) L_/ e
eonshonl =T v
where ); are the eigenvalues of X ~1/2/ X ~1/2 I L

g is concave in t (for any choice of X >~ 0, V'); hence f is concave

Convex functions 3-5

k3'\I‘l\r\m\, ebout Sosedness ﬂ)}f_

’K(VQS’SEGLO) /\/oym .\S \ASQOQ hzve ,@“

Crve nience. YJ(A Can Wse ﬂb*/fw
0 Jeneca! brelo gieal sf
ition 25 [Local maximum|: A4 function f of n variables has a local
maximum at x° if 3e > 0 such that ¥V ||x — x"|| < €. f(x) < f(x"). In
other words, f(x) < f(x") whenever x lies in some circular disk around

0
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ition 26 [Local minimum]|: 4 function f of n variables has a local
minimum at x° if 3¢ > 0 such that ¥V ||x — xX"|| < e. f(x) > f(x"). In

other words, f(x) = f(x") whenever x lies in some circular disk around
]
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Definition 29 [Global maximum]|: A function [ of n variables, with domain
D C R™ has an absolute or global maximum at x" if ¥V x € D, f(x) <

f(x").

Definition 30 [Global minimum]|: A function f of n variables, with domain
D C R has an absolute or global minimum at x" if ¥V x € D, f(x) =

F(x").
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Figure 4.16: Plot of f(x;,xs) = 302 — 2% — 22 + a3, showing the various local
maxima and minima of the function. o
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Theorem 69 Let f: D — R be a conver function on a conver domain D. Any \gr \ocq\ mn L
oint of locally minimum solution for { is also a point of its globally minimum -~

solution. .
opa\ YO

Proof: Suppose x € D is a point of local minimum and let ¥ € D be a point of ohelld xisk

global minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum,

. sWiee ojlw
there exists an € > 0 such that ! ‘S'

3lo}m\ 0 docs

“0\1 ex b '\’hcn

Consider a point z = fy + (1 — f)x with § = z==—m. Since X is a point of IS VIS ¢

local minimum (in a ball of radius €), and since f(y) < f(x), it must be that /S,(j) < %l ("1-)

llv —x|| = e. Thus, 0 < 8 < % and z € D. Furthermore, ||z — x|| = 5. Since f

is a convex function S\ °l\'° X
flz) = 0f(x) + (1 =8)f(y) would Nawe Vo

Since f(y) < f(x), we also have 3("\9&[ Wl\ﬂ)
‘( %C‘\ oNe

0f(x) +(1=0)f(y) < f(x) @0 b 4

The two equations imply that f(z) < f(x), which contradicts our assumption |Z=074 (1-9)
that x corresponds to a point of local minimum. That is f cannot have a point s} 7¢ g(, 4

of local minimum, which does not coincide with the point y of global minimum. ’?(1) J ‘; @y - 0
-

vzeD, |lz-x|| <e= f(z) > f(x)

conl a&ic)ﬁon

Theorem 70 Let f: D — R be a strictly conver function on a conver domain
D. Then f has a unique point corresponding to its global mim'mum.(it \S‘ fhetC exisle zﬂo\ou\

Proof: Suppose x € D and y € D with y # x are two points of global minimum. m\ﬂlm\m)
That is f(x) = f(y) for y # x. The point ¥ also belongs to the convex set
D and since f is strictly convex, we must have o

f(x-;}’){%f{x}+%f{}')=ﬂx) ‘\\Xg\é\»\\@ gS
S

@
which is a contradiction. Thus, the point corresponding to the minimum of f ,},‘fﬁ\ \6’\\9
must be unique. O e¥ 0\
%N
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Definition 22 [Directional derivative|: The directional derivative of f(x)
at X in the direction of the unit vector v is

(x+hv)— fix
D"’f'ix}:iiifhﬂ + h} f(x) (4.12)

provided the limitl exists.

PAGES 231 TO 239 OF
http://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization. pdf

As a special case, when v = u” the directional derivative reduces to the partial

derivative of f with respect to xy. \ &
° 0 O~
o A
D ) =(EHEIA 0 0% 50N

iy

Theorem 57 If f(x) is a differentiable function of x € R™, then [ has a di-
rectional derivative in the direction of any unit vector v, and (J&W

4

no o \
D, f(x) > r}éi:ﬂk / go-*zvof[z) \}4.13}

Definition 23/ [Gradient Vector|: If [ is differentiable function of x € R",
then the gradient of f(x) is the vector function V f(x), defined as:

Vflx)= [.fﬂq (%), [z, (%),.. ., fe., Ii}{}]

The directional derivative of a function f at a point x in the direction of a unit
vector v can be now written as

Db)= VIBV L g (v



Theorem 58 Suppose f is a differentiable function of x € R™. The mazximum
value of the directional derivative Dy f(x) is ||V f(x|| and it is so when v has
the same direction as the gradient vector V f(x).

What does the gradient V f(x) tell you about the function f(x)? We will il-
lustrate with some examples. Consider the polynomial f(x,y,z) = x2y+ 2 sin xy
and the unit vector vi = ﬁ[l, 1,1]7. Consider the point py = (0,1, 3). We will
compute the directional derivative of f at py in the direction of v. To do this, we
first compute the gradient of f in general: V f = [Qr;:y +yzeosy, ¥ 4 rzcosTy, Sin
Evaluating the gradient at a specific point py, Vf(0,1,3) = [3, 0, []]T. The di-
rectional derivative at pg in the direction v is Dy f{0,1,3) = [3, 0, ] V—% [1,1,1]7 =
V3. This directional derivative is the rate of change of f at py in the direction
v: it is positive indicating that the function f increases at py in the direction v.

All our ideas about first and second derivative in the case of a single variable
carry over to the directional derivative.
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Figure 4.12: 10 level curves for the function f(rq,xs) = r1e*2.

Consider the function f(xq, x2) = x1e*2. Figure 4.12 shows 10 level curves
for this function, corresponding to f(xq,x2) = ¢ for ¢ = 1,2,...,10. The idea
behind a level curve is that as you change x along any level curve, the function

value remains unchanged, but as you move x across level curves, the function
value changes.



Theorem 59 Let f : D — R with D € R"™ be a differentiable function. The
gradient Vf evaluated at x* is orthogonal to the tangent hyperplane (tangent
line in case n = 2) to the level surface of [ passing thrrm h x*,

f?“af ta‘Dm‘t ‘W"’”F’a"‘ &t (“197@ > (117

(e

Figure 4.13: The level curves from Figure 4.12 along with the gradient vector

t (2,0). Note that the gradient vector is perpenducular to the level curve
r1e®2 = 2 at (2,0).

Consider the same plot as in Figure 4.12 with a gradient vector at (2, () as
shown in Figure 4.13. The gradient vector [1, 2]7 is perpendicular to the
tangent hyperplane to the level curve xye*? = 2 at (2,0). The equation of
the tangent hyperplane is.— 2)+2(z2-0) & 0 and it turns out to be
a tangent line.



Figure 4.14: 3 level surfaces for the function f(xy,x2, x3) = o2+ 3+ 22 with ¢
1,3.5. The gradient at (1, I;1) is orthogonal to the level surface f(xy,x9,x3)
r{ + x5 + 2 =3 at (1,1,1).

The level surfaces for f(xy, x0,x3) = 2%+ 2%+ 3 are shown in Figure 4.14.
The gradient at (1,1,1) is orthogonal to the tangent hyperplane to the
level surface f(aq,xp,x3) = 2% + 22 + x5 = 3 at (1,1,1). The gradient
vector at (1,1,1) is [2, 2, 2] and the tanget hyperplane has the equation
2(e1 — 1)+ 2(x2— 1)+ 2(x3 — 1) = 0, which is a plane in 3D. On the other
hand, the dotted line in Figure 4.15 is not orthogonal to the level surface,
since it does not coincide with the gradient.
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Figure 4.15: Level surface f(xy,x9,x3) = o7 + x5 + 25 = 3. The gradient at
(1,1, 1), drawn as a bold line, is perpendicular to the tangent plane to the level
surface at (1,1, 1), whereas, the dotted line, though passing through (1,1,1) is
not perpendicular to the same tangent plane,




3. Let f(xy,xx3) = x?23x3 and consider the point x" = (1,2,1). We will

4. Consider the function f(x,y,z) =

[E’ -1, - ] 'ﬁ
tive, indicating that the function decreases along the direction of v. Based
on theorem 58, we know that the maximum rate of change of a function

. Let us find the maximum rate of change of the function f(x,y,z) ==
at the point x” = (1,1,1) and the direction in which it occurs. The
gradient at x" is ?Tﬂ{l_l_lj = [2, 3, 4]. The maximum rate of change at

find the equation of the tangent plane to the level surface through xV.

The level surface through x" is determined by setting f equal to its
value evaluated at x"; that is, the level surface will have the equation

rirird = 122%1* = 8. The gradient vector (normal to tangent plane) at

i{l 2.1)
(16, 12, 32]]1. The equation ﬂf the tangent plane at x”, given the normal
vector Vf(x") can be easily written down: Vf(x")?.[x — x"] = 0 which
turns out to be 16(axy — 1) + 12(a2 — 2) +32(x3 — 1) =0, a plane in 3D.

(1,2,1) is ?fl[:::l,r;:g,rrgﬂ{l__ = [Erlrzrq, %rlrzrq,irl rzrq

yf_ —. The directional derivative of [ in

the direction of the vector v = ﬁ[l, 2, 3] at the point 2" = (4,1,1) is

1 g 9T
——11, 2, 3" =
(4,1,1) ‘JH[ |
The directional derivative is nega-

1 T T
-H{-illl U’_[ 2 :j] |:y+:-:’ _{y+z]z: _{y+:-r]3:|

1, 2, 87 = -2

at a point x is given by ||Vf(x)|| and it is in the direction IIT;E%II In
the example under consideration, this maximum rate of change at x" 3
and it 1s in the direction of the vector % [é, —1, —1].

2 '3 4

xV is therefore /29 and the direction of the corresponding rate of change is
ﬁ (2, 3, 4]. The minimum rate of change is —v/29 and the corresponding

direction is —% 12, 3, 4.

29



6. Let us determine the equations of (a) the tangent plane to the paraboloid
P:axy=a3+x35+2at (—1,1,0) and (b) the normal line to the tangent
plane. To realize this as the level surface of a function of three variables, we
define the function f (1, w2, 23) = 1 —3— 23 and find that the paraboloid
— P is the same as the level surface f(xq, 29, x3) = —2. The normal to the
tangent plane to P at x” isin the direction of the gradient vector Vf(x") =
[1,—2,0]" and its parametric equation is [xy, xp, x3] = [~1+¢, 1—2¢, 0].
~ The equation of the tangent plane is therefore (xy +1) — 2(xy — 1) = 0.




Figure 4.17: The paraboloid f(ry,x) = 9 — x? — x2 attains its maximum at
(0,0). The tanget plane to the surface at (0,0, f{0,0)) is also shown, and so is
the gradient vector VF at (0,0, f(0,0)).

We can embed the graph of a function of n variables as the 0-level surface of
a function of n 4+ 1 variables More concretely, if f: D — R, D C R" then we
define F': D' - R, D' =DxRas F(x,z) = f(x)—zwithx € D'. The function
f then corresponds to a single level surface of F' given by F(x,z) = 0. In other
words, the O—level surface of F' gives back the graph of f. The gradient of F
at any point (x, z) is simply, VF(x,2) = [fs,, fens- -+ [z, —1] with the first n
components of VF(x, z) given by the n components of V f(x). We note that the
level surface of F passing through point (x", f(x") is its O-level surface, which
is essentially the surface of the function f(x). The equation of the tangent
hyperplane to the O—level surface of F at the point (x”, f(x") (that is, the
tangent hyperplane to f(x) at the point xg), is VF(x", f(x")7T.[x — x",z —
F(x")]T = 0. Substituting appropriate expression for VF(x"), the equation of
the tangent plane can be written as



(Z Jz; (]{ﬂ} (-’1-'-.-', — I?))J_ (3 _ f(ll{ﬂ)) 0

or equivalently as, ( L _ (

N (i fa, (%) (i - I?)) +f(x°) =2

i=1

As an example, consider the paraboloi

— spondin d the poin hich
~ lies on the (-level surface of F'. The gradient VF(x1, x2,2) is |21, —2x2, —1],
which when evaluated at z” = (1,1,7) is [-2, —2, —1]. The equation of the

~ tangent plane to f at 2" is therefore given by —2(x; — 1) — 2(ws — 1)+ 7=2.

the corre-

Theorem 60 If f(x) defined on a domain D C R" has a local marimum
N or mintmum at x* and if the first-order partial derivatives exist at x*, then

fox*)=0foralll <i<n.




Definition 27 [Critical point|: A point x* is called a critical point of a func-
tion f(x) defined on D C R" if

1. If f;,(x*) =0, for1 <i<n.
2. OR f..(x*) fails to exist for any 1 < i < n.

A procedure for computing all critical points of a function f is:

1. Compute f,. for 1 <i<n.

2. Determine if there are any points where any one of f,. fails to exist. Add
such points (if any) to the list of critical points.

3. Solve the system of equations f,, = 0 simultaneously. Add the solution
points to the list of saddle points.

Definition 28 [Saddle point]: A point x* is called a saddle point of a func-
tion f(x) defined on D T R"™ if x* is a critical point of f but x* does not
correspond to a local marimum or minimum of the function.



First-order condition

f is differentiable if dom f is open and the gradient

V50 = (G g e )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > f(z) + Vf(x)T(y —x) forall x,y € dom f

f(y)
f(x) + V() (y — )
(z, f(z))
first-order approximation of f is global underestimator
Convex functions 3-7

Second-order conditions

f is twice differentiable if dom f is open and the Hessian VZf(z) € S",

_ *f(=)
N 8:13‘1'8]3]"

V2 ()5

,j=1,...,n,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(xz) =0 forall z € dom f

o if V2f(z) = 0 for all x € dom f, then f is strictly convex

Convex functions 3-8



