
First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(

∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) + ∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Sn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

∇2f(x) � 0 for all x ∈ dom f

• if ∇2f(x) ≻ 0 for all x ∈ dom f , then f is strictly convex

Convex functions 3–8



Examples on R

convex:

• affine: ax + b on R, for any a, b ∈ R

• exponential: eax, for any a ∈ R

• powers: xα on R++, for α ≥ 1 or α ≤ 0

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: x log x on R++

concave:

• affine: ax + b on R, for any a, b ∈ R

• powers: xα on R++, for 0 ≤ α ≤ 1

• logarithm: log x on R++

Convex functions 3–3

Examples on Rn and Rm×n

affine functions are convex and concave; all norms are convex

examples on Rn

• affine function f(x) = aTx + b

• norms: ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk|

examples on Rm×n (m × n matrices)

• affine function

f(X) = tr(ATX) + b =

m
∑

i=1

n
∑

j=1

AijXij + b

• spectral (maximum singular value) norm

f(X) = ‖X‖2 = σmax(X) = (λmax(X
TX))1/2

Convex functions 3–4











Basic inequality

recall basic inequality for convex differentiable f :

f(y) ≥ f(x) +∇f(x)T (y − x)

• first-order approximation of f at x is global underestimator

• (∇f(x),−1) supports epi f at (x, f(x))

what if f is not differentiable?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1
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• g is a subgradient of f at x iff (g,−1) supports epi f at (x, f(x))

• g is a subgradient iff f(x) + gT (y − x) is a global (affine)
underestimator of f

• if f is convex and differentiable, ∇f(x) is a subgradient of f at x

subgradients come up in several contexts:

• algorithms for nondifferentiable convex optimization

• convex analysis, e.g., optimality conditions, duality for nondifferentiable
problems

(if f(y) ≤ f(x) + gT (y − x) for all y, then g is a supergradient)
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Example

f = max{f1, f2}, with f1, f2 convex and differentiable

x0

f1(x)
f2(x)

f(x)

• f1(x0) > f2(x0): unique subgradient g = ∇f1(x0)

• f2(x0) > f1(x0): unique subgradient g = ∇f2(x0)

• f1(x0) = f2(x0): subgradients form a line segment [∇f1(x0),∇f2(x0)]
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Subdifferential

• set of all subgradients of f at x is called the subdifferential of f at x,
denoted ∂f(x)

• ∂f(x) is a closed convex set (can be empty)

if f is convex,

• ∂f(x) is nonempty, for x ∈ relint dom f

• ∂f(x) = {∇f(x)}, if f is differentiable at x

• if ∂f(x) = {g}, then f is differentiable at x and g = ∇f(x)
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Example

f(x) = |x|

f(x) = |x| ∂f(x)

x

x

1

−1

righthand plot shows
⋃

{(x, g) | x ∈ R, g ∈ ∂f(x)}
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Subgradient calculus

• weak subgradient calculus: formulas for finding one subgradient
g ∈ ∂f(x)

• strong subgradient calculus: formulas for finding the whole
subdifferential ∂f(x), i.e., all subgradients of f at x

• many algorithms for nondifferentiable convex optimization require only
one subgradient at each step, so weak calculus suffices

• some algorithms, optimality conditions, etc., need whole subdifferential

• roughly speaking: if you can compute f(x), you can usually compute a
g ∈ ∂f(x)

• we’ll assume that f is convex, and x ∈ relint dom f
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Some basic rules

• ∂f(x) = {∇f(x)} if f is differentiable at x

• scaling: ∂(αf) = α∂f (if α > 0)

• addition: ∂(f1 + f2) = ∂f1 + ∂f2 (RHS is addition of sets)

• affine transformation of variables: if g(x) = f(Ax+ b), then
∂g(x) = AT∂f(Ax+ b)

• finite pointwise maximum: if f = max
i=1,...,m

fi, then

∂f(x) = Co
⋃

{∂fi(x) | fi(x) = f(x)},

i.e., convex hull of union of subdifferentials of ‘active’ functions at x
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f(x) = max{f1(x), . . . , fm(x)}, with f1, . . . , fm differentiable

∂f(x) = Co{∇fi(x) | fi(x) = f(x)}

example: f(x) = ‖x‖1 = max{sTx | si ∈ {−1, 1}}

1

1

−1

−1

∂f(x) at x = (0, 0)

1

1

−1

at x = (1, 0)

(1,1)

at x = (1, 1)
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