First-order condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
1st-order condition: differentiable f with convex domain is convex iff

first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x) \in \mathbf{S}^{n}$,

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots, n
$$

exists at each $x \in \operatorname{dom} f$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

- if $\nabla^{2} f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples on \mathbf{R}

convex:

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$, for any $a \in \mathbf{R} \quad A M \geqslant G M$
- powers: x^{α} on \mathbf{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^{p}$ on \mathbf{R}, for $p \geq 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}
concave:
- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbf{R}^{n} and $\mathbf{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbf{R}^{n}

- affine function $f(x)=a^{T} x+b$
- norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1 ;\|x\|_{\infty}=\max _{k}\left|x_{k}\right|$

examples on $\mathbf{R}^{m \times n}(m \times n$ matrices $)$

- affine function

$$
f(X)=\operatorname{tr}\left(A^{T} X\right)+b=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b
$$

- spectral (maximum singular value) norm

$$
\left.f(X)=\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}\right\}
$$

$$
\cdots \max _{v}\left\|x_{v}\right\|_{2}
$$

Theorem 75 Let $f: \mathcal{D} \rightarrow \Re$ be a differentiable convex function on an open convex set \mathcal{D}. Then:

1. f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.44}
\end{equation*}
$$

2. f is strictly convex on \mathcal{D} if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
f(\mathbf{y})>f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.45}
\end{equation*}
$$

3. f is strongly convex on \mathcal{D} if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2} \tag{4.46}
\end{equation*}
$$

for some constant $c>0$.

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (4.44). Suppose (4.44) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{4.47}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity, strict inequality holds in (4.47) and it follows through. In the case of strong convexity, we need to additionally prove that

$$
\theta \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{1}\right\|^{2}+(1-\theta) \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{2}\right\|^{2}=\frac{1}{2} c \theta(1-\theta)\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|^{2}
$$

Necessity: Suppose f is convex. Then for all $\theta \in(0,1)$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$, we must have

$$
f\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{x}_{1}\right) \leq \theta f\left(\mathbf{x}_{2}\right)+(1-\theta) f\left(\mathbf{x}_{1}\right)
$$

Thus,

$$
\nabla^{T} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)=\lim _{\theta \rightarrow 0} \frac{f\left(\mathbf{x}_{1}+\theta\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)-f\left(\mathbf{x}_{1}\right)}{\theta} \leq f\left(\mathbf{x}_{2}\right)-f\left(\mathbf{x}_{1}\right)
$$

This proves necessity for (4.44). The necessity proofs for (4.45) and (4.46) are very similar, except for a small difference for the case of strict convexity; the strict inequality is not preserved when we take limits. Suppose equality does hold in the case of strict convexity, that is for a strictly convex function f, let

$$
\begin{equation*}
f\left(\mathbf{x}_{2}\right)=f\left(\mathbf{x}_{1}\right)+\nabla^{T} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \tag{4.48}
\end{equation*}
$$

for some $\mathbf{x}_{2} \neq \mathbf{x}_{1}$. Because f is stricly convex, for any $\theta \in(0,1)$ we can write

$$
\begin{equation*}
f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right)=f\left(\mathbf{x}_{2}+\theta\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)<\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \tag{4.49}
\end{equation*}
$$

Since (4.44) is already proved for convex functions, we use it in conjunction with (4.48), and (4.49), to get

$$
f\left(\mathbf{x}_{2}\right)+\theta \nabla^{T} f\left(\mathbf{x}_{2}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \leq f\left(\mathbf{x}_{2}+\theta\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)<f\left(\mathbf{x}_{2}\right)+\theta \nabla^{T} f\left(\mathbf{x}_{2}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
$$

which is a contradiction. Thus, equality can never hold in (4.44) for any $\mathbf{x}_{1} \neq \mathbf{x}_{2}$.

Definition 41 [Subgradient]: Let $f: \mathcal{D} \rightarrow \Re$ be a convex function defined on a convex set \mathcal{D}. A vector $\mathbf{h} \in \Re^{n}$ is said to be a subgradient of f at the point $\mathbf{x} \in \mathcal{D}$ if

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{h}^{T}(\mathbf{y}-\mathbf{x})
$$

for all $\mathbf{y} \in \mathcal{D}$. The set of all such vectors is called the subdifferential of f at \mathbf{x}.

Theorem 76 Let $f: \mathcal{D} \rightarrow \Re$ be a convex function defined on a convex set \mathcal{D}. A point $\mathbf{x} \in \mathcal{D}$ corresponds to a minimum if and only if

$$
\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \geq 0
$$

for all $\mathbf{y} \in \mathcal{D}$.
If $\nabla f(\mathbf{x})$ is nonzero, it defines a supporting hyperplane to \mathcal{D} at the point \mathbf{x}. Theorem 77 implies that for a differentiable convex function defined on an open set, every critical point must be a point of (global) minimum.

Theorem 77 Let $f: \mathcal{D} \rightarrow \Re$ be differentiable and convex on an open convex domain $\mathcal{D} \subseteq \Re^{n}$. Then \mathbf{x} is a critical point of f if and only if it is a (global) minimum.

Theorem 78 Let $f: \mathcal{D} \rightarrow \Re$ with $\mathcal{D} \subseteq \Re^{n}$ be differentiable on the convex set D. Then,

1. f is convex on \mathcal{D} if and only if is its gradient ∇f is monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq 0 \tag{4.53}
\end{equation*}
$$

2. f is strictly convex on \mathcal{D} if and only if is its gradient ∇f is strictly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$ with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y})>0 \tag{4.54}
\end{equation*}
$$

3. f is uniformly or strongly convex on \mathcal{D} if and only if is its gradient ∇f is uniformly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq c\|\mathbf{x}-\mathbf{y}\|^{2} \tag{4.55}
\end{equation*}
$$

for some constant $c>0$.

Necessity: Suppose f is uniformly convex on \mathcal{D}. Then from theorem 75, we know that for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{aligned}
& f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})-\frac{1}{2} c\|\mathbf{y}+\mathbf{x}\|^{2} \\
& f(\mathbf{x}) \geq f(\mathbf{y})+\nabla^{T} f(\mathbf{y})(\mathbf{x}-\mathbf{y})-\frac{1}{2} c\|\mathbf{x}+\mathbf{y}\|^{2}
\end{aligned}
$$

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold with $c=0$, yielding (4.54). If f is strictly convex, the inequalities will be strict, yielding (4.54).

Sufficiency: Suppose ∇f is monotone. For any fixed $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, consider the function $\phi(t)=f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))$. By the mean value theorem applied to $\phi(t)$, we should have for some $t \in(0,1)$,

$$
\begin{equation*}
\phi(1)-\phi(0)=\phi^{\prime}(t) \tag{4.56}
\end{equation*}
$$

Letting $\mathbf{z}=\mathbf{x}+t(\mathbf{y}-\mathbf{x}),(4.56)$ translates to

$$
\begin{equation*}
f(\mathbf{y})-f(\mathbf{x})=\nabla^{T} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \tag{4.57}
\end{equation*}
$$

Also, by definition of monotonicity of ∇f, (from (4.53)),

$$
\begin{equation*}
(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x})=\frac{1}{t}(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq 0 \tag{4.58}
\end{equation*}
$$

Combining (4.57) with (4.58), we get,

$$
\begin{align*}
f(\mathbf{y})-f(\mathbf{x})=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) & +\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \\
& \geq \nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.59}
\end{align*}
$$

By theorem 75, this inequality proves that f is convex. Strict convexity can be similarly proved by using the strict inequality in (4.58) inherited from strict monotonicity, and letting the strict inequality follow through to (4.59). For the case of strong convexity, from (4.55), we have

$$
\begin{gather*}
\phi^{\prime}(t)-\phi^{\prime}(0)=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) \\
=\frac{1}{t}(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq \frac{1}{t} c\|\mathbf{z}-\mathbf{x}\|^{2}=c t\|\mathbf{y}-\mathbf{x}\|^{2} \tag{4.60}\\
\phi(1)-\phi(0)-\phi^{\prime}(0)=\int_{0}^{1}\left[\phi^{\prime}(t)-\phi^{\prime}(0)\right] d t \geq \frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2}
\end{gather*}
$$

which translates to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2}
$$

Basic inequality

recall basic inequality for convex differentiable f :

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

- first-order approximation of f at x is global underestimator
- $(\nabla f(x),-1)$ supports epi f at $(x, f(x))$
what if f is not differentiable?

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \text { for all } y
$$

g_{2}, g_{3} are subgradients at $x_{2} ; g_{1}$ is a subgradient at x_{1}

- g is a subgradient of f at x ifs $(g,-1)$ support's dpi f at $(x, f(x))$
- g is a subgradient of $f(x)+g^{T}(y-x)$ is a global (affine) enif $=\{y z \mid f(y) \leq z\}$ underestimator of f
- if f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x
subgradients come up in several contexts:
- algorithms for nondifferentiable convex optimization
- convex analysis, e.g., optimality conditions, duality for nondifferentiable problems
(if $f(y) \leq f(x)+g^{T}(y-x)$ for all y, then g is a supergradient)

Example

$$
\begin{aligned}
& f=\max \left\{f_{1}, f_{2}\right\} \text {, with } f_{1}, f_{2} \text { convex and differentiable } \\
& \underbrace{f=\max \left\{f_{1}, f_{2}\right\} \text {, w }}_{\text {easy to see convexity }} \\
& \begin{array}{c}
f(y))(f(x) \\
f(x)=f(x)+D F(x)(y-x) \\
f(x)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Similar } \\
& \text { - } f_{2}\left(x_{0}\right)>f_{1}\left(x_{0}\right) \text { : unique subgradient } g=\nabla f_{2}\left(x_{0}\right) \\
& \text { - } f_{1}\left(x_{0}\right)=f_{2}\left(x_{0}\right) \text { : subgradients form a line segment }\left[\nabla f_{1}\left(x_{0}\right), \nabla f_{2}\left(x_{0}\right)\right] \\
& f(y) \geqslant \underbrace{f\left(x_{0}\right)}+\left[\theta \nabla f_{1}\left(x_{0}\right)+(1-\theta) \nabla f_{2}\left(x_{0}\right)\right]^{\top}\left(y-x_{0}\right) \quad \forall \theta \in[0,1] \\
& \theta f_{1}\left(x_{0}\right)+(1-\theta) f_{2}\left(x_{0}\right) \theta f_{1}(y)+>\theta\left[f_{1}\left(x_{0}\right)+D^{\top} f_{1}\left(x_{0}\right)\left(y-x_{0}\right)\right] \\
& \begin{array}{l}
f(y)=\theta f(y)+(1-\theta)(x) \geq(1-\theta) f_{2}(y) \geqslant+(1-\theta)\left[f_{2}\left(x_{0}\right)^{1}+\nabla^{\top} f_{2}\left(x_{0}\right)\left[y-x_{0}\right)\right]
\end{array}
\end{aligned}
$$

H|w: Subig-radicnt of $\|x\|_{1}=f(x) \quad x \in \mathbb{R}^{n}$

$$
f(x)=\|x\|_{1}=\max _{i=1 \cdots N}\{\underbrace{f_{i}(x)}_{f_{i}}, f_{2}(x) \cdots f_{i}(x) \cdots f_{N}(x)\}
$$

If No component of $x=0$ then $s=\left[\begin{array}{c}\operatorname{sgn}\left(x_{i}\right) \\ \operatorname{sgn}\left(x_{1}\right) \\ \operatorname{sgn}\left(x_{n}\right)\end{array}\right]$
In general if $f(x)=S_{1}^{1_{1}^{\top}} x=S_{1}^{1+\pi} x=\cdots=S_{k}^{\pi} x$
then $\partial f(x)=$ conn $\left\{s_{1}^{\prime}, s_{2}^{\prime} \cdots s_{k}^{\prime}\right\} \quad \ldots(\partial f(x))_{i}=$

Subdifferential

$$
f(y) \geqslant f(x)+g_{x}^{T}(y-x)+y \in d m n f
$$

- set of all subgradients of f at x is called the subdifferential of f at x, denoted $\partial f(x)$
- $\partial f(x)$ is a closed convex set (can be empty)
if f is convex,
- $\partial f(x)$ is nonempty, for $x \in \operatorname{relint} \operatorname{dom} f$

- $\partial f(x)=\{\nabla f(x)\}$, if f is differentiable at x
- if $\partial f(x)=\{g\}$, then f is differentiable at x and $g=\nabla f(x)$

Consider supporting hyperplane at $(x, f(x))$ to api (f) ? Haw (3) why $\forall[y, z)$ Eepi $(f) \quad a^{T}[y]+\psi \leq a^{T}[x]$ (1) How do I get $f(y)$ into
(2) $g_{x}^{\top} y-f(y) \leqslant g_{x}^{\top} x-f(x)$

$$
g_{x} \in \partial f(x) \text { if } \forall y \in d m n f f(y) \geqslant f(x)+g_{x}^{\top}(y-x)
$$

$$
\begin{aligned}
& f(x)-g_{x}^{\pi} x \leq f(y)-g_{x}^{\pi} y \quad \forall y \\
& g_{x}^{\top} x-f(x) \geq g_{x}^{\top} y-f(y) \quad \forall y
\end{aligned}
$$

111
if $\partial f(x) \neq \phi$ (ie g_{x} exists) then

$$
\begin{aligned}
& \text { then } \\
& g_{x}^{\prime} x-f(x)=f^{*}\left(g_{x}\right)
\end{aligned}
$$

(since max includes max veer x) if f is differentiable: $g_{x}=\nabla f(x)$

$$
\begin{aligned}
& \text { (since max nodudes max } y \\
& \text { If } f\left(\text { s dfferentable: } g_{x}=\nabla f(x)\right. \\
& \text { then } f^{A}(\nabla f(x))=\nabla^{\top} f(x) x-f(x)
\end{aligned}
$$

Example

$$
f(x)=|x|
$$

righthand plot shows $\bigcup\{(x, g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$

Subgradient calculus

- weak subgradient calculus: formulas for finding one subgradient $g \in \partial f(x)$
- strong subgradient calculus: formulas for finding the whole subdifferential $\partial f(x)$, i.e., all subgradients of f at x
- many algorithms for nondifferentiable convex optimization require only one subgradient at each step, so weak calculus suffices \rightarrow as in (ase ill see
- some algorithms, optimality conditions, etc., need whole subdifferential
- roughly speaking: if you can compute $f(x)$, you can usually compute a $g \in \partial f(x)$
- we'll assume that f is convex, and $x \in \operatorname{relint} \operatorname{dom} f$

Some basic rules

- scaling: $\partial(\alpha f)=\alpha \partial f($ if $\alpha>0)$
- addition: $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$ (RHS is addition of sets)
- affine transformation of variables: if $g(x)=f(A x+b)$, then $\partial g(x)=A^{T} \partial f(A x+b)$
- finite pointwise maximum: if $f=\max _{i=1, \ldots, m} f_{i}$, then

$$
\partial f(x)=\mathbf{C o} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\},
$$

ie., convex hull of union of subdifferentials of 'active' functions at x
$f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$, with f_{1}, \ldots, f_{m} differentiable

$$
\partial f(x)=\operatorname{Co}\left\{\nabla f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

example: $f(x)=\|x\|_{1}=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}$

$\partial f(x)$ at $x=(0,0)$

at $x=(1,0)$

at $x=(1,1)$

What abl local maxima/minima \& subgradeent?
(1) $\nabla f(x)=0$ \& f is convex then x is glabal min
What if $g_{x}=0$?

$$
f(y) \geqslant f(x)+g_{x}^{\top}(y-x) \quad \forall y
$$

if $g x=0$ then $f(y) \geqslant f(x) \Rightarrow x$ is pt of global min
Eg: $\min _{x} \frac{1}{2}\|y-x\|^{2}+\lambda \geqslant 0 \quad\left(\|x\|_{1} \quad\left(\operatorname{argmin}\|y-x\|^{2}+\lambda\|t\|_{1}=x^{*}\right)\right.$ I will suggest a soln by setting "some" $g_{x}=0$

(1) $g_{x}=\frac{1}{2} \nabla\left(\mid y-x \|^{2}\right)+\lambda \partial\|x\|_{1}$

$$
=(x-y)+\lambda\left[\begin{array}{c}
\sin \left(x_{0}\right) \\
\sin \left(x_{n}\right)
\end{array}\right]
$$

$$
\text { for each } i g_{x_{i}}=\left(x_{i}-y_{i}\right)
$$

In either case. (1) or (2), setting $g_{x}=0$ or $g_{x_{i}}=0$ for each i, 4 cheeking that * satisfies this equation,

$$
\begin{aligned}
& \min f(x) \\
& \text { st } g_{i}(x) \leq 0 \rightarrow I_{g_{i}(x)} \rightarrow \infty \text { if } g_{i}(x)<0
\end{aligned}
$$

If g_{i} is convex, $d m n I_{g_{i}}$ is convex \& $I_{g_{i}}(x)$ is a convex on

$$
f(x)+\sum_{i} \lambda_{i} I_{g_{i}}(x)
$$

