H|w: Subig-radicnt of $\|x\|_{1}=f(x) \quad x \in \mathbb{R}^{n}$

$$
\begin{aligned}
& f(x)=\|x\|_{1}=\max _{i=1 \cdots N}\{\underbrace{f_{i}(x)}_{\sim}, f_{2}(x) \ldots f_{i}(x) \ldots f_{N}(x)\}
\end{aligned}
$$

$$
\begin{aligned}
& N=2^{-n}
\end{aligned}
$$

If No component of $x=0$ then $s=\left[\begin{array}{c}\operatorname{sgn}\left(x_{i}\right) \\ \operatorname{sgn}\left(x_{1}\right) \\ \operatorname{sgn}\left(x_{n}\right)\end{array}\right]$
In general if $f(x)=S_{1}^{1} x=S_{2}^{1+} x=\cdots=S_{k}^{\pi} x$
 $\theta \in[0,1]$

Subdifferential

$$
f(y) \geqslant f(x)+g_{x}^{T}(y-x)+y \in d m n f
$$

- set of all subgradients of f at x is called the subdifferential of f at x, denoted $\partial f(x)$
- $\partial f(x)$ is a closed convex set (can be empty)
if f is convex,
- $\partial f(x)$ is nonempty, for $x \in \operatorname{relint} \operatorname{dom} f$

- $\partial f(x)=\{\nabla f(x)\}$, if f is differentiable at x
- if $\partial f(x)=\{g\}$, then f is differentiable at x and $g=\nabla f(x)$

Consider supporting hyperplane at $(x, f(x))$ to api (f) ? Haw (3) why $\forall[y, z)$ Eepi $(f) \quad a^{T}[y]+\psi \leq a^{T}[x]$ (1) How do I get $f(y)$ into
(2) $g_{x}^{\top} y-f(y) \leqslant g_{x}^{\top} x-f(x)$

Completed solution
Let $a=\left[\begin{array}{l}c \\ d\end{array}\right]$ sot $\quad\left[\begin{array}{l}c \\ d\end{array}\right]^{\top}\left[\begin{array}{l}y \\ z\end{array}\right] \leq\left[\begin{array}{l}c \\ d\end{array}\right]^{\top}\left[\begin{array}{l}x \\ f(x)\end{array}\right] \quad \forall(y, z) \in$ api (f)
Not both c\&d

$$
\psi_{1}(1 f \quad y=x \quad z \geq f(x) \Rightarrow d \leq 0)
$$

are 0

$$
d \leq 0 \& c^{\top}(y-x)+d(z-f(x)) \leq \underbrace{\text { d }}_{\forall y \in d_{\operatorname{mn}} f(y-x)+d(f(y)-f(x)) \leq 0}
$$

If $d \neq 0$, we can divide by d (While reversing the inequality)

$$
f(y) \geqslant f(x)-(\underbrace{c}_{y} / d)^{\top}(y-x) \quad \forall y \in d \operatorname{mn} f
$$

If $d=0$ then $c^{T}(y-x) \leqslant 0 \quad \forall y \in d m n f$

$$
c / d \in \partial f
$$

 $x \in$ reline $d_{m n} f$ (no single vector c can make. an obtuse angle with $(y-x) \forall y \in d \times n f)$

$$
g_{x} \in \partial f(x) \text { if } \forall y \in d m n f f(y) \geqslant f(x)+g_{x}^{\top}(y-x)
$$

$$
\begin{aligned}
& f(x)-g_{x}^{\pi} x \leq f(y)-g_{x}^{\pi} y \quad \forall y \\
& g_{x}^{\top} x-f(x) \geq g_{x}^{\top} y-f(y) \quad \forall y
\end{aligned}
$$

111
if $\partial f(x) \neq \phi$ (ie g_{x} exists) then

$$
\begin{aligned}
& \text { then } \\
& g_{x}^{\prime} x-f(x)=f^{*}\left(g_{x}\right)
\end{aligned}
$$

(since max includes max veer x) if f is differentiable: $g_{x}=\nabla f(x)$

$$
\begin{aligned}
& \text { (since max nodudes max } y \\
& \text { If } f\left(\text { s dfferentable: } g_{x}=\nabla f(x)\right. \\
& \text { then } f^{A}(\nabla f(x))=\nabla^{\top} f(x) x-f(x)
\end{aligned}
$$

Example

$$
f(x)=|x|
$$

righthand plot shows $\bigcup\{(x, g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$

Subgradient calculus

- weak subgradient calculus: formulas for finding one subgradient $g \in \partial f(x)$
- strong subgradient calculus: formulas for finding the whole subdifferential $\partial f(x)$, i.e., all subgradients of f at x
- many algorithms for nondifferentiable convex optimization require only one subgradient at each step, so weak calculus suffices \rightarrow as in (ase ill see
- some algorithms, optimality conditions, etc., need whole subdifferential
- roughly speaking: if you can compute $f(x)$, you can usually compute a $g \in \partial f(x)$
- we'll assume that f is convex, and $x \in \operatorname{relint} \operatorname{dom} f$

Some basic rules

- scaling: $\partial(\alpha f)=\alpha \partial f($ if $\alpha>0)$
- addition: $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$ (RHS is addition of sets)
- affine transformation of variables: if $g(x)=f(A x+b)$, then $\partial g(x)=A^{T} \partial f(A x+b)$
- finite pointwise maximum: if $f=\max _{i=1, \ldots, m} f_{i}$, then

$$
\partial f(x)=\mathbf{C o} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\},
$$

ie., convex hull of union of subdifferentials of 'active' functions at x
$f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$, with f_{1}, \ldots, f_{m} differentiable

$$
\partial f(x)=\operatorname{Co}\left\{\nabla f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

example: $f(x)=\|x\|_{1}=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}$

$\partial f(x)$ at $x=(0,0)$

at $x=(1,0)$

at $x=(1,1)$

What abt local maxima/minima \& subgradeent?
(1) $\nabla f(x)=0$ \& f is conver then x ig glabal min
What if $g_{x}=0$?

$$
f(y) \geqslant f(x)+g_{x}^{\top}(y-x) \quad \forall y
$$

if $g x=0$ then $f(y) \geqslant f(x) \Rightarrow x$ is pt
gg: $\min _{x} \frac{1}{2}\|y-x\|^{2}+\lambda \geqslant 0 \quad$ Reguiamzer of glabal min $\quad\left(\underset{x}{\operatorname{argmin}}\|y-x\|^{2}+\lambda\|t\|^{x}=x^{2}\right)$
I will suggest a soln by setting "some" $g_{x}=0$

(1) $g_{x}=\frac{1}{2} \nabla\left(\|y-x\|^{2}\right)+\lambda \partial\|x\|_{1}$
(2) $\min _{x_{i}} \frac{1}{2}\left[y_{i}-x_{i}\right)^{2}+\lambda\left|x_{i}\right\rangle$ annumg
$\sin \left(x_{n}\right)$
for each $i g_{x_{i}}=\left(x_{i}-y_{i}\right)$

In either case. (1) or (2), setting $g_{x}=0$ or $g_{x_{i}}=0$ for each i, 4 cheeking that * satisfies this equation,

Another example
Maximum eigenvalue of a symmetric matrix

$$
\begin{aligned}
& f(x)=\lambda_{\text {max }}(A(x)) \ldots A(x)=A_{0}+x_{1} A_{1}+\ldots+x_{n} l_{n} \\
& \& A_{i} \in S^{m} \\
& f(x)=\lambda_{\text {max }}(A(x))=\sup y^{\top} A(x) Y \\
& \text { Index set over for } \leftarrow \backslash y \|_{2}=1 \\
& \text { http://en.wikipedia.org/wiki/Rayleigh_quotient }
\end{aligned}
$$

Active fins $y^{\top} A(x) y$ are the ones for which y. is (normalised) eigenvector for max eigenvalue $\lambda_{\text {max }}$ of $A(x)$

$$
\therefore g_{x}=\left(y^{\top} A_{1} y, \ldots y^{\top} A_{n} y\right)
$$

ophir 2/(contimuous) Let $C_{i}=\left\{x \mid g_{i}(x) \leq 0\right\}$ are convex sets 4 let $\operatorname{dist}\left(x, c_{i}\right)=\min \{\|x-u\|: u \in C\}$ If C_{i} is closed, convex then \exists unique $u^{*} \in C$ that minimizes $\|x-u\|$.Let us call $u^{+}=P_{c}(x)$ so that $\operatorname{dist}\left(x, C_{i}\right)=\left\|x-P_{C_{i}}(t)\right\|$ We are interested in \hat{z} sit $g_{1}(x) \leq 0, \ldots g_{m}(x) \leq 0$ ie $\hat{x} \in C_{1} \cap C_{2} \ldots \cap C_{m}$ Claim: (If \hat{x} exists) $\min _{x \in \mathbb{R}^{n}}^{\underbrace{\max \operatorname{lin} \operatorname{dist}\left(x, c_{i}\right)}}=\underbrace{0}_{\sim}$

$$
\nabla \operatorname{drst}\left(x, C_{i}\right)=\frac{x-P_{C_{i}}(x)}{\left\|x-P_{C_{i}}(x)\right\|}
$$

if g_{i} is convex, $d m n I_{g}$ is convex \& $I_{g_{i}}(x)$ is a convex for

$$
=\left\{d \in \mathbb{R}^{n} \mid d^{\hat{1} x} \geqslant d^{\top} y \forall y \operatorname{s} \cdot t g_{i}(y) \leqslant 0\right\}
$$

Normal cone $N_{c}(x)$ to C at point x. (1) f, $x \in$ nt Conn $^{2} g_{j}$) then $N_{c}(x)=\{0\}$ i.e
no nontrivial descent possible no nontrivial descent possible (2) Otherwouc
$N(x)=\left\{d \in \mathbb{R}^{n} \mid d^{\top} x \geq d^{\top} y \quad \forall y \in C\right\}$

$D(x)=\operatorname{dist}\left(x, c_{i}\right) \neq 0$ then $\frac{x-P_{C_{i}}(x)}{\left\|x-P_{c}(x)\right\|} \in \partial D(x)$

First-order condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
1st-order condition: differentiable f with convex domain is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x) \in \mathbf{S}^{n}$,

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots, n
$$

exists at each $x \in \operatorname{dom} f$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

- if $\nabla^{2} f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Theorem 61 Let $f: \mathcal{D} \rightarrow \Re$ where $\mathcal{D} \subseteq \Re^{n}$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open ball \mathcal{R} containing a point \mathbf{x}^{*} where $\nabla f\left(\mathbf{x}^{*}\right)=0$. Let $\nabla^{2} f(\mathbf{x})$ denote an $n \times n$ matrix of mixed partial derivatives of f evaluated at the point \mathbf{x}, such that the $i j^{\text {th }}$ entry of the matrix is $f_{x_{i} x_{j}}$. The matrix $\nabla^{2} f(\mathbf{x})$ is called the Hessian matrix. The Hessian matrix is symmetric ${ }^{6}$. Then,

- If $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite, \mathbf{x}^{*} is a local minimum.
- If $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is negative definite (that is if $-\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite), \mathbf{x}^{*} is a local maximum.

Proof: Since the mixed partial derivatives of f are continuous in an open ball containing \mathcal{R} containing \mathbf{x}^{*} and since $\nabla^{2} f\left(\mathbf{x}^{*}\right) \succ 0$, it can be shown that there exists an $\epsilon>0$, with $\mathcal{B}\left(\mathbf{x}^{*}, \epsilon\right) \subseteq \mathcal{R}$ such that for all $\|\mathbf{h}\|<\epsilon, \nabla^{2} f\left(\mathbf{x}^{*}+\mathbf{h}\right) \succ 0$. Consider an increment vector \mathbf{h} such that $\left(\mathbf{x}^{*}+\mathbf{h}\right) \in \mathcal{B}\left(\mathbf{x}^{*}, \epsilon\right)$. Define $g(t)=$ $f\left(\mathbf{x}^{*}+t \mathbf{h}\right):[0,1] \rightarrow \Re$. Using the chain rule,

$$
g^{\prime}(t)=\sum_{i=1}^{n} f_{x_{i}}\left(\mathbf{x}^{*}+t \mathbf{h}\right) \frac{d x_{i}}{d t}=\mathbf{h}^{T} . \nabla f\left(\mathbf{x}^{*}+t \mathbf{h}\right)
$$

Since f has continuous partial and mixed partial derivatives, g^{\prime} is a differentiable function of t and

$$
g^{\prime \prime}(t)=\mathbf{h}^{T} \nabla^{2} f\left(\mathbf{x}^{*}+t \mathbf{h}\right) \mathbf{h}
$$

Since g and g^{\prime} are continous on $[0,1]$ and g^{\prime} is differentiable on $(0,1)$, we can make use of the Tavlor's theorem (45) with $n=1$ and $a=0$ to obtain:

$$
g(1)=g(0)+g^{\prime}(0)+\frac{1}{2} g^{\prime \prime}(c)
$$

for some $c \in(0,1)$. Writing this equation in terms of f gives

$$
f\left(\mathbf{x}^{*}+\mathbf{h}\right)=f\left(\mathbf{x}^{*}\right)+\mathbf{h}^{T} \nabla f\left(\mathbf{x}^{*}\right)+\frac{1}{2} \mathbf{h}^{T} \nabla^{2} f\left(\mathbf{x}^{*}+c \mathbf{h}\right) \mathbf{h}
$$

We are given that $\nabla f\left(\mathbf{x}^{*}\right)=0$. Therefore,

$$
f\left(\mathbf{x}^{*}+\mathbf{h}\right)-f\left(\mathbf{x}^{*}\right)=\frac{1}{2} \mathbf{h}^{T} \nabla^{2} f\left(\mathbf{x}^{*}+c \mathbf{h}\right) \mathbf{h}
$$

The presence of an extremum of f at \mathbf{x}^{*} is determined by the sign of $f\left(\mathbf{x}^{*}+\right.$ h) $-f\left(\mathbf{x}^{*}\right)$. By virtue of the above equation, this is the same as the sign of $H(c)=\mathbf{h}^{T} \nabla^{2} f\left(\mathbf{x}^{*}+c \mathbf{h}\right) \mathbf{h}$. Because the partial derivatives of f are continuous in \mathcal{R}, if $H(0) \neq 0$, the sign of $H(c)$ will be the same as the sign of $H(0)=$ $\mathbf{h}^{T} \nabla^{2} f\left(\mathbf{x}^{*}\right) \mathbf{h}$ for \mathbf{h} with sufficiently small components (i.e., since the function has continuous partial and mixed partial derivatives at (\mathbf{x}^{*}, the hessian will be positive in some small neighborhood around $\left(\mathbf{x}^{*}\right)$. Therefore, if $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite, we are guaranteed to have $H(0)$ positive, implying that f has a local minimum at \mathbf{x}^{*}. Similarly, if $-\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite, we are guaranteed to have $H(0)$ negative, implying that f has a local maximum at \mathbf{x}^{*}. \square

Theorem 61 gives sufficient conditions for local maxima and minima of functions of multiple variables. Along similar lines of the proof of theorem 61, we can prove necessary conditions for local extrema in theorem 62.

Theorem 62 Let $f: \mathcal{D} \rightarrow \Re$ where $\mathcal{D} \subseteq \Re^{n}$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open region \mathcal{R} containing a point \mathbf{x}^{*} where $\nabla f\left(\mathbf{x}^{*}\right)=0$. Then,

- If \mathbf{x}^{*} is a point of local minimum, $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ must be positive semi-definite.
- If \mathbf{x}^{*} is a point of local maximum, $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ must be negative semi-definite (that is, $-\nabla^{2} f\left(\mathbf{x}^{*}\right)$ must be positive semi-definite).

1. is convex if and only if its domain is convex and its Hessian matrix is positive semidefinite at each point in \mathcal{D}. That is

$$
\begin{equation*}
\nabla^{2} f(\mathbf{x}) \succeq 0 \quad \forall \mathbf{x} \in \mathcal{D} \tag{4.62}
\end{equation*}
$$

2. is strictly convex if its domain is convex and its Hessian matrix is positive definite at each point in \mathcal{D}. That is

$$
\begin{equation*}
\nabla^{2} f(\mathbf{x}) \succ 0 \quad \forall \mathbf{x} \in \mathcal{D} \tag{4.63}
\end{equation*}
$$

3. is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly positive definite at each point in \mathcal{D}. That is, for any $\mathbf{v} \in \Re^{n}$ and any $\mathbf{x} \in \mathcal{D}$, there exists a $c>0$ such that

$$
\begin{equation*}
\mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v} \geq c\|\mathbf{v}\|^{2} \tag{4.64}
\end{equation*}
$$

In other words

$$
\nabla^{2} f(\mathbf{x}) \succeq c I_{n \times n}
$$

where $I_{n \times n}$ is the $n \times n$ identity matrix and \succeq corresponds to the positive semidefinite inequality. That is, the function f is strongly convex iff $\nabla^{2} f(\mathbf{x})-c I_{n \times n}$ is positive semidefinite, for all $\mathbf{x} \in \mathcal{D}$ and for some constant $c>0$, which corresponds to the positive minimum curvature of f.

Proof: We will prove only the first statement in the theorem; the other two statements are proved in a similar manner.

Necessity: Suppose f is a convex function, and consider a point $\mathbf{x} \in \mathcal{D}$. We will prove that for any $\mathbf{h} \in \Re^{n}, \mathbf{h}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h} \geq 0$. Since f is convex, by theorem 75 , we have

$$
\begin{equation*}
f(\mathbf{x}+t \mathbf{h}) \geq f(\mathbf{x})+t \nabla^{T} f(\mathbf{x}) \mathbf{h} \tag{4.65}
\end{equation*}
$$

Consider the function $\phi(t)=f(\mathbf{x}+t \mathbf{h})$ considered in theorem 71 , defined on the domain $\mathcal{D}_{\phi}=[0,1]$. Using the chain rule,

$$
\phi^{\prime}(t)=\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x}+t \mathbf{h}) \frac{d x_{i}}{d t}=\mathbf{h}^{T} . \nabla f(\mathbf{x}+t \mathbf{h})
$$

Since f has partial and mixed partial derivatives, ϕ^{\prime} is a differentiable function of t on \mathcal{D}_{ϕ} and

$$
\phi^{\prime \prime}(t)=\mathbf{h}^{T} \nabla^{2} f(\mathbf{x}+t \mathbf{h}) \mathbf{h}
$$

Since ϕ and ϕ^{\prime} are continous on \mathcal{D}_{ϕ} and ϕ^{\prime} is differentiable on $\operatorname{int}\left(\mathcal{D}_{\phi}\right)$, we can make use of the Taylor's theorem (45) with $n=3$ to obtain:

$$
\phi(t)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(0)+O\left(t^{3}\right)
$$

Writing this equation in terms of f gives

$$
f(\mathbf{x}+t \mathbf{h})=f(\mathbf{x})+t \mathbf{h}^{T} \nabla f(\mathbf{x})+t^{2} \frac{1}{2} h^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h}+O\left(t^{3}\right)
$$

In conjunction with (4.65), the above equation implies that

$$
\frac{t^{2}}{2} h^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h}+O\left(t^{3}\right) \geq 0
$$

Dividing by t^{2} and taking limits as $t \rightarrow 0$, we get

$$
h^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h} \geq 0
$$

Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point $\mathbf{x} \in \mathcal{D}$. Consider the same function $\phi(t)$ defined above with $\mathbf{h}=\mathbf{y}-\mathbf{x}$ for $\mathbf{y}, \mathbf{x} \in \mathcal{D}$. Applying Taylor's theorem (45) with $n=2$ and $a=0$, we obtain,

$$
\phi(1)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(c)
$$

for some $c \in(0,1)$. Writing this equation in terms of f gives

$$
f(\mathbf{x})=f(\mathbf{y})+(\mathbf{x}-\mathbf{y})^{T} \nabla f(\mathbf{y})+\frac{1}{9}(\mathbf{x}-\mathbf{y})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{x}-\mathbf{y})
$$

where $\mathbf{z}=\mathbf{y}+c(\mathbf{x}-\mathbf{y})$. Since \mathcal{D} is convex, $\mathbf{z} \in \mathcal{D}$. Thus, $\nabla^{2} f(\mathbf{z}) \succeq 0$. It follows that

