






Subgradient method

subgradient method is simple algorithm to minimize nondifferentiable
convex function f

x(k+1) = x(k) − αkg
(k)

• x(k) is the kth iterate

• g(k) is any subgradient of f at x(k)

• αk > 0 is the kth step size

not a descent method, so we keep track of best point so far

f
(k)
best = min

i=1,...,k
f(x(i))
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Step size rules

step sizes are fixed ahead of time

• constant step size: αk = α (constant)

• constant step length: αk = γ/‖g(k)‖2 (so ‖x(k+1) − x(k)‖2 = γ)

• square summable but not summable: step sizes satisfy

∞
∑

k=1

α2
k < ∞,

∞
∑

k=1

αk = ∞

• nonsummable diminishing: step sizes satisfy

lim
k→∞

αk = 0,

∞
∑

k=1

αk = ∞
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Assumptions

• f⋆ = infx f(x) > −∞, with f(x⋆) = f⋆

• ‖g‖2 ≤ G for all g ∈ ∂f (equivalent to Lipschitz condition on f)

• ‖x(1) − x⋆‖2 ≤ R

these assumptions are stronger than needed, just to simplify proofs
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Stopping criterion

• terminating when
R2 +G2

∑k
i=1α

2
i

2
∑k

i=1αi

≤ ǫ is really, really, slow

• optimal choice of αi to achieve
R2 +G2

∑k
i=1α

2
i

2
∑k

i=1αi

≤ ǫ for smallest k:

αi = (R/G)/
√
k, i = 1, . . . , k

number of steps required: k = (RG/ǫ)2

• the truth: there really isn’t a good stopping criterion for the subgradient
method . . .
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Example: Piecewise linear minimization

minimize f(x) = maxi=1,...,m(aTi x+ bi)

to find a subgradient of f : find index j for which

aTj x+ bj = max
i=1,...,m

(aTi x+ bi)

and take g = aj

subgradient method: x(k+1) = x(k) − αkaj
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Speeding up subgradient methods

• subgradient methods are very slow

• often convergence can be improved by keeping memory of past steps

x(k+1) = x(k) − αkg
(k) + βk(x

(k) − x(k−1))

(heavy ball method)

other ideas: localization methods, conjugate directions, . . .
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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• introducing equality constraints

minimize f0(A0x + b0)
subject to fi(Aix + bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix + bi, i = 0, 1, . . . ,m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aT

i x ≤ bi, i = 1, . . . , m

is equivalent to

minimize (over x, s) f0(x)
subject to aT

i x + si = bi, i = 1, . . . ,m
si ≥ 0, i = 1, . . .m

Convex optimization problems 4–12
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