Definition 41 [Subgradient]: Let f: D — R be a conver function defined

on a conver set D. A vector h € R™ is said to be a subgradient of [ at the
point x € D if

f(y) = f(x) + h' (y = x)
for all y € D. The set of all such vectors is called the subdifferential of f
at x.

Theorem 76 Let f: D — R be a conver function defined on a convex set D.
A point x € D corresponds to a mintmum if and only if

Vi) =x) =0
for all y € D.

If ¥V f(x) is nonzero, it defines a supporting hyperplane to D at the point x.
Theorem 77 implies that for a differentiable convex function defined on an open
set, every critical point must be a point of (global) minimum.

Theorem 77 Let f: D — R be differentiable and conver on an open convez

domain D C R". Then x is a eritical point of [ if and only if it is a (global)
AT,

Theorem T8 Let f: D — R with D C R™ be differentiable on the conver set
D. Then,

1. f is conver on D if and only if is its gradient V f is monotone. That is,
forallx,y € R

(Vix)=Viy) (x=y)=0 (4.53)

2. [ is strictly conver on D if and only if is its gradient V [ is strictly mono-
tone. That is, for all x,y € R with x # y,

(Vf(x)=Viy) (x—y)>0 (4.54)

3. f is uniformly or strongly conver on D if and only if is its gradient V f is
uniformly monotone. That s, for all x,y € R,

(VI(x)=Viy)' (x=y) =[x =y (4.55)

for some constant ¢ > (.



I":Iecessit}r: Suppose f is uniformly convex on D. Then from theorem 75,
we know that for any x,. ¥y € D,

1) 2 £6) + V6 (y =) = selly +xIP
1) 2 1) + V7 f(y) o~ y) — zellx+ 1P

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold
with ¢ = (0, yielding (4.54). If f is strictly convex, the inequalities will be strict,
vielding (4.54).

Sufficiency: Suppose V f is monotone. For any fixed x, y € D, consider the
function @#(t) = f (x +t{y — x)). By the mean value theorem applied to ¢(t),
we should have for some t € (0,1).

#(1) — a(0) = ¢'(t) (4.56)

Letting z = x + t(y — x), (4.56) translates to

f(y) - f(x) =V f(z)(y —x) (4.57)
Also, by definition of monotonicity of V f, (from (4.53)).

(Vf(2) = V1) (v =%) = 7 (V/(2) = VF() (2=2) 20 (458)

Combining (4.57) with (4.58), we get.

f(y) = f(x) = (Vf(z) = f(x)" (v —%) + V' f(x)(y — x)
>V f(x)(y — x) (4.59)

By theorem 75, this inequality proves that f is convex. Strict convexity can
be similarly proved by using the strict inequality in (4.58) inherited from strict
monotonicity, and letting the strict inequality follow through to (4.59). For the
case of strong convexity, from (4.55), we have

@'(t) = #'(0) = (Vf(=z) — F(x))" (¥ —x)
(Vf(z) = f(x)" (2—x) 2 %f—‘ll55 —x||* = etlly — x||* (4.60)

] =

8(1) = 6(0) - 60) = [ [#0) = SOt 2 gelly <l (461)
which translates to

Fly) > f(x) + VT F )y — %) + elly — x||2
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Subgradient method

O subgradient method is simple algorithm to minimize nondifferentiable
N\f convex function f e
, ¢
& 2D — () gi ) &
«
\
- o z(F) is the kth iterate \ oA < (S(d ) A\ i('
- S
< g%) is any subgradient of f at z(%) Gj& G(ik K
g \\N \z
g e o > 0 is the kth step size
\not a descent method, so we keep track of best point so far '
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Prof. S. Boyd, EE364b, Stanford University



Step size rules
step sizes are fixed ahead of time

e constant step size: oy = a (constant)
e constant step length: ag, = v/| g™ ||2 (so ||zt — 2R, = +)

e square summable but not summable: step sizes satisfy

0. oo
E ozi<oo, g Q= OO
k=1

k=1

e nonsummable diminishing: step sizes satisfy

o
lim ap =0, g Q. = OO
k— o0 1

Prof. S. Boyd, EE364b, Stanford University



