Definition 41 [Subgradient]: Let $f: \mathcal{D} \rightarrow \Re$ be a convex function defined on a convex set \mathcal{D}. A vector $\mathbf{h} \in \Re^{n}$ is said to be a subgradient of f at the point $\mathbf{x} \in \mathcal{D}$ if

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{h}^{T}(\mathbf{y}-\mathbf{x})
$$

for all $\mathbf{y} \in \mathcal{D}$. The set of all such vectors is called the subdifferential of f at \mathbf{x}.

Theorem 76 Let $f: \mathcal{D} \rightarrow \Re$ be a convex function defined on a convex set \mathcal{D}. A point $\mathbf{x} \in \mathcal{D}$ corresponds to a minimum if and only if

$$
\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \geq 0
$$

for all $\mathbf{y} \in \mathcal{D}$.
If $\nabla f(\mathbf{x})$ is nonzero, it defines a supporting hyperplane to \mathcal{D} at the point \mathbf{x}. Theorem 77 implies that for a differentiable convex function defined on an open set, every critical point must be a point of (global) minimum.

Theorem 77 Let $f: \mathcal{D} \rightarrow \Re$ be differentiable and convex on an open convex domain $\mathcal{D} \subseteq \Re^{n}$. Then \mathbf{x} is a critical point of f if and only if it is a (global) minimum.

Theorem 78 Let $f: \mathcal{D} \rightarrow \Re$ with $\mathcal{D} \subseteq \Re^{n}$ be differentiable on the convex set D. Then,

1. f is convex on \mathcal{D} if and only if is its gradient ∇f is monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq 0 \tag{4.53}
\end{equation*}
$$

2. f is strictly convex on \mathcal{D} if and only if is its gradient ∇f is strictly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$ with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y})>0 \tag{4.54}
\end{equation*}
$$

3. f is uniformly or strongly convex on \mathcal{D} if and only if is its gradient ∇f is uniformly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq c\|\mathbf{x}-\mathbf{y}\|^{2} \tag{4.55}
\end{equation*}
$$

for some constant $c>0$.

Necessity: Suppose f is uniformly convex on \mathcal{D}. Then from theorem 75, we know that for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{aligned}
& f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})-\frac{1}{2} c\|\mathbf{y}+\mathbf{x}\|^{2} \\
& f(\mathbf{x}) \geq f(\mathbf{y})+\nabla^{T} f(\mathbf{y})(\mathbf{x}-\mathbf{y})-\frac{1}{2} c\|\mathbf{x}+\mathbf{y}\|^{2}
\end{aligned}
$$

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold with $c=0$, yielding (4.54). If f is strictly convex, the inequalities will be strict, yielding (4.54).

Sufficiency: Suppose ∇f is monotone. For any fixed $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, consider the function $\phi(t)=f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))$. By the mean value theorem applied to $\phi(t)$, we should have for some $t \in(0,1)$,

$$
\begin{equation*}
\phi(1)-\phi(0)=\phi^{\prime}(t) \tag{4.56}
\end{equation*}
$$

Letting $\mathbf{z}=\mathbf{x}+t(\mathbf{y}-\mathbf{x}),(4.56)$ translates to

$$
\begin{equation*}
f(\mathbf{y})-f(\mathbf{x})=\nabla^{T} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \tag{4.57}
\end{equation*}
$$

Also, by definition of monotonicity of ∇f, (from (4.53)),

$$
\begin{equation*}
(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x})=\frac{1}{t}(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq 0 \tag{4.58}
\end{equation*}
$$

Combining (4.57) with (4.58), we get,

$$
\begin{align*}
f(\mathbf{y})-f(\mathbf{x})=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) & +\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \\
& \geq \nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.59}
\end{align*}
$$

By theorem 75, this inequality proves that f is convex. Strict convexity can be similarly proved by using the strict inequality in (4.58) inherited from strict monotonicity, and letting the strict inequality follow through to (4.59). For the case of strong convexity, from (4.55), we have

$$
\begin{gather*}
\phi^{\prime}(t)-\phi^{\prime}(0)=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) \\
=\frac{1}{t}(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq \frac{1}{t} c\|\mathbf{z}-\mathbf{x}\|^{2}=c t\|\mathbf{y}-\mathbf{x}\|^{2} \tag{4.60}\\
\phi(1)-\phi(0)-\phi^{\prime}(0)=\int_{0}^{1}\left[\phi^{\prime}(t)-\phi^{\prime}(0)\right] d t \geq \frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2}
\end{gather*}
$$

which translates to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2}
$$

$$
g(\lambda, \nu)=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \quad \text { in } \lambda \alpha \nu
$$

$\underbrace{g \text { is concave, can be }-\infty \text { for some } \lambda, \nu}$
lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star} \quad(\lambda\rangle, 0$ by default proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then means $\lambda \in \mathbb{R}_{+}^{n}$)

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Duality

Least-norm solution of linear equations

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{array}
$$

dual function

- Lagrangian is $L(x, \nu)=x^{T} x+\nu^{T}(A x-b)$
- to minimize L over x, set gradient equal to zero:

$$
\nabla_{x} L(x, \nu)=2 x+A^{T} \nu=0 \quad \Longrightarrow \quad x=-(1 / 2) A^{T} \nu
$$

- plug in in L to obtain g :

$$
g(\nu)=L\left((-1 / 2) A^{T} \nu, \nu\right)=-\frac{1}{4} \nu^{T} A A^{T} \nu-b^{T} \nu
$$

a concave function of ν
Quadratic in v
lower bound property: $p^{\star} \geq-(1 / 4) \nu^{T} A A^{T} \nu-b^{T} \nu$ for all ν

$$
W=\left[\begin{array}{lll}
w_{11} & w_{12} & \\
w_{21} & & \\
& & w_{F 4}
\end{array}\right]
$$

subject to $x_{i}^{2}=1, \quad i=1, \ldots, n$
Non convex dimãin

- a nonconvex problem; feasible set contains 2^{n} discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; $W_{i j}$ is cost of assigning i, j to the same set; $-W_{i j}$ is cost of assigning to different sets
dual function

$$
\begin{aligned}
& \begin{aligned}
& g(\nu)=\inf _{x}\left(x^{T} W x+\sum_{i} \nu_{i}\left(x_{i}^{2}-1\right)\right)=\inf _{x} x^{T}(W+\operatorname{diag}(\nu)) x-1^{T} \nu \\
&=\left\{\begin{array}{l}
-1^{T} \nu+\operatorname{diag}(\nu) \succeq 0 \\
-\infty \\
\text { otherwise }
\end{array}\right. \\
& \text { lower bound property: } p^{\star} \geq-1^{T} \nu \text { if } W+\operatorname{diag}(\nu) \succeq 0
\end{aligned}
\end{aligned}
$$

example: $\nu=-\lambda_{\min }(W) \mathbf{1}$ gives bound $p^{\star} \geq n \lambda_{\min }(W)$

Lagrange dual and conjugate function

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x \preceq b, \quad C x=d
\end{array}
$$

dual function

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \operatorname{dom} f_{0}}\left(f_{0}(x)+\left(A^{T} \lambda+C^{T} \nu\right)^{T} x-b^{T} \lambda-d^{T} \nu\right) \\
& =-f_{0}^{*}\left(-A^{T} \lambda-C^{T} \nu\right)-b^{T} \lambda-d^{T} \nu
\end{aligned}
$$

- recall definition of conjugate $f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)$
- simplifies derivation of dual if conjugate of f_{0} is known
example: entropy maximization

$$
f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

Reminds you
Entropy clawiget

The dual problem

Lagrange dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- finds best lower bound on p^{\star}, obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ, ν are dual feasible if $\lambda \succeq 0,(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit example: standard form LP and its dual (page 5-5) (also seen for conic Prog
minimize $c^{T} x=$ maximize $-b^{T} \nu$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b=\quad \begin{array}{l}
\text { maximize } \\
\\
\\
\\
x \succeq 0
\end{array} \quad-b^{T} \nu \\
\text { subject to } A^{T} \nu+c \succeq 0
\end{array}
$$

Recap: if both primal \& dual are feasible $\&$ one
Duality of them is sinetly feasible \Rightarrow zero duality

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\mathbf{1}^{T} \nu \\
\text { subject to } & W+\operatorname{diag}(\nu) \succeq 0
\end{array}
$$

gives a lower bound for the two-way partitioning problem on page 5-7
strong duality: $d^{\star}=p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

if it is strictly feasible, ie.,

$$
\exists x \in \operatorname{int} \mathcal{D}: \quad f_{i}(x)<0, \quad i=1, \ldots, m, \quad A x=b
$$

- also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)
- can be sharpened: e.g., can replace $\operatorname{int} \mathcal{D}$ with $\operatorname{relint} \mathcal{D}$ (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications

Inequality form LP

primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(\left(c+A^{T} \lambda\right)^{T} x-b^{T} \lambda\right)= \begin{cases}-b^{T} \lambda & A^{T} \lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

dual problem

$$
\begin{array}{ll}
\underset{\text { maximize }}{ } & -b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0, \quad \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ except when primal and dual are infeasible

Complementary slackness

assume strong duality holds, x^{\star} is primal optimal, $\left(\lambda^{\star}, \nu^{\star}\right)$ is dual optimal

$$
\begin{aligned}
& f_{0}\left(x^{\star}\right)=g\left(\lambda^{\star}, \nu^{\star}\right)=\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(x)\right) \\
& \begin{array}{l}
\leq f_{0}\left(x^{\star}\right)+\underbrace{\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)}_{\lambda^{\star}}+\sum_{i=1}^{p} \nu_{i}^{\star} \underbrace{2}\left(x_{i}\left(x^{\star}\right)\right. \\
b_{j} \\
-\left(x^{\star}\right)=0
\end{array} \\
& f_{i}\left(x^{-x}\right) \leq 0 \\
& \text { hence, the two inequalities hold with equality feasible } \cdot x^{2} \text { is primal } \\
& \text { - } x^{\star} \text { minimizes } L\left(x, \lambda^{\star}, \nu^{\star}\right)
\end{aligned}
$$

- $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1, \ldots, m$ (known as complementary slackness):

$$
\lambda_{i}^{\star}>0 \Longrightarrow f_{i}\left(x^{\star}\right)=0, \quad f_{i}\left(x^{\star}\right)<0 \Longrightarrow \lambda_{i}^{\star}=0
$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_{i}, h_{i}):

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p$
2. dual constraints: $\lambda \succeq 0$
3. complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

from page $5-17$: if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_{0}(\tilde{x})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ hence, $f_{0}(\tilde{x})=g(\tilde{\lambda}, \tilde{\nu})$
if Slater's condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions
- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_{0}(x)=0$ for unconstrained problem
example: water-filling (assume $\alpha_{i}>0$)

$$
\begin{array}{ll}
\operatorname{minimize} & -\sum_{i=1}^{n} \log \left(x_{i}+\alpha_{i}\right) \\
\text { subject to } & x \succeq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

x is optimal iff $x \succeq 0, \mathbf{1}^{T} x=1$, and there exist $\lambda \in \mathbf{R}^{n}, \nu \in \mathbf{R}$ such that

$$
\lambda \succeq 0, \quad \lambda_{i} x_{i}=0, \quad \frac{1}{x_{i}+\alpha_{i}}+\lambda_{i}=\nu
$$

- if $\nu<1 / \alpha_{i}: \lambda_{i}=0$ and $x_{i}=1 / \nu-\alpha_{i}$
- if $\nu \geq 1 / \alpha_{i}: \lambda_{i}=\nu-1 / \alpha_{i}$ and $x_{i}=0$
- determine ν from $\mathbf{1}^{T} x=\sum_{i=1}^{n} \max \left\{0,1 / \nu-\alpha_{i}\right\}=1$

interpretation

- n patches; level of patch i is at height α_{i}
- flood area with unit amount of water
- resulting level is $1 / \nu^{\star}$

Algorithms inspired by Lagrange dually

$$
\begin{array}{r}
\min f(x) \\
\operatorname{stt} A x=b
\end{array} \longrightarrow \begin{aligned}
& L(x, \nu)=f(x)+\nu^{\top}(A x-b) \\
& \nabla_{x} L\left(x^{*}, \nu^{*}\right)=\nabla f\left(x^{2}\right)+A^{\top} \nu^{*}=0 \\
& \text { Note: } \partial_{\nu} L(x, \nu)=A x-b \text { additionally: } A x \leq b \text { then } v^{*} \geq 0
\end{aligned}
$$

Note: $\partial_{\nu} L(x, \nu)=A x-b$ additionally: $\nu^{*} \geqslant 0$
Dual ascent

$$
\begin{aligned}
& x^{(k+1)}=\underset{x}{\operatorname{argmin}} L\left(x, \nu^{(k)}\right)=\underset{x}{\operatorname{argmin}} f(x)+\left(\nu^{(k)}\right)^{\top} A x \\
& \nu^{(k+1)}=\nu^{(k)}+t^{(k)} \partial_{\nu} L\left(x^{(k+1)}, \nu^{(k)}\right)=\nu^{(k)}+t^{(k)}\left(A x^{(k+1)}-b\right)
\end{aligned}
$$

If strong duality holds \& $V^{(k)} \rightarrow v^{(*)}$ then
$x^{(*)}=\underset{x}{\operatorname{argmin}} L\left(x, \nu^{*}\right)$ provided minimizer is unique
$O(1 / k)$ convergence if f is Lipschitz continuous with const d \& prouded, $t^{[k]} \leq d \quad \forall k$.

Dual decomposition

$$
f(x)=\sum_{i=1}^{b} f_{i}\left(x_{i}\right)
$$

$x=\left[x_{1}, x_{2} \ldots x_{6}\right] \cdot \cdot b$ blocks of variables
Simplification of dual ascent (useful for parallelization)

More robust: Method of Augmented Lagrangian
Apply Dual descent to

$$
\begin{aligned}
& \min _{x} f(x)+\frac{\rho}{2}\|A x-b\|^{2} \\
& s \cdot t \quad A x=b \\
& x^{(k+1)}=\underset{x}{\operatorname{argmin}} f(x)+\frac{\rho}{2}\|A x-b\|^{2} \\
& \left.+\left(\nu^{(k)}\right)\right)^{(A x-b)} \\
& \nu^{(k+1)}=\nu^{k}+\rho\left(A x^{(k)}-b\right)
\end{aligned}
$$

$$
\begin{aligned}
& x^{(k+1)} \underset{x}{\operatorname{argmin}} f(x)+v^{(k)^{\top}} A x \\
& =\underset{x_{1} \cdot x_{b}}{\operatorname{argmin}} \sum f_{i}\left(x_{i}\right)+V^{(k)^{\top}}\left(\sum_{i} A_{i} x_{i}\right) \\
& \left(A=\left[A_{1} A_{2} \ldots A_{b}\right]\right)
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \text { Thus: } \\
& x_{i}^{(k+1)}=\underset{x_{i}}{\operatorname{argmin}} f_{i}\left(x_{i}\right)+v^{(k)^{T}} A_{i} x_{i}
\end{aligned}
$$

For each block, possibly in parallel after broadcasting ,,(k)

$$
\nu^{(k+1)}=\nu^{(k)}+t^{(k)}\left(A x^{(k+1)}-b\right)
$$

After gathering $x_{i}^{(k+1)}$ from all nodes \& updating $\nu^{(k+1)}$ for again broadcasting
$t^{(k)}=\rho$ motivated by observation that necessary condition for $x^{(k+1)} 15$

ie $O E \partial f\left(x^{k+1}\right)+A^{\top} y^{(k+1)}$
Comparing with $\{x\}$ expression for $y^{(k+1)}$ can be update rule for $\nu^{(k+1)}$!
Dual descant on Augmented Lagrangian hos better conver-- gence rate

ADMM (Alternating direction Method of Multipliers)

$$
\begin{aligned}
& f(x)=\sum f_{i}\left(x_{i}\right), L_{\rho}\left(x_{1} . x_{b}, v\right)=\sum f_{1}\left(x_{i}\right)+\frac{\rho}{2}\|A x-b\|^{2}+v^{T}(A x-b) \\
& \left.x_{1}^{(k+1)}=\underset{x_{1}}{\operatorname{argmin}} L_{\rho}\left(x_{1}, x_{2}^{k}, \ldots\right)^{k}\right), x_{2}^{(k+1)}=\underset{x_{2}}{\operatorname{argmin}} L_{\rho}\left(x_{1}^{(k+1)}, x_{2}, x_{3}^{(k)} \ldots \nu^{k}\right) \\
& x_{3}^{(k+1)}=\underset{x_{2}}{\operatorname{argmin}} L_{\rho}\left(x_{1}^{(k+1)}, x_{2}^{(k+1)}, x_{3}, x_{4}^{(k)} \ldots \nu^{(k)}\right) \ldots x_{b}^{(k+1)}=\underset{x_{b}}{\operatorname{argmin}} L_{\rho}\left(x_{1}^{(k+1)} \ldots x_{b-1}^{(k+1)} x_{b 1} v^{(k)}\right) \\
& \nu^{(k+1)}=\nu^{k}+\rho\left(A_{1} x_{1}^{(k+1)}+A_{2} x_{2}^{(k+1)} \cdots+A_{b} x_{b}^{(k+1)}-b\right)
\end{aligned}
$$

Interior Point Methods (IPM) (Barrier method... like augmented Lagrangian)

Other methods (First order: Require only upto $\nabla f(x)$)
(1) Mirror descent

Recap: Gradient descent (subgradient descent)

$$
x^{(k+1)}=\underset{x}{\operatorname{argmin}} f\left(x^{k}\right)+\partial^{\top} f\left(x^{k}\right)\left(x-x^{k}\right)+\frac{\pi}{2}\left\|x-x^{k}\right\|^{2}
$$

Minor descent:

$$
\begin{aligned}
& \text { Mirror descent: } \\
& x^{(k+1)}=\underset{x}{\operatorname{argmin}} f\left(x^{k}\right)+\partial^{\top} f\left(x^{k}\right)\left(x-x^{k}\right)+\Delta g\left(x, x^{k}\right) \\
& \text { [Bregman Durergen }
\end{aligned}
$$

(Bregman Divergence)
(2) Accelerated gradient descent methods
descent mex

- First iteration is just usual proximal gradient descent update
- After that, updates carry some "momentum" from previous iterations
- Example: Conjugate gradient methods:

Subtracts previous descent direction from the current gradient to give a current descent direction that is steep but is nearly orthogonal to previous descent directions. Pages 317 to 324 of http://www.cse.iitb.ac. in/~cs709/notes/BasicsOfConv exOptimization.pdf. In particular, see Figure 4.55

- LBFGS |BFGS (see notes ...)
(3) ACTIVE SET METHOD
http://www.cse.iitb.ac.in/~cs709/notes/quadraticOptPrimalActiveSet.pdf
(4) CUTTING PLANE METHOD
http://www.cse.iitb.ac.in/~cs709/notes/kellysCuttingPla neAlgo.pdf

5) Second order methods (Newton's method)
http://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConv exOptimization.pdf (pg 305)
