PAGES 216 TO 231 OF

http://www.cse.iitb.ac.in/~ cs709/notes/BasicsOfConvexOptimiz
ation.pdf, interspersed with pages between 239 and 253 and
summary of material thereafter, which extend univariate
lconcepts to generic spaces

Maximum and Minimum wvalues of univariate functions

Let f be a function with domain D. Then [ has an absolute maximum (or global
maximum) value at point ¢ € D if

flz) < f(c), Vz €D

and an absolute mintmum (or global minimum) value at ¢ € D if

f(z) > fle), Yz €D

If there is an open interval I containing ¢ in which f(¢) = f(z), Vo € T,
then we say that f(c) is a local maximum value of f. On the other hand, if
there is an open interval 7 containing ¢ in which f(¢) < f(x), Vx € I, then we
say that f(c) is a local minimum value of f. If f(e) is either a local maximum
or local minimum value of f in an open interval 7 with ¢ € Z, the f(c) is called
a local extreme value of f.

- Theorem 39 If f(c) is a local extreme value and if f is differentiable at © =g, b

then f'(c) =0. — ‘g, el ‘7&5 ¢ ,f exdt arv yHzCeD eRﬁ
AW F@Q) ¥ \ow| “eslleme, Y5(6) =0

Theorem 40 A continuous function f(x) on a closed and bounded interva
la, b attains a minimum value f(c) for some ¢ € [a,b] and a mazimum value

fld) for some d € |a,b]. That s, a continuous function on a closed, bounded
interval attains a mantmum and a marimum value.
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Theorem 60 If f(x) defined on a domain D C R"™ has a local maxrimum
or minimum at X* and if the first-order partial derivatives exist at x*, then

fo(x®) =0 foralll <i<n. \gﬂg(gx) =0

Definition 27 [Critical point]: A point x* is called a eritical point of a fune-
tion f(x) defined on D C R™ if

1 If fo(x®) =10, for 1 <i < n.
2. OR f, (x") fails to exist for any 1 <i <mn.

A procedure for computing all critical points of a function f is:

1. Compute f, for 1 <i<n.

2. Determine if there are any points where any one of f, fails to exast. Add
such points (if any) to the list of eritical points.

3. Solve the system of equations f,. = 0 simultaneously. Add the solution
points to the list of saddle points.

Figure 4.17: The paraboloid f(xy,x2) = 9 — &7 — x5 attains its maximum at
(0.0, The tancet plane to the surface at (0.0, F(0.0V) 15 also shown. and so 1s |




Figure 4.18: Plot illustrating critical points where derivative fails to exist.

Definition 28 [Saddle point|: A point x* is called a saddle point of a func-
tion f(x) defined on D C R" if Xx* is a critical point of [ but x* does not

correspond to a local marimum or minimum of the function.

N
X
O‘ =

Figure 4.19: The hyperbolic paraboloid f(r;,x2) = 7 — 23, which has a saddle
point at (0, 0).




Figure 4.20: The hyperbolic paraboloid f(xy,x5) = % — 3, when viewed from
the @y axis is concave up.

Figure 4.21: The hyperbolic paraboloid f(ry,r2) = x7 — 3, when viewed from

the ro axis i1s concave dowr.
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Theorem 41 A continuous function f(x) on a closed and E:m.r,mjf’c.-f mtr—*rvuf a, b]
attains a minimum value f(e¢) for some ¢ € [a,b] and a mazimum value f(d)

for somed € [a,b]. Ifa<c<b rm,uff () E.m.atz-.. then f'(c¢) =0. Ifa<d ij
and f'(d) exists, then f'(d) = 0. . [g D R s ) Osd 4 bduﬂa

& Fis s on D £ \§ dobal wnox|ein 1s Hanek ok CE h\t@
& ; 'S A\ ge{Cﬂ'\f‘ U-Qc. a¢ C /qu ‘VfCC) O

Theorem 42 If { is continuous on |a, b] and differentiable at all x € (a,b) and
if fla)= f(b), then f'(c) = 0 for some c € (a,b).

Figure 4.1 illustrates Rolle’s theorem with an example function f(z) = 9—
on the interval [—3,+3|.

-
]

p—= O == k3 W b= U 0 4 DO 40
— .

=
LI
(4]
=

-

Figure 4.1: Tlustration of Rolle’s theorem with f(x) = 9 — = on the interval
[—3, +3]. We see that f'(0) = 0.
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Theorem 43 If f is continuous on la, b] and differentiable at all x € (a,b),

~then there is some c € (a, b) such that, f'(c) = M.

AFDERY 5 closed £ b
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Figure 4.2: [Mustration of mean value theorem with f

 [~3,1]. We see that f/(—1) = {BD==8)
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() = 9—x? on the interval —

Figure 4.4: The mean value theorem can be violated if f(x) is not differentiable —

at even a single point of the interval.

IMuastration on

f(x) = x2/3 with the



The mean value theorem in one variable generalizes to several variables by applying the
theorem in one variable via parametrization. Let G be an open subset of R", and letf: G = R be
a differentiable function. Hx points x, ¥y = G such that the interval x y lies in G, and define

glt) = f{{1 — f)x + ty). 5ince g Is a differentiable function in one variable, the mean value
theorem gives:

g(1) — g(0) = g'(c)

for some c between 0 and 1. But since g(1) = fiy) and g{0) = fix). computing g’'(c) explicitly we
ave:

fy) = fle)=Vf(l-c)z+cy)-(y—z)

Comcx\ka 6& the Josnain s gw\o\amm%a\
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Corollary 44 Let f be continuous on [a,b] and differentiable on (a,b) with
m < fiz) £ M, Yz € (a,b). Then, it ey i/

a<i<z<bh ~—— AT ,.[a\lu(,’“ﬂm
AW] \yied MEOVY \M‘\"‘a‘.\%

Let D be the domain of function f. We define & su'bsfwtu)fm '

1. the linear approximation of a differentiable function f(x) as L,(x) =
fla) + f'(a)(x — a) for some a € D. We note that L,(x) and its first
é derivative at a agree with f(a) and f'(a) respectively. A
2. the quadratic approximatin of a twice differentiable function f(x) as the
parabola Q). (x) = f(a) + f'(a){x — a) + %f”[ﬂ.}(ﬂ: — a)?. We note that
(. () and its first and second derivatives at a agree with f(a), f'(a) mid
L . )
f"(a) respectively. PQ@C) - C\ X (21'({)'12' SV ?a(a) 5&6\) ?a(a)f“’;&) d
,;Ca)‘-f(a)

3. the cubic approximation of a thrice differentiable function f(x)is C,(x) =
fla)+ f'la)(x—a)+ 51" (a)(x—a)* + 2 f"(a)(x —a)’. Cu(x) and its first,
second and third derivatives at a agree with f(a), f'(a), f"(a) and f"'(a)

4 \ '
respectively. Rm(’i ) - (‘ +( tm. ¢ (51 2‘{— C X.g s'b Rnc q') ’fg\ (\“‘) fa‘ (a) - f&/
C (@)=

hi |
SeREP

05 f 1.5 2 25 3

Figure 4.3: Plot of f(x) = % and its linear, quadratic and cubic approximations.
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1c vesenation
Theorem 45 The Taylor's thmrf’m states that if f and its first'n aelibvatives /gog
For o f™ are continuous on the closed interval la,b], and differentiable on /

(a,b), fhﬁn there exists a number ¢ € (a, b) such that

f(b) = fla)+f'(a) h—rj}—l—zrf "(a)(b—a)*+.. +— rf{”}[ﬁ.}[t[}—ﬂ.j}”—l- Frt @y n—

\/\/MMT = Ope""'\ Cose

' 3 ceab) st f(\g &(a)f!}@%;g e

)ﬂ, rf ove USE Mff SULceSsS\y ¢ 5' () FQ() a.‘of-roﬁmo.}:\m

(n+1)!

Consider the function ¢(f) = f(x + th) considered in theorem 71, defined on
the domain D, = [0, 1]. Using the chain rule,

P . i dTi e .
qﬁ{t}_;fm{x—l—th} - =h".Vf(x+th)

Since f has partial and mixed partial derivatives, ¢’ is a differentiable function
of t on Dy and
¢"(t) = hTV2f(x +th)h

Since ¢ and ¢ are continous on Dy and ¢’ is differentiable on int(Dy), we

can make use of the Taylor’s theorem (45) with n = 3 to obtain:

o(t) = ¢(0) +t.¢'(0) + t2. %m”{ﬂ} < G{t

lectd §
a:\g gsded :;FW'*'

fx £ th) = f(x)+th! Vf(x x) + 75 LTy f() 11+D{t3)
4 Fov @™ pedev Tafor exense®

Teplace V'f[ﬁ MY f[xfcﬁ) for CE(oit)

Writing this equation in terms of f gives
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Derivatives

We will introduce some definitions at this point:

skiiei

e A function [ is said to huair.tr.‘rmgmg on an interval 7 in its domain D if
f(t) < f(x) whenever t < .
5t‘lict\j
e The function f is said to be decreasing on an interval T € D if f(t) > f(x)
whenever t < . "

These definitions help us derive the following theorem:




Theorem 46 Let T be an interval and suppose [ is continuous on I and dif-
ferentiable on int(I). Then:

1. if f'(x) = 0 for all x € int(I), then f is increasing on IT; — -5\159‘5'('“‘]:
2. 4f f'(x) <0 for all x € int(T), then f is decreasing on T ; /
3. if f'lx) =0 for all x € int(I), iff, [ is constant on T. — Nef-&’gagg

suefficient
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Figure 4.5: Ilustration of the increasing and decredsing regions ol mfsuction
flz) = 3z + 42° — 3622

Theorem 47 Let I be an interval and suppose [ is continuous on T and dif-
ferentiable on int(I). Then:

1. if fllx) = 0 for all x € int(L), and if f'(x) = 0 al only finitely many
r € I, then [ is increasing on I; N Q.Cfﬁsﬁ-:j

2.4f f'(x) <0 for all x € int(I), and if f'(x) = 0 af only finitely many
x e X, then [ is decreasing on T. Neccasa:j



Theorem 48 Let T be an interval, and suppose [ is continuous on I and dif-
ferentiable in int(I). Then:

1. if f is increasing on I, then f'(x) = 0 for all x € int(T); \.\\\.eo"-‘s

2. if f is decreasing on I, then f'(z) <0 for all x € int(I). w(\b" 095-‘ S

i It It i i i i i 1
LLL - B i - 0 20 a0 600 B00 100D

Figure 4.6: Plot of f(x) = T2 illustrating that though the function is increasing
on (—oo, oc), f(0) = 0.
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Analogous to the definition of increasing functions introduced on page num-
ber 220, we next introduce the concept of monotonic functions. This concept is

very useful for characterization of a convex function. ’he .SWF]C
~— gt vs '-R“-’fk“ crsC

Definition 39 Letf: D — R" and D C R". Then /’,F o=l \\R
1. f istmenotene on D if for any x,.x; € D, (f(‘:IA _‘F&’)'>(.z‘_-‘2)
a/ - >0
Cz tens\oL oS:- reass My
fa b £ Q"-:R“ (£(x1) — £(x2))" (x1 —X2) =0 (4.41)

2. f is strictly monotone on D if for any x,,X3 € D with x; # X,

(F(x1) — £(x2))" (x1 — x2)(> 0 (4.42)

3. f is uniformly or strongly monotone on D if for any x1,x2 € D, there is
a constant ¢ > 0 such that

186 -1 M (5(x,) — (x)" (31— x2) 2 el — ol (4.43)
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Figure 4.7: Example illustrating the derivative test for function f(x) = 3z° —

B,

Procedure 1 [First derivative test]|: Let ¢ be an isolated critical number of
f. Then,

1.

oo

3. If f'(x) is positive in an interval [c — €1, c| and also positive in an

As an example, the function f(x) = 32° — 5z* has the derivative f'(z) =
150%(x +1)(x — 1). The critical points are 0, 1 and —1. Of the three, the sign of
f'(x) changes at 1 and —1, which are local minimum and maximum respectively.

=

fle) is a local minimum if f(x) is decreasing in an interval [c— e, (]
and increasing in an interval [r::, ¢+ fg] with €1,e2 > 0, or ( but not
equivalently), the sign of f'(x) changes from negative in [c — €y, ¢ fo
positive in (¢, c + ea] with €1,e3 > 0.

f(e) is a local maximum if f(x) is increasing in an interval [c— €1, ¢]
and decreasing in an interval [r:, ¢+ Eg] with €1,e2 > 0, or (but not A
equivalently), the sign of f'(x) changes from positive in [c — €1,¢| to g
negative in |¢, ¢ + ex| with €1,e0 > 0. ?JH

To c| a3
oYl

interval [c, c — ez, or f'(x) is negative in an interval [c — €1, ¢| and ygn
also negative in an interval [c,c— ey] with ey, ex >0, then f(c) is not |[ghyn

a local extremurm. ncveasing } decy easiny) ,F(\ff
o

e L ' - - . | F . - - o )



Jﬂ (’*-) > & 5x° 1o 2 a\\mp.nswna\ /r Space
£kl enéh f[ﬁ‘ e 13 [x‘ﬂz) to - ﬂz)%-

/[ ¢s708 x | [E] webBasedUlListByGar x )[ WA Lovel Curve Applet/ -

C' | [ www .slu.edu/classes/maymk/banchoff/LevelCurve html /

- 0%

Demo  Contrals  Execution e

Z0 fram

alue of =0
vy the cutt
virom -1 . ' ce the do

% from

Zfrom

I
fi W= | 3G 6 - BRI H 2 5 *| (3) Graph: f(x,y)

Tools  Plot  Styles  Wiew  Window

W Contour Sets (&) ()

W Level Set (&) ()

W Surfaces (&) (<) I lot x
Level Curves: f(x,y) = h \__JUBJ o Ma A

Tools  Plot  Styles  Wiew  Window

=t frotr t1s used.

Ciede

{ B Domain: f(x,y) |:||EHZ| %6505!49}

Tools  Plot Stles  Wiew  Window 05|ua(

e e
- -



Procedure 3 [Second derivative test]: Lef ¢ be a critical number of [ where
f'(e) =0 and f"(¢) exvists.

1. If f"(¢) = 0 then f(c) is a local minimum.
2. If f"(e) < 0 then f(c) is a local mazximum.
3

3. If f'"(¢) = 0 then f(c) could be a local maximum, a local minimum,
neither or both. That is, the test fails.

For example,

o If f(x) = a*, then f'(0) = 0 and f"(0) = 0 and we can see that f(0) is a
local minimum.

o If f(x) = —a*, then f(0) =0 and f"(0) = 0 and we can see that f{0) is
a local maximum.

o If f(x) = 22, then f'{0) = 0 and f"(0) = 0 and we can see that f(0) is
neither a local minimum nor a local maximum. (0,0) is an inflection point
in this case.

o If f(x) =+ 2sinwx, then f'(x) =1+ 2cosx. f'(x } — 0 for o — 2%!4%

which are the critical numbers. f" (2{[) = —2sin%" = —\/3 <

f (Erf) = EW—FV/_ }1s a lULﬁl maximum value. On the Uther hand, f" ‘%) i
Vi_ 3=0=f {h) = q ﬁ.,/_ 3 15 a local minimum value.

o If flo)=ua+ < L then f'(x) =1— 4. The critical numbers are = = +1.
Note that x = [l 1s not a critical Immber even though f/(0) does not exist,
because (0 is not in the domain of f. f"(z) = %. f"(-1) = -2 < 0 and
therefore f(—1) = —2 is a local maximum. (1) = 2 > 0 and therefore
f(1) = 2 is a local minimum.
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1. A differentiable function f is strictly convex (or strictly concave
up) on an open interval Z, iff, f'(x) is increasing on 7. Recall frmu theo-
rem 46, the graphu al 111’rf1rpu"r ation of the first derivative f'(x); f'(z) = 0
1111;:-11{‘“, that f(x) is increasing at x. Similarly, f'(x) is 111|:,1~LHL5111Eh when

f"(x) = 0. This gives us a sufficient condition for the strict convexity of
a fuuf:tiﬂu:

Theorem 50 If at all points in an open interval T, f(x) is doubly differ-
entiable and if f"(x) > 0, Va € I, then the slope of the function is always
increasing with x and the graph is strictly conver. This is illustrated in

Figure 4.8.

On the other hand, if the function is strictly convex and doubly differen-

tiable in Z, then f"(x) > 0, Vo € T.

There is also a slopeless interpretation of strict convexity as stated in the
following theorem:

Theorem 51 A differentiable function f is Hfi’"if_‘.f@ COTLVET 0T QAT OPEn
interval I, iff

flaxy + (1 —a)xy) < af(x) + (1 —a) flx) (4.2)

whenver xy,x2 €L, 11 # 19 and ) < a < 1.
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Proof: First we will prove the necessity. Suppose f' is increasing on 7.
let 0 < a < 1, 21,20 € T and I7F 2o. Without loss of generality
assume that o < xo°. Then, r; < ary 4+ (1 —a)rz < r» and therefore
ary + (1l —a)xs € I. By the mean value theorem, there exist s and ¢ with
ry < s <ar,+(l—a)rs <t<rs, suchthat flax,+(l—a)xs:)— flz,) =
fi(s)(xe —x1)(1 —a) and f(x2) — flaxy + (1 — a)xa) = f'(t)(x2 — 21 )a.

Therefore,

(1 —a)f(z) — flax; + (1 —a)zs) +af(x) =
alf(x2) — flaxy + (1 —a)zz)] — (1 —a) [flaz, + (1 —a)xz) — f(xy)] =
a(l —a)(x2 —21) [f'(t) — f'(s)]

Since f(x) is strictly convex on Z, f'(x) is increasing 7 and therefore,
fi(t) — f'(s) = 0. Moreover, x2 — ;1 > 0 and 0 < a < 1. This implies
that (1 — a) f{zx,) — flaz, + (1 — a)zs) + af{xs) > 0, or equivalently,
flary + (1 —a)ra) < af(x1)+ (1 — a) f(x2), which is what we wanted to
prove in 4.2,

Next, we prove the sufliciency. Suppose the inequality in 4.2 holds. There-
fore,

]jInJF['TE +alr) —x3)) — flra) < flx1) = fi

Lo
2 =[] ] jl

that is.

filza)(zy — 22) < flz) — flaa) (4.3)

Similarly, we can show that

fllz)(xe —x1) < flas) — flx) (4.4)

Adding the left and right hand sides of inequalities in (4.3) and (4.4}, and
multiplying the resultant inequality by —1 gives us

(f(x2)— f(z1) (k2 —21) = 0 (4.5)

Using the mean value theorem, 3z = ) + t(xy —xy) for t € (0.1) such
that



flaz) — flzr) = f'(2)(z2 — 21) (4.6)

Since 4.5 holds for any x1, xs € I, it also hold for x» = z. Therefore,

(f(2) = flz))(z —21) >0

(f(2) = f'(m)) (a2 —m) = 7

Additionally using 4.6, we get

ﬁ?iwe.?
flx2)=f(z1) = (f(2)=f{z)) (@2 —21)+ [z ) (22 —21) = [} (22 —21) @

(4.7)

Suppose equality holds in 4.5 for some xy # x3. Then equality holds in
4.7 for the same x, and 5. That is,

f[rg::l = f[.’l.‘l;'l — f*[;rrljl[.rg = .Tlf,l [fl.ﬂjl

Applying 4.7 we can conclude that

flz)) +af () (xs —2) < flz; + alxs — 21)) (4.9)

From 4.2 and 4.8, we can derive that

fley +alze —x1)) < (1 —a) f(z1) + af(ze) = flz1) +af'(z1)(z2 — 1)
(4.10)

However. equations 4.9 and 4.10 contradict each other. Therefore. equality

in 4.5 cannot hold for any xy # xa, implying that

(f'(x2) = f'(z1)) (x2 —21) >0

that is, f'(x) is increasing and therefore f is convex on Z. O



Figure 4.9: Plot for the strictly cangq,, fnction f(x) = —x? which has f"(x) =
—2<0, V.




A differentiable function f is said to be strictly conecave on an open interval
T, iff, f'(x) is decreasing on Z. Recall from theorem 46, the graphical
interpretation of the first derivative f'(x); f'(x) < 0 implies that f(x) is
decreasing at x. Similarly, f'(x) is monotonically decreasing when f”(x) >
(). This gives us a sufficient condition for the concavity of a function:

Theorem 52 If at all points in an open interval Z, f(x) is doubly differ-
entiable and if f"(x) < 0, Vo € I, then the slope of the function is always
decreasing with x and the graph s strictly concave. This is illustrated in

Figure 4.9.

On the other hand, if the function is strictly concave and doubly differen-
tiable in 7, then f"(x) <0, Vo € T.

There is also a slopeless interpretation of concavity as stated in the fol-
lowing theorem:

Theorem 53 A differentiable function f is strictly concave on an open
interval T, iff

flaxy + (1 —a)xs) > af(x) + (1 —a)f(x) (4.11)

whenver £y, 10 € T, &1 F 19 and 0 < a < 1.
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Figure 4.10: Plot for f(x) = 2% + = ¥ 2, which has an inflé¢tion point = = 0,

along with plots for f'(x) and f"(x).

Procedure 2 [First derivative test in terms of strict convexity|: Let ¢ be
a critical number of f and f'(¢) = 0. Then,

1. f(e) is a local minimum if the graph of f(x) is strictly convex on an
open interval containing c.

2. fle) is a local maximum if the graph of f(x) is strictly concave on
an open interval containing c.



Convex Optimization — Boyd & Vandenberghe

3. Convex functions

basic properties and examples

operations that preserve convexity

the conjugate function
e quasiconvex functions

e log-concave and log-convex functions

convexity with respect to generalized inequalities

W& ot Y seqevd (o)
0

e 7 oi("\&’" 1w e ed
/ azé Definition U“\\ v m ¢ e 6‘
ol
f:R"™ — R is convex if dom f is a convex set and v

fllx+(1—-0)y) <0f(x)+ (1—0)f(y) g/

forallz,y €edom f,0<6<1

N\ Jy, Fw)

(z, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

fO0x+(1—0)y) <0f(x)+(1-0)f(y)

forz,yedomf, x4y 0<0<1

Convex functions 3-2



Definition 35 [Convex Function]: A function f:D — R is conver if D is
a conver set and /

\((\‘\o QS

flex+{(1-0)y)<O0f(x)+ (1-0)f(y) ¥YxyeD 0<8<1(4.31)

Figure 4.37 illustrates an erample convez function. A function f : D — R
is(strictly convex if D is conver and

~——— R\___/h\,

flox+(1-fy)<0fix}+(1—-8)fl¥))

A function f : D — R is called uniformly or strongly conver if T is convex
and there erists a constant ¢ > () such that g,-l
W

_{ > 0

fBx+ (1 —8)y) < 8f(x)+ (1 —8) f(y)) — LeB(1 — B)|]x — ;,r|| x,yeD 0<8<I1

|F.9GCD\A & % tj
Peoce,

Theorem 69 Let f : D — R be a conver function on a convex domain D. Any
point of locally minimum solution for f is also a point of its globally minimum

solution.

Feave.

R be a strictly conver function on a conver domain

Theorem T0 Let f: D —

D. Then f has a unigue point corresponding to its global minimum.

Theorem T1 A function f : D — R is (strictly) conver if and only if the
function ¢ : Dy — W defined below, is (strictly) convez in t for every x € /

and for rwryh st tem, D) ;(.t-D,bC’D
o(t) = f(x+ th)

| wmth, the domain of & ommen by e = [ilx 4+ th = D1



Theorem 69 Let f: D — R be a convex function on a conver domain D. Any
point of locally muinimum solution for [ ts also a point of its globally mintmum
solution.

Proof: Suppose x € D 1s a point of local mininmm and let y € D be a point of
global minimmm. Thus, f(y) < f(x). Since x corresponds to a local minimum,
there exists an € = () such that

__-—-a'As.summ “ﬁttfmea
Vze 1:: f(z) = f(:{]‘j dpace
Consider a point z = fy + (1 — #)x with # = 9:#;1 Since x is a pomnt of
local minimuwm (in a ball of radius €), and since f(y) < f(x), it must be that

|y — x|| > e. Thus, 0 < 6 < £ and z € D. Furthermore, ||z —x|| = §. Since f
15 a convex function

flz) < 0f (x) + (1= 0)f(y)

Since f(y) < f(x), we also have

Of (x) + (1 =0)f(y) < f(x)

The two equations imply that f(z) < f(x), which contradicts our assnumption
that x corresponds to a point of local mininmm. That is f cannot have a point
of local minimum, which does not coincide with the point ¥ of global minimum.
O

Theorem T0 Let f: D — R be a strictly conver function on a conver domain
D. Then f has a unigue point corresponding to its global minimum.

Proof: Suppose x € D and y € D with ¥ # x are two points of global minimum.

That is f(x) = f(y) for y # x. The point X¥ also belongs to the convex set

D and since f is strictly convex, we must have

=

1 1
f (K . "’) < )+ 5f(¥) = f(x)

which is a contradiction. Thus, the point corresponding to the minimum of f
must be unigue. O



Theorem 71 A function f : D — R iz (strictly) conver if and only if the
function ¢ : Dy — R defined below, is (strictly) convex in t for every x € R"
and for every h € "

¢(t) = f(x+ th)
with the domain of ¢ given by D, = {t|x+ th € D}.
Proof: We will prove the necessity and sufficiency of the convexity of ¢ for a
convex function f. The proof for necessity and sufficiency of the strict convexity
of ¢ for a strictly convex f is very similar and is left as an exercise.

Proof of Necessity: Assume that fis convex. And we need to prove that
¢(t) = f(x+1th)is also convex. Let t1.12 € Dy and # € [0, 1]. Then,

GOty + (1 — O)ta) = f(B(x+ t1h) + (1 — 8)(x + tzh))
< 0f((x+t1h)) + (1 —0)f ((x +12h)) =bo(t1) + (1 — 8)o(t2) (4.35)
Thus, ¢ 18 convex.
Proof of Sufficiency: Assume that for every h € R" and every x € R",
¢(t) = f(x + th) is convex. We will prove that f is convex. Let x;.x2 € D.

Take, x = x; and h = x2 — x;3. We know that ¢(t) = f(x +f(x2 —x1)) is
convex, with ¢(1) = f(x2) and ¢(0) = f(x1). Therefore, for any # € [0, 1]

f 0%+ (1 —0)x;) = 6(6)
< O06(1) + (1 - 0)$(0) < 0f(x) + (1 — 0)f (x1) (4.36.

This mmplies that f is convex. O



First-order condition

f is differentiable if dom f is open and the gradient

V50 = (G )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff
) /? n 5 i\({
fly) > f(a) + Vf(z)'(y —x) forall z,y € dom f

\W
J@  Lineav appro%

\ /f(w) + V(@) (y - )

rn\nmnhnn n'F f 1S

LA
8
~
~~

8
N—
N—

lohal iinderestimator
lobal underestimatot

Convex functions 3-7
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Theorem 75 Let f : T — R be a differentiable convezr function on an open
conver set D. Then:

1. f is conver if and only if, for any x.y € D,

fly) = f(x)+ VT f(x)(y — x) (4.44)

3. f is strictly conver on D if and only if, for any x, ¥y € D, with x #£ ¥,

[ = S

& f(y) > £(x)+ VT f(x)(y —x) (4.45)
=3

% 3. f is strongly conver on D if and only if, for any x,y € D,

A yad

s /* lam 1o

s 1 J- , gc 3 ]
& e T0) 2100+ VIG5 = %) + 5elly — x| (4.46)

(th aﬂ
for some constant ¢ > 0. B o o 5‘7&;\ & whok \s w\-mmwf"

'valie BUS con Aakal

Proof:
Sufficiency: The proof of sufficiency i1s very similar for all the three state-

ments of the theorem. So we will prove only for statement (4.44). Suppose
(4.44) holds. Consider x1,x2 € D and any # € (0,1). Let x = flx; + (1 — #)xo.
Then,

f(x) + V7 f(x)(x2 — x) (4.47)

Adding (1 — #) times the second inequality to # times the first, we get.



0f(x1) + (1 =0)f(x2) = flx)

which proves that f(x) is a convex function. In the case of strict convexity,
strict inequality holds in (4.47) and it follows through. In the case of strong
convexity, we need to additionally prove that

1 1 1
0=l — |2 + (1= 0)ellx — x| = (1 — 0)]xs — x|

f(y)
fx)+Vf(x)'(y—x)

(%, f{f})

Figure 4.38: Figure illustrating Theorem 75.

Necessity: Suppose f is convex. Then for all # £ (0,1) and x;.x; € D, we
must have

fl0xz + (1 —0)x;) < 8f(x2) + (1 —0)f(x1)

Thus, '57\4“})0*)0!, 0\9114 a*uc O(\O(y
V7 ocy) o = ct) = Jim L 1G] T ) o gy g

B} f

This proves necessity for (4.44). The necessity proofs for (4.45) and (4.46) are
very similar, except for a small difference for the case of strict convexity; the
strict inequality is not preserved when we take limits. Suppose equality does
hold in the case of strict convexity, that is for a strietly convex function f, let

flxg) = flx) + V7 fx)(xz —: _Il chon fov A j""""

Sueewnt v C5C‘\\
for some xo # x,. Because f is striclv convex. for anv # = (0. 1) we can write



Flx:+ (1 —0)x2) = f(xo+0(x1 —x=2)) < Of(x1)+(1—8)f(x2) (4.49)

Since (4.44) is already proved for convex functions, we use it in conjunction with
(4.48), and (4.49), to get

fx2) +0V" fx2)(x1 —%2) < f(x2+ 0(x1— x2)) < f(x2)+0V" f(x2)(x1 —x2)

which is a contradiction. Thus, equality can never hold in (4.44) for any x; # x5.
This proves the necessity of (4.45). O

Definition 40 [Some corollaries of theorem 75 for strongly convex fur
For a fired x, the right hand side of the ineguality (4.46) is a convex
guadratic function of y. Thus, the critical point of the RHS should corre-
spond to the minimum value that the RHS could take. This yields another

lower bound on f(y).

fly) 2 f(x) - —II'*Ff x)|[3 (4.50)

Since this holds for any ¥y € D, we have

min f(y) = f(x ]——Il'i?f x)|I3 (4.51)

yeD

which can be used to bound the suboptimality of a point x in terms of

||V f(x)||2. This bound comes handy in theoretically understanding the

convergence of gradient methods. If §¥ = mi% f(y), we can alse derive a
Y€

bound on the distance between any point x € D and the point of optimality

-

y. ol d be ,")?ha?s .
e ="

|Ix = ¥l|2 < —II"Ff x)|l2 (4.52)



- Theorem T8 Let f : D — R with D C R™ be differentiable on the convez set
- D. Then,

1. f is conver on D if and only if is its gradient V f is monotone. That is,
forallx,ye®R

) (Vi(x) - Vi) (x—y) =0 (4.53)

2. f is strictly convexr on D if and only if is its gradient V [ is strictly mono-
tone. That is, forallx, ye R withx £y,

(Vf(x) - Vi) (x—y)>0 (4.54)

~ 3. f isCuniformily ﬂf‘fm.'ﬂﬂﬂ-ﬂﬁi: on D if and only if is its gradient V [ is
: Wy monotone. That is, for allx, v € R,

(VF(x) - VIy) (x—y) > dx -yl (4.55)

for some constant ¢ > (.




roof:
Necessity: Suppose f is uniformly convex on . Then from theorem 75,
e know that for any x,y € D,

£(y) > £6) + V7 )y )~ elly + x|

- 1
fx) 2 f) +V f¥)(x—y) - 5ellx+ vl

dding the two inequalities, we get (4.55). If f is convex. the inequalities hold
ith ¢ = (), yielding (4.54). If f is strictly convex, the inequalities will be strict,
vielding (4.54).

Sufficiency: Suppose V f is monotone. For any fixed x. y € D, consider the
metion ¢(t) = f(x + 1ty —x)). By the mean value theorem applied to o(t).
e should have for some t £ (0, 1),

(1) — o(0) = ¢'(1) (4.56)

etting 2z = x +#(y — x), (4.56) translates to

fly) = f(x)=V" f(z)(y —x) (4.57)
o, by definition of monotonicity of Vf, (from (4.53)),

(Vf(z) - Vi) (z—x)>0  (4.58)

(V1(2) - V1) (v =) = 5

mbining (4.57) with (4.58). we get,




fly)— f(x) = (Vf(z) - f(x))" (y —x)+ “F’:"f[x}[:v — X)
> V' f(x)(y — x) (4.59)

By theorem 75, this imequality proves that f is convex. Strict convexity can
be similarly proved by using the strict inequality in (4.58) inherited from strict
monotonicity, and letting the strict inequality follow through to (4.59). For the
case of strong convexity, from (4.55). we have

¢'(t) — ¢'(0) = (Vf(z) — f(x))" (y —x)

= (Vf()~ f)" (- %) > ella—xlf =cilly—xl (460

Therefore,

1
1
(1) — &(0) — &' (0) = f [{ﬁ’[t} — ' (0)]dt > EE’H}' —}{HE (4.61)
0
which translates to

N 1
F¥) 2 f)+ VI S)(y —x) + gelly — x|

By theorem 75, f must be strongly convex. O



Theorem 79 A twice differential function f : D — R for a nonempty open
convex set D

1. is convex if and only if its domain is conver and its Hessian matriz is
positive semidefinite at each point in D. That is

Vif(x) =0 ¥xeD (4.62)

2. is strictly convez if its domain is conver and its Hessian matriz is positive
definite at each point in D. That is

Vif(x)=0 ¥xeD (4.63)

3. is uniformly convex if and only if its domain is conver and its Hessian
matriz is uniformly positive definite at each point in D). That is, for any
v € R" and any x € D, there erists a ¢ > 0 such that .
LKeorn i scus sons

on 3ene.4alf sed
VIV f(x)v 2 ellv|]® J ineq walibies (4.64)
'ﬂnsz Mmeans a
V2f(x) Lelurn N {)-cLe Sy

where I, 15 the n x n identity matriz and = corresponds to the pos-
itive semidefinite inequality. That is, the function [ is strongly convez
iff V2f(x) — cluxn is positive semidefinite, for all x € D and for some
constant ¢ > O, which corresponds to the positive minimum curvature of

1.

In other words




nlw Problem;

04/10/2013. Make sure that you understand the proofs for local minimizer=global minimizer,
unique global minimizer for a strictly convex function, equivalence of different mathematical
specifications (gradient free, first order, gradient monotonicity and Hessian) of convexity
spanning pages 25 to 36. Now solve following problems (i) Show that the sum of a convex and
a strictly/strongly convex function is strictly/strongly convex/(ii) Suppose that f{x)= x'Qx,
where () is an n x n matrix. Show conditions under which f{x) i1s (strictly/strongly) convex and

show this using each of the 4 equivalent conditions for (strict/strong) convexity. Deadline:
October 9 2013.

R(Al@s F(N %—{ad:e«n’f [a}fSlum\J @(adlcn Column

Vec’m{)
(= ?fngﬂ fo)= T8

o=y WER-Rxig
d 3[95) (Wx)
) &’r v g( )0\(3“
é:gm d@ ! SELE el




Rough high level plan for the course from hereon
by Ganesh Ramakrishnan - Wednesday, 9 October 2013, 9:16 AM

Please give feedback (of course, | am not listing topics within
each high level topic)

1] Further properties of convex functions, subgradients.

2] Algorithms for unconstrained optimisation,
illustrations/comparisons, convergence analysis for some

3] Dealing with constraints: Lagrange multipliers, duality,
conjugate functions, polars, etc

4] Algorithms for constrained optimisation

Ganesh



Examples on R

"
a—
(vg,  convex:
y
.b ;’/ &\_ e affine: ax + b on R, for any a,b € R
/T' J..-y e exponential axr far any g € R —_—
'bf [ Y=

X ; I
'V'k powers: z*on Ry, fora>1ora <0
»
’)/; e powers of absolute value: |z|P on R, for p > 1
o negative entropy: zlogz on R =) St‘((C‘\"ﬁ" convid
L leas % -
concave: 5 .

e affine: ax + b on R, for any a,b € R % ConCove
e powers: z*on Ry, for0<a <1 —f 35 coawe

e logarithm: logx on R, 4+

Convex functions 3-3

Examples on R"” and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(x) = a’z +b

e norms: ||z|l, = 027, |2 |P)L/P for p > 1; ||2]|eo = maxy, |2

Y — l i — 1 o

examples on R™™" (m x n matrices)

e affine function

of ten used repcesentagom

e spectral (maximum singular value) norm ge \ '

Convex functions

X lL,.a sup || A4l DO
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Restriction of a convex function to a line

f :R"™ — R is convex if and only if the function ¢ : R — R, ?‘Cb\lﬁc{

eejhld'\m OJC<__. g(t) = f(z + tv), domg = {t |z +tv € dom f} C-Q.“\\ e

'f(x) n dgd

Awéaﬁ oN
vV jurw
Yorr

Conven

da j(ﬁ)

| The oveve

is convex (in t) for any z € dom f, v € R”

can check convexity of f by checking convexity of functions of one variable '.j
example. f:S" — Rwith f(X) =logdet X, dom X =S/ ;et[A$)
[ ]
7. sdet(A)x
g(t) =logdet(X +1V) = logdet X +logdet(I + (X ~/2VX=1/2) A (o
n ‘
— lanocdat X | v]r\n‘/‘l 4 \
Lugucuxx TLJJ.U&\J. Tb/\Z} -y y’
= X6V = (T4 £X VX
where \; are the eigenvalues of X /2y X ~1/2 (H[ W
g is concave in t (for any choice of X = 0, V/); hence f is concave

http://www.proofwiki.org/wiki/Determinant_of_Matrix_Product

3-5

http://fen.wikipedia.org/wiki/Matrix_determinant _temma

Extended-value extension

Li 2
&
I
8
R
o
ED
=
S~

often simplifies notation; for example, the condition
0<6<1 — f(Br+(1—0)y) <6f()+(1—0)f(y)

(as an inequality in RU {oo}), means the same as the two conditions

e dom f is convex

Mm
£
@)

e forz.y mf
) J

(e}
[\
a)
[\
).A
S~
—~
<D
8
+
—~
[UNN
|
)
N——’
~3
N2
[A
<D
~~
—~
8
N——
-+
—~
[UAY
|
<D
N——"
S~
~~
=3
N2
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Examples
quadratic function: f(z) = (1/2)27 Px + ¢z + r (with P € S")

_p

a

J A\ L

€

V2 f(y
J A\

SN—"

q;
convex if P > 0

least-squares objective: f(z) = || Az —b]3 °
Vf(x) =24T(Az — D), V2f(zx) =247 A

convex (for any A)

quadratic-over-linear: f(z,y) = 22/y

Convex functions

log-sum-exp: f(z) =log> ,_, expxy is convex

2
Vv

™
N
—~
N
=
o
kS
=
=
N——

£\
J)

to show V2f(x) = 0, we must verify that vT'V2f(x)v > 0 for all v:

oIV2 F ()0 — O Zkvi)(Z_ka) — >k VR 2k)” >0
n (i)’ -

3-9

since (3, vkzk)? < (024 2kv7) (O 2k) (from Cauchy-Schwarz inequality)

geometric mean: f(z) = ([[;_, zx)'/™ on R}, is concave

(similar proof as for log-sum-exp)

Convex functions



Recall Leve| sek /cwtve.
K-Qaver sk ¢ £ D= R

L= qxe DY 6 - 4%

CCcmve.vL ol Convex sub k\f@\ sels ‘4

e %{a?\'\)
(ovades: &(‘:lerx_?/) 3t (- Ig’lgz (,(2,7,)

-‘-i O<?L(<6' o< <5 1

Example 6.1 - Graphlcal Solution




Epigraph and sublevel set

Doman Nas o be

a-sublevel set of f: R" — R: ﬂ

Co = {r edom [ | f(z) < o}

lonvey

I//“f'\'v'd h"ﬂ

sublevel sets of convex functions are convex (converse is false) [ ¢ Comirise

epigraph of / : R" — R:

// eplJ

. 2
il S LI

eptf = {(r.0) € R | dom f. f() < 1} + () 24(0)

—rﬂ?@b-’?

A f
ket [ (o i) e e

V‘\ ‘tO S\ Tovhln \ﬂk‘j esD\anl
fis convex if and only if epi f is a convex set

Convex functions

Jensen’s inequality

extension: if f is convex, then

f(Ez) <E f(2)
for any random variable z

basic inequality is special case with discrete distribution

prob(z =x) =46, prob(z=y)=1-10

Convex functions

o ¢°f°\j~ro.s)n :f £ ek 2



Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show V2f(z) = 0

3. show that f is obtained from simple convex functions by operations
t preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition #

minimization

perspective

Convex functions 3-13

Positive weighted sum & composition with affine function

noninegative muitip

PR S D PPN ~ > N
I 15 CUINIVEA, & = U

sum: f; + fo convex if f1, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax--b) is convex if f is convex

examples

e log barrier for linear inequalities

1 /1 T N 1 P r T ] — hY
lng()Z‘—(Ii ZE), aom]—1:C|aix<oi,1—1,...,mj

~
S

|

|
)=

1

.
I

e (any) norm of affine function: f(x) = || Az + b||

Convex functions 3-14



Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fin(2)} is convex

examples Cren \f 5\;’5 ove ::%t&feren L'ta\vlc ,/F w'u” nel

e piecewise-linear function: f(x) = max;—1 . mn(alx + b;) is convex be ...
e sum of r largest components of z € R™: ﬂ¢eJ cone ‘c

is convex () is ith largest component of x)

proof:

f(;y):mﬂx{xil—}—m;y—i—---—t—nﬂ- 11 <4

J max Lig =i

<dg < -ee < dp < m}
k’Y )
¢, Such index

Convex functions e 3-15
choice S

Pointwise supremum

if f(x,y) is convex in x for each y € A, then

g(x) = sup f(z,y)

yeA
IS convex
examples
a cuunnart fiinctinn Af A cat (- Qm/m\ — Q11N a:Trv- IS CONVAY
- 22U InJ\JI L rurircuiIvii vi a I9viL U, UL/ \W} uuyyec U T VTV O ﬁ
e distance to farthest point in a set C" -

f(x) =sup ||z — 9|
yeC

e maximum eigenvalue of symmetric matrix: for X € S",

Amax(X) = sup 3y Xy 3‘“;(: qi‘? Xq" :};(l"

lyll2=1

m W,.. U, are orthoverm
Convex functions C ~¢( Qljtﬂ Vé_}.ﬁ W OJI )(



Composition with scalar functions
N

composition of g : R — Rand h: R — R:
x) = h(g(x
(@) = hig(z) "

Qs

. .. § g convex, h convex, h nondecreasing
f is convex if ~ . :
g concave, h convex, h nonincreasing

e proof (for n = 1, differentiable g, h)

’Xas\"o‘a am,_-;\?\&s {f "(z) = 1"(g(x))g'(z)* + ' (9())g" (z)

e note: monotonicity must hold for extended-value extension h

examples 7
e expg(x) is convex if g is conv 'e" Ro“') 7

1/g(x) is convex if g is concave and positive $ ?“o@

Convex functions

Vector composition

: .. { g; convex, I convex, h nondecreasing in each argument
f is convex if = . o
g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h) o > O
()" V2h(g(2))g'(x) + Vh(g(z))"g" ()

Y\f' .examp.iv?J

( i Zz llogg’b
&'N\l\ ° logL _,expg;(x) is convex if g; are convex

is concave if g; are concave and positive

; Convex functions

=903 Th (3(2))9:6e) +Vh(3 (@35.



Minimization
if f(x,y) is convex in (x,y) and C'is a convex set, then

g(x) = ;ggf(w, Y)

IS convex

examples

o f(x,y) =2l Ax + 227 By + yT Cy with

e distance to a set: dist(z,5) = inf,cg ||z — y|| is convex if S is convex

Convex functions

Perspective

the perspective of a function f : R"” — R is the function g : R” x R — R,

glx,t) =tf(x/t), domg = {(x,t) | 2/t € dom f, t > 0}

7

g is convex if f is convex

examples
o f(x) = 2T is convex; hence g(x,t) = 2Tz /t is convex for t > 0

U T R [ A, {0 SRR U RN R BT S AR SR
e negative logarithm f(z) = —log x is convex; hence relative entropy
t

e if f is convex, then
g(x) = (cTz+d)f ((Ax +b)/(cTx + d))

is convex on {x | Tz +d >0, (Az +b)/(c'z + d) € dom f}

Convex functions



subgradients

Subgradients

MF =) (Y o

radiant calenh us
|l ® AV § | &) L CdAdiIvuilu

Prof. S. Boyd, EE364b, Stanford University



Basic inequality

recall basic inequality for convex differentiable f:
) = f@) + Vi) (y =)
e first-order approximation of f at x is global underestimator

o (Vf(x),—1) supports epi f at (z, f(x))

what if f is not differentiable?

Prof. S. Boyd, EE364b, Stanford University



Subgradient of a function

g is a subgradient of f (not necessarily convex) at z if

fy) > fx)+ gt (y—z) forally

\
f(x1) + ng(a: — 331)\ /
\ f(iﬁz) + gg(a: — )
L ) + gT (@ — xo)
\*2) T 93\ 2)

T 2

g2, g3 are subgradients at x5; g7 is a subgradient at x4

Prof. S. Boyd, EE364b, Stanford University



e g is a subgradient of f at x iff (g, —1) supports epi f at (z, f(z)

ﬂ‘u.l\la\'o(\\:
e g is a subgradient iff f(z) + ¢! (y — ) is a global (affine)
||nr~|nrr\r+ mmAatAr I\'F
U||UC|CDLIIIIGLUI Ul J
e if f is convex and differentiable, V f(x) is a subgradient of f at x

subgradients come up in several contexts:
e algorithms for nondifferentiable convex optimization

e convex analysis, e.q., optimality conditions, duality for nondifferentiable
problems

(if f(y) < f(z) + gt (y — x) for all y, then g is a supergradient)

Prof. S. Boyd, EE364b, Stanford University 3



Example

f =max{fi, fo}, with f1, fo convex and differentiable

o fi(zg) > fa(xp): unique subgradient g = V f1(z¢)
e fo(xg) > fi(zo): unique subgradient g = V fa(xg)

| —

e fi1(xg) = fa(xo): subgradients form a line segment [V f1(xg), V fa(xo)]

Prof. S. Boyd, EE364b, Stanford University



Subdifferential

e set of all subgradients of f at x is called the subdifferential of f at z,

denoted Jf(x)

e Of(x) is a closed convex set (can be empty)

if f is convex,

e Of(x) is nonempty, for = € relint dom f

e Of(x)={Vf(x)}, if fis differentiable at =

e IfOf(xr) = {g}
/ LJ)J

T then f is differentiable at z and ¢ = V f(x)
J \ J J VoJ \"Y)

o

Prof. S. Boyd, EE364b, Stanford University



Example

f(z) = |x|
f(z) =z of(x)
\ / 1
€T
1

Prof. S. Boyd, EE364b, Stanford University



Subgradient calculus

_ o =0 0% _a B __0___ i o [ AN S R P R

e weak subgradient caiculus: formulas for finding one subgradient
geof(x)

e strong quharad!p nt calculus: formulas for flnrlmpr the whole
subdlfFerentlaI 0f(x), i.e., all subgradients of f at x

e many algorithms for nondifferentiable convex optimization require only
one subgradient at each step, so weak calculus suffices

e some algorithms, optimality conditions, etc., need whole subdifferential

e roughly speaking: if you can compute f(x), you can usually compute a
g € 0f(x)

e we'll assume that f is convex, and z € relint dom f

Prof. S. Boyd, EE364b, Stanford University



Some basic rules
o Of(x) ={Vf(x)}if fis differentiable at x
e scaling: d(af) =adf (if a > 0)
e addition: J(f; + f2) = 0f1 + 0f2 (RHS is addition of sets)

e affine transformation of variables: if g(x) = f(Ax +b), then
dg(x) = ATOf(Az +b)

e finite pointwise maximum: if f = max f;, then

1=1,....m

df(x) = Co U{ﬁfz )| fi(z) = f(2)},

rentials of ‘active’ functions at o

1.e., convex hull of union of subdiffe

Prof. S. Boyd, EE364b, Stanford University
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Pointwise supremum

if f = sup fa,
ac A

clCo| J{0fs(x) | fs(x) = f(z)} C Of(x)

(usually get equality, but requires some technical conditions to hold, e.g.,
A compact, f, ctsin z and «)

roughly speaking, df(x) is closure of convex hull of union of
subdifferentials of active functions

Prof. S. Boyd, EE364b, Stanford University 10



Weak ruie for pointwise supremum

f = sup fa
acA

e find any (8 for which fg(x) = f(x) (assuming supremum is achieved)

e choose any g € 0f3(x)
e then, g € 0f(x)

Prof. S. Boyd, EE364b, Stanford University
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example
f(fr) — (A fr')) —  SuD yTA(;y)w

J l\ljax\AL\w

where A(x) = Ag + 2141+ -+ x,A,, A; € %

e f is pointwise supremum of g,(z) = y? A(z)y over ||y|2 =1

T T
e g, is affine in x, with W (;y) (0/ 41?71 ey Y 44,;{1;)

g
Q
C
—r
(O]

o)
C
Q)
—

<
-
O

-
m
\_/

to find one subgradient at z, can choose any unit eigenvector y associated
with A\, (A(fr'\\ then

aAX\ =\

(y" Ary, ...,y  Ayy) € Of (o)

Prof. S. Boyd, EE364b, Stanford University 12



Expectation

_ LN T P o with f convex in = for each u u a random variable
® | \JJ} — \JJ, ) witn J COnveX I o 10r €dlil ‘', ‘4 4 rdidoliri vdridpic

(D

ﬁ / AN 4

e for each u, choose any g, € O¢(x,u) (so u — g, is a function)
e then, g=Eg, € 0f(x)
Monte Carlo method for (approximately) computing f(x) and a g € 0f(x):

e generate independent samples uq,...,ux from distribution of

o flz)~ (1/K)X K, f(z,u)

e for each i choose g; € 0, f(x,u;)

(more on this later)

Prof. S. Boyd, EE364b, Stanford University 13



Minimization

define g(y) as the optimal value of

(f; convex; variable x)

with A* an optimal dual variable, we have

i.e., —A\* Is a subgradient of g at y

Prof. S. Boyd, EE364b, Stanford University 14



Composition

o f(z)=~h(fi(z),...,fr(x)), with h convex nondecreasing, f; convex

e find g € Oh(f1(x),..., fr(x)), g; € Ofi(x)
e then, g = q1g1 + - - + qrgr € O0f(x)

TV es

e reduces to standard formula for differentiable h, f;

proof:
fly) = h(fily),. .., felv))
> h(fi(z)+gi (y—a),.... ful@) + g (v — x))
> h(fi(z),.... ful@)+q" (91 (v —2),.... 9L (y — x))
(

f@)+ 9" (y—2)

Prof. S. Boyd, EE364b, Stanford University
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Subgradients and sublevel sets

g is a subgradient at z means f(y) > f(z) + ¢’ (y — x)

hence f(y) < f(z) = gl (y —x) <0

\v / /. -

P - S
\/QCU\JJO)

@) < f@o) N

T~/
s

L1

/
%Vf(fﬂl)\

Prof. S. Boyd, EE364b, Stanford University
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e f nondifferentiable at xy: subgradient defines a supporting hyperplane
to sublevel set through x

Prof. S. Boyd, EE364b, Stanford University
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The conjugate function

the conjugate of a function f is

fy)= sup (y'z— f(z))

r€dom f

\f(w) /
.xyY

| .

\ x
V 0, £ )
a F* ic ~anvuay (oavan f £ ic nat)
A4 J 1S5 CUIIVCA \CVC Il J 15 IUL}
e will be useful in chapter 5
Convex functions
examples
e negative logarithm f(z) = —logz
f(y) = sup(zy+logx)
z>0
_ [ —1-log(-y) y<O
1 00 otherwise

e strictly convex quadratic f(z) = (1/2)z7Qz with Q € S},

ffly) = Sl;p(yTw—(l/Q):vTQw)

_1T—1
= §yQ Y

Convex functions



Quasiconvex functions

f : R"™ — R is quasiconvex if dom f is convex and the sublevel sets
Sa={z edomf| f(z) <a}

are convex for all «

a ‘F 1
A

o

0

LIaciconcava I'F —_— ‘F 1C
uagictuviicavye i J 19

e f is quasilinear if it is quasiconvex and quasiconcave

Convex functions 3-23

Examples

° \/H is quasiconvex on R

e ceil(z) =inf{z € Z | z > x} is quasilinear
e logz is quasilinear on R

o f(x1,x9) = w125 is quasiconcave on R2++

e linear-fractional function

T
b
f(x):%, dom f={z|clz+d>0}
is quasilinear
e distance ratio
2 — alls
flz) = m dom f = {z | |z — all2 < [[z — b]|2}

IS quasiconvex

Convex functions 3-24



internal rate of return

e cash flow = = (zg,...,x,); x; is payment in period i (to us if x; > 0)
e we assume ro < Oand xg+2x1+---+2x, >0
e present value of cash flow x, for interest rate r:
n
PV(z,r) = g (L+7r)""x;
1=0
_ S R | _— L _a S | I o a L .. I D17/ NN
® [[ILErNdl rdie O reeurr IS SIrrdliest Iimeterese rdee 1or wiiliCri r v k.,l/,/) = v
IRR(2) = inf{r > 0| PV(z.r) =0}
\""/ U — | \""7 J J
Tt{t{ IS - gquasiconcave: ciinarlaval cot ic intarcacrtinn Anf Alfenarcac
11Ul 1 \.«IUGJI\.’\JII\'CIV\.«- U CIICVUOlD OCUL 1o 111LCcriocetiuiviit vi ||a||QPa\.—\'J

Convex functions 3-25

Properties

modified Jensen inequality: for quasiconvex f

0<0<1 = [f(0x+(1-0)y) <max{f(z), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

fy) < flx) = Vf(@)'(y—=2)<0

Vi(z)

)
NN
T

sums of quasiconvex functions are not necessarily quasiconvex

Convex functions 3-26



Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:

0z +(1—=0)y) > fx)’fly)' ™7 for0<o<1

f is log-convex if log f is convex

e powers: z“ on Ry is log-convex for a < 0, fog-concave for a > 0

e many common probability densities are log-concave, e.g., normal:

e cumulative Gaussian distribution function ® is log-concave

1 T 5
O(x) = \/ﬂ/ e~ /2 du

Convex functions 3-27

Properties of log-concave functions

e twice differentiable f with convex domain is log-concave if and only if

T

a nradii~t Af lasx ~An~avAa firnrtinnce ic lag_rAancave
& proGucCt 01 10g-CoNncave Tunctions is 10g-Concave
e ciuim of loo-concave functione ic not alwave loo-concave
e Su or1og-concave tunctions I1s Not aiways 10g-concave

is log-concave (not easy to show)

Convex functions 3-28



consequences of integration property

e convolution f * g of log-concave functions f, g is log-concave
I8
(F=9)(@) = | fla = y)g(y)dy

e if C C R" convex and y is a random variable with log-concave pdf then
f(x) =prob(z +y € C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

flz) = /g(:c+y)p(y) dy,  g(u) = { (1) Z;g
pis pdf of y

Convex functions 3-29

example: yield function
Y (z) = prob(z + w € 5)
e = € R™: nominal parameter values for product
e w € R™: random variations of parameters in manufactured product

e S: set of acceptable values

if S is convex and w has a log-concave pdf, then

e Y is log-concave

e yield regions {z | Y(x) > «} are convex

Convex functions 3-30



Convexity with respect to generalized inequalities

f:R"™ — R™is K-convex if dom f is convex and

f0x+ (1-0)y) =k 0f(x)+ (1 —0)f(y)

forz,yedomf,0<6<1

example f:S™ — §™, f(X) = X?is S'"-convex

proof: for fixed z € R™, 2T X%z = || X z||3 is convex in X, i.e.,
ZTOX +(1-0)Y)2<0TX%2+(1—-60)2"Y?2

for X, Y €S™ 0<6<1

Convex functions

3-31



Global Extrema on Closed Intervals

Procedure 4 [Finding extreme values on closed, bounded intervals|:
Find the eritical points in int(T).

2. Compute the values of f at the critical points and at the endpoints of
the interval.

3. Select the least and greatest of the computed values.

For example, to compute the maximum and minimum values of f(x) =
4x? — 8x? 4 5 on the interval [0,1], we first compute f'(x) = 122 — 16x + 5
Tieh e o o— 1 O . t e b 1y By 25
which is 0 at x = 3, 2. ‘Vﬁlueh at the Ll“ltlf,ﬂllpﬂlllth are j[ﬁ} =1, f(ﬁ} =
The values at the end points are f(0) = 0 and f(1) = 1. Therefore, the minimum

value is f(0) = 0 and the maximum value is f(1) = f[%} = 1.

Definition 21 [One-sided derivatives at endpoints|: Lef f be defined on

a closed bounded interval [a,b]. The (right-sided) derivative of f at x =a
15 defined as

f'{a) = lim flath) - fla)

 h—0+ h

Similarly, the (left-sided) derivative of [ at x = b is defined as

f(b) = lim flb+h)— fb)

h—s()— h




Theorem 54 If f is continuous on [a,b] and f'(a) exists as a real number or
as £oo, then we have the following necessary conditions for extremnum at a.

o [f f(a) is the maximum value of f on |a,b], then f'(a) <0 or f'(a) = —oc.
o If f(a) is the minimum value of f on [a,b], then f'(a) = 0 or f'(a) = oc.

If [ is continuous on |a,b] and f'(b) exists as a real number or as oo, then
we have the following necessary conditions for extremum at b.

o If f(b) is the maximum value of f on [a,b], then [f'(b) =0 or f'(b) = c.
o If f(b) is the minimum value of f on [a,b], then f'(b) <0 or f'(b) = —oc.

The following theorem gives a useful procedure for finding extrema on closed
intervals.

Theorem 55 If [ is continuous on [a,b] and f"(x) ewists for all x € (a,b).
Then,

o If f"(x) <0, Va € (a,b), then the minimum value of f on [a,b] is either
fla) or f(b). If, in addition, { has a critical number ¢ € (a,b), then f(c)
is the maximum value of [ on [a, b.

o If f"(x) =0, V& € (a,b), then the maximum value of  on [a,b] is either
fla) or f(b). If, in addition,  has a critical number ¢ € (a,b), then f(c)
is the minimum value of f on [a,b).

Theorem 56 Let I be an open interval and let [ (x) exist Wa € T,

o If f"(x) = 0, Ve € T, and if there is a number ¢ € T where f'(c) = 0,
then f(c¢) is the global minimum value of f on I,

o If f'"(x) <0, Ve € I, and if there is a number ¢ € T where f'(c) = 0,
then f(c) is the global maximum value of [ on T.

For example, let f(x) = %:;: —secr and T = (5, 5). f'(x) = % —secxtanr =
% — E‘:‘j;ifm =0 = o = Z. Further, f"(r) = —sec r(tan? x 4+ sec?x) < 0 on

(5. ). Therefore, f attains the maximum value f(%)= % — % on 7.



- the cone with minimum volume that can contain a sphere of radius R.

Figure 4.11: Ilustrating the constraints for the optimization problem of finding




Theorem 61 Lel [ : D — R where D C R". Let f(x) have continuous partial
derwatives and continuous mized partial dertvatives in an open ball R containing
a point xX* where ¥V f(x*) = 0. Let V?f(x) denote an n x n mutn.r of mized
partial derivatives of f evaluated at the point x, such that the i§*" entry of the
matric 1§ fr o . The matriz V2f(x) is called the Hessian matriz. The Hessian
matree 15 .ﬁ'yrrarrmtr'ir:ﬁ. Then,

o IfV?2f(x*) is positive definite, x* is a local minimum.

o If V2f(x*) is negative definite (that is if —V° f(x*) is positive definite),

x* 15 a local maximuwm.

Theorem 62 Let f : D — R where D C R™. Lel f(x) have continuous par-
tial derivatives and continuous mizved partial derivatives in an open region R
containing a point Xx* where V f(x*) = 0. Then,

o Ifx* is a point of local minimum, V2 f(x*) must be positive semi-definite.

o Ifx* is a point of local mazimum, V* f(x*) must be negative semi-definite
(that is, —V* f(x*) must be positive semi-definite).

Corollary 63 Let f : D — R where D C R". Let f(x) have continuous par-
tial derivatives and continuous mired partial derivatives in an open region R
containing a point x* where V f(x*) = 0. If V2f(x*) is neither positive semi-
definite nor negative semi-definite (that is, some of its eigenvalues are positive
and some negative), then x* is a saddle point.



Theorem 64 Let the partial and second partial derivatives of f{axy,x2) be con-

tinuous on a disk with center (a,b) and suppose fr, (a,b) =0 and f,(a,b) =0
so that (a,b) is a critical point of f. Let D(a,b) = fi o (a,b)fr,c,(a,b) —
(frrzs (a,0)]?. Then',

o IfD =0 and f, . (a,b) >0, then f{a,b) ts a local minimum.
o Elseif D >0 and f. . (a,b) <0, then f(a,b) is a local mazimum.

e Else if D <0 then (a,b) is a saddle point.

Figure 4.22: Plot of the function 2x? 4+ xx3 + 527 + 13 showing the four critical
points.

We saw earlier that the critical points for f(xy, x3) = 20+ a1 254+5x7 413 are
(0,0), [—%, 0), (—=1,2) and (-1, —2). To determine which of these correspond
to local extrema and which are saddle, we first compute compute the partial
derivatives of f:

foyae, (1, 00) = 1221 + 10

fooas (1, 22) = 201 + 2

f:cl T Iiml: -TE} = 2xq

Using theorem 64, we can verify that (0,0) corresponds to a local minimum,
(—2,0) corresponds to a local maximum while (—1,2) and (=1, —2) correspond



to saddle points. Figure 4.22 shows the plot of the function while pointing ouw
the four eritical points.

- Figure 4.23: Plot of the function 10x%y — 52% — 4y* — x* — 2y* showing the four
~critical points.
 Consider a significantly harder function f(x,y) = 10x%y — 5z? — 4y* —

r* — 2y*. Let us find and classify its critical points. The gradient vector
Cis Vf(r.y) = [200y — 100 — 42°, 102% — 8y — 8y?]. The critical points o
- correspond to solutions of the simultaneous set of equations

- 20xy — 102 — 4 o
Ory — 10x — 4 0 (4.15)

. 10x? — 8y — Sy* = 0 -

- One of the solutions corresponds to solving the system —8y* 4+ 42y —
225 = 0° and 102? = 50y — 25, which have four real solutions”, wiz., o

(0.8567,0.646772), (—0.8567,0.646772), (2.6442, 1.898384), and (—2.6442, 1.898384).
- Another real solution is (0,0). The mixed partial derivatives of the func- o

~ tion are
f i

few = 20z (4.16)
fyy = —8-—244

I
bt
=
=
I
-
L
I
-
bt
=
b2




Using theorem 64, we can verify that (2.6442, 1.898384) and (—2.6442, 1.898384)
correspond to local maxima whereas (0.8567,0.646772) and (—0.8567, 0.646772)

corresnond tn gaddle noants Thig g illnstrated in Fionre 4 923




