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Convex Optimization — Boyd & Vandenberghe

5. Duality

• Lagrange dual problem

• weak and strong duality

• geometric interpretation

• optimality conditions

• perturbation and sensitivity analysis

• examples

• generalized inequalities

5–1

Lagrangian

standard form problem (not necessarily convex)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p⋆

Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp,

L(x, λ, ν) = f0(x) +

m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

• weighted sum of objective and constraint functions

• λi is Lagrange multiplier associated with fi(x) ≤ 0

• νi is Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(

f0(x) +

m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν

lower bound property: if λ � 0, then g(λ, ν) ≤ p⋆

proof: if x̃ is feasible and λ � 0, then

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ, ν)

Duality 5–3

Least-norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

• Lagrangian is L(x, ν) = xTx + νT (Ax − b)

• to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x + ATν = 0 =⇒ x = −(1/2)ATν

• plug in in L to obtain g:

g(ν) = L((−1/2)ATν, ν) = −
1

4
νTAATν − bTν

a concave function of ν

lower bound property: p⋆ ≥ −(1/4)νTAATν − bTν for all ν
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Standard form LP

minimize cTx
subject to Ax = b, x � 0

dual function

• Lagrangian is

L(x, λ, ν) = cTx + νT (Ax − b) − λTx

= −bTν + (c + ATν − λ)Tx

• L is linear in x, hence

g(λ, ν) = inf
x

L(x, λ, ν) =

{

−bTν ATν − λ + c = 0
−∞ otherwise

g is linear on affine domain {(λ, ν) | ATν − λ + c = 0}, hence concave

lower bound property: p⋆ ≥ −bTν if ATν + c � 0

Duality 5–5

Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

dual function

g(ν) = inf
x

(‖x‖ − νTAx + bTν) =

{

bTν ‖ATν‖∗ ≤ 1
−∞ otherwise

where ‖v‖∗ = sup‖u‖≤1 uTv is dual norm of ‖ · ‖

proof: follows from infx(‖x‖ − yTx) = 0 if ‖y‖∗ ≤ 1, −∞ otherwise

• if ‖y‖∗ ≤ 1, then ‖x‖ − yTx ≥ 0 for all x, with equality if x = 0

• if ‖y‖∗ > 1, choose x = tu where ‖u‖ ≤ 1, uTy = ‖y‖∗ > 1:

‖x‖ − yTx = t(‖u‖ − ‖y‖∗) → −∞ as t → ∞

lower bound property: p⋆ ≥ bTν if ‖ATν‖∗ ≤ 1
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Two-way partitioning

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

• a nonconvex problem; feasible set contains 2n discrete points

• interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning
i, j to the same set; −Wij is cost of assigning to different sets

dual function

g(ν) = inf
x

(xTWx +
∑

i

νi(x
2
i − 1)) = inf

x
xT (W + diag(ν))x − 1Tν

=

{

−1Tν W + diag(ν) � 0
−∞ otherwise

lower bound property: p⋆ ≥ −1Tν if W + diag(ν) � 0

example: ν = −λmin(W )1 gives bound p⋆ ≥ nλmin(W )

Duality 5–7

Lagrange dual and conjugate function

minimize f0(x)
subject to Ax � b, Cx = d

dual function

g(λ, ν) = inf
x∈dom f0

(

f0(x) + (ATλ + CTν)Tx − bTλ − dTν
)

= −f∗
0 (−ATλ − CTν) − bTλ − dTν

• recall definition of conjugate f∗(y) = supx∈dom f(yTx − f(x))

• simplifies derivation of dual if conjugate of f0 is kown

example: entropy maximization

f0(x) =
n
∑

i=1

xi log xi, f∗
0 (y) =

n
∑

i=1

eyi−1
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The dual problem

Lagrange dual problem

maximize g(λ, ν)
subject to λ � 0

• finds best lower bound on p⋆, obtained from Lagrange dual function

• a convex optimization problem; optimal value denoted d⋆

• λ, ν are dual feasible if λ � 0, (λ, ν) ∈ dom g

• often simplified by making implicit constraint (λ, ν) ∈ dom g explicit

example: standard form LP and its dual (page 5–5)

minimize cTx
subject to Ax = b

x � 0

maximize −bTν
subject to ATν + c � 0

Duality 5–9

Weak and strong duality

weak duality: d⋆ ≤ p⋆

• always holds (for convex and nonconvex problems)

• can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for the two-way partitioning problem on page 5–7

strong duality: d⋆ = p⋆

• does not hold in general

• (usually) holds for convex problems

• conditions that guarantee strong duality in convex problems are called
constraint qualifications

Duality 5–10



Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

• also guarantees that the dual optimum is attained (if p⋆ > −∞)

• can be sharpened: e.g., can replace intD with relintD (interior
relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

• there exist many other types of constraint qualifications

Duality 5–11

Inequality form LP

primal problem
minimize cTx
subject to Ax � b

dual function

g(λ) = inf
x

(

(c + ATλ)Tx − bTλ
)

=

{

−bTλ ATλ + c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ + c = 0, λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ except when primal and dual are infeasible
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Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax � b

dual function

g(λ) = inf
x

(

xTPx + λT (Ax − b)
)

= −
1

4
λTAP−1ATλ − bTλ

dual problem

maximize −(1/4)λTAP−1ATλ − bTλ
subject to λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ always

Duality 5–13

A nonconvex problem with strong duality

minimize xTAx + 2bTx
subject to xTx ≤ 1

A 6� 0, hence nonconvex

dual function: g(λ) = infx(xT (A + λI)x + 2bTx − λ)

• unbounded below if A + λI 6� 0 or if A + λI � 0 and b 6∈ R(A + λI)

• minimized by x = −(A + λI)†b otherwise: g(λ) = −bT (A + λI)†b − λ

dual problem and equivalent SDP:

maximize −bT (A + λI)†b − λ
subject to A + λI � 0

b ∈ R(A + λI)

maximize −t − λ

subject to

[

A + λI b
bT t

]

� 0

strong duality although primal problem is not convex (not easy to show)
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Complementary slackness

assume strong duality holds, x⋆ is primal optimal, (λ⋆, ν⋆) is dual optimal

f0(x
⋆) = g(λ⋆, ν⋆) = inf

x

(

f0(x) +

m
∑

i=1

λ⋆
i fi(x) +

p
∑

i=1

ν⋆
i hi(x)

)

≤ f0(x
⋆) +

m
∑

i=1

λ⋆
i fi(x

⋆) +

p
∑

i=1

ν⋆
i hi(x

⋆)

≤ f0(x
⋆)

hence, the two inequalities hold with equality

• x⋆ minimizes L(x, λ⋆, ν⋆)

• λ⋆
i fi(x

⋆) = 0 for i = 1, . . . , m (known as complementary slackness):

λ⋆
i > 0 =⇒ fi(x

⋆) = 0, fi(x
⋆) < 0 =⇒ λ⋆

i = 0

Duality 5–17

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. primal constraints: fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p

2. dual constraints: λ � 0

3. complementary slackness: λifi(x) = 0, i = 1, . . . , m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m
∑

i=1

λi∇fi(x) +

p
∑

i=1

νi∇hi(x) = 0

from page 5–17: if strong duality holds and x, λ, ν are optimal, then they
must satisfy the KKT conditions
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KKT conditions for convex problem

if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

• from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes optimality condition ∇f0(x) = 0 for unconstrained problem

Duality 5–19

example: water-filling (assume αi > 0)

minimize −
∑n

i=1 log(xi + αi)
subject to x � 0, 1Tx = 1

x is optimal iff x � 0, 1Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ � 0, λixi = 0,
1

xi + αi
+ λi = ν

• if ν < 1/αi: λi = 0 and xi = 1/ν − αi

• if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

• determine ν from 1Tx =
∑n

i=1 max{0, 1/ν − αi} = 1

interpretation

• n patches; level of patch i is at height αi

• flood area with unit amount of water

• resulting level is 1/ν⋆

i

1/ν⋆

xi

αi
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Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

maximize g(λ, ν)
subject to λ � 0

perturbed problem and its dual

min. f0(x)
s.t. fi(x) ≤ ui, i = 1, . . . ,m

hi(x) = vi, i = 1, . . . , p

max. g(λ, ν) − uTλ − vTν
s.t. λ � 0

• x is primal variable; u, v are parameters

• p⋆(u, v) is optimal value as a function of u, v

• we are interested in information about p⋆(u, v) that we can obtain from
the solution of the unperturbed problem and its dual

Duality 5–21

global sensitivity result

assume strong duality holds for unperturbed problem, and that λ⋆, ν⋆ are
dual optimal for unperturbed problem

apply weak duality to perturbed problem:

p⋆(u, v) ≥ g(λ⋆, ν⋆) − uTλ⋆ − vTν⋆

= p⋆(0, 0) − uTλ⋆ − vTν⋆

sensitivity interpretation

• if λ⋆
i large: p⋆ increases greatly if we tighten constraint i (ui < 0)

• if λ⋆
i small: p⋆ does not decrease much if we loosen constraint i (ui > 0)

• if ν⋆
i large and positive: p⋆ increases greatly if we take vi < 0;

if ν⋆
i large and negative: p⋆ increases greatly if we take vi > 0

• if ν⋆
i small and positive: p⋆ does not decrease much if we take vi > 0;

if ν⋆
i small and negative: p⋆ does not decrease much if we take vi < 0
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local sensitivity: if (in addition) p⋆(u, v) is differentiable at (0, 0), then

λ⋆
i = −

∂p⋆(0, 0)

∂ui
, ν⋆

i = −
∂p⋆(0, 0)

∂vi

proof (for λ⋆
i ): from global sensitivity result,

∂p⋆(0, 0)

∂ui
= lim

tց0

p⋆(tei, 0) − p⋆(0, 0)

t
≥ −λ⋆

i

∂p⋆(0, 0)

∂ui
= lim

tր0

p⋆(tei, 0) − p⋆(0, 0)

t
≤ −λ⋆

i

hence, equality

p⋆(u) for a problem with one (inequality)
constraint: u

p⋆(u)

p⋆(0) − λ⋆u

u = 0

Duality 5–23

Duality and problem reformulations

• equivalent formulations of a problem can lead to very different duals

• reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

• introduce new variables and equality constraints

• make explicit constraints implicit or vice-versa

• transform objective or constraint functions

e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

minimize f0(Ax + b)

• dual function is constant: g = infx L(x) = infx f0(Ax + b) = p⋆

• we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize f0(y)
subject to Ax + b − y = 0

maximize bTν − f∗
0 (ν)

subject to ATν = 0

dual function follows from

g(ν) = inf
x,y

(f0(y) − νTy + νTAx + bTν)

=

{

−f∗
0 (ν) + bTν ATν = 0

−∞ otherwise

Duality 5–25

norm approximation problem: minimize ‖Ax − b‖

minimize ‖y‖
subject to y = Ax − b

can look up conjugate of ‖ · ‖, or derive dual directly

g(ν) = inf
x,y

(‖y‖ + νTy − νTAx + bTν)

=

{

bTν + infy(‖y‖ + νTy) ATν = 0
−∞ otherwise

=

{

bTν ATν = 0, ‖ν‖∗ ≤ 1
−∞ otherwise

(see page 5–4)

dual of norm approximation problem

maximize bTν
subject to ATν = 0, ‖ν‖∗ ≤ 1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize cTx
subject to Ax = b

−1 � x � 1

maximize −bTν − 1Tλ1 − 1Tλ2

subject to c + ATν + λ1 − λ2 = 0
λ1 � 0, λ2 � 0

reformulation with box constraints made implicit

minimize f0(x) =

{

cTx −1 � x � 1

∞ otherwise
subject to Ax = b

dual function

g(ν) = inf
−1�x�1

(cTx + νT (Ax − b))

= −bTν − ‖ATν + c‖1

dual problem: maximize −bTν − ‖ATν + c‖1
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Problems with generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p

�Ki
is generalized inequality on Rki

definitions are parallel to scalar case:

• Lagrange multiplier for fi(x) �Ki
0 is vector λi ∈ Rki

• Lagrangian L : Rn × Rk1 × · · · × Rkm × Rp → R, is defined as

L(x, λ1, · · · , λm, ν) = f0(x) +

m
∑

i=1

λT
i fi(x) +

p
∑

i=1

νihi(x)

• dual function g : Rk1 × · · · × Rkm × Rp → R, is defined as

g(λ1, . . . , λm, ν) = inf
x∈D

L(x, λ1, · · · , λm, ν)
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lower bound property: if λi �K∗
i

0, then g(λ1, . . . , λm, ν) ≤ p⋆

proof: if x̃ is feasible and λ �K∗
i

0, then

f0(x̃) ≥ f0(x̃) +

m
∑

i=1

λT
i fi(x̃) +

p
∑

i=1

νihi(x̃)

≥ inf
x∈D

L(x, λ1, . . . , λm, ν)

= g(λ1, . . . , λm, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ1, . . . , λm, ν)

dual problem

maximize g(λ1, . . . , λm, ν)
subject to λi �K∗

i
0, i = 1, . . . , m

• weak duality: p⋆ ≥ d⋆ always

• strong duality: p⋆ = d⋆ for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)

Duality 5–29

Semidefinite program

primal SDP (Fi, G ∈ Sk)

minimize cTx
subject to x1F1 + · · · + xnFn � G

• Lagrange multiplier is matrix Z ∈ Sk

• Lagrangian L(x, Z) = cTx + tr (Z(x1F1 + · · · + xnFn − G))

• dual function

g(Z) = inf
x

L(x, Z) =

{

− tr(GZ) tr(FiZ) + ci = 0, i = 1, . . . , n
−∞ otherwise

dual SDP

maximize − tr(GZ)
subject to Z � 0, tr(FiZ) + ci = 0, i = 1, . . . , n

p⋆ = d⋆ if primal SDP is strictly feasible (∃x with x1F1 + · · ·+ xnFn ≺ G)
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Convex Optimization — Boyd & Vandenberghe

12. Interior-point methods

• inequality constrained minimization

• logarithmic barrier function and central path

• barrier method

• feasibility and phase I methods

• complexity analysis via self-concordance

• generalized inequalities

12–1

Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(1)

• fi convex, twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained

Interior-point methods 12–2



Examples

• LP, QP, QCQP, GP

• entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi

subject to Fx � g
Ax = b

with dom f0 = Rn
++

• differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or ℓ∞-norm approximation via LP

• SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)

Interior-point methods 12–3

Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) = ∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x) − (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a
smooth approximation of I−

• approximation improves as t→ ∞

u
−3 −2 −1 0 1

−5

0

5

10
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logarithmic barrier function

φ(x) = −
m

∑

i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

• convex (follows from composition rules)

• twice continuously differentiable, with derivatives

∇φ(x) =

m
∑

i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m
∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)

T +

m
∑

i=1

1

−fi(x)
∇2fi(x)

Interior-point methods 12–5

Central path

• for t > 0, define x⋆(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x⋆(t) exists and is unique for each t > 0)

• central path is {x⋆(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx⋆(t) is tangent to
level curve of φ through x⋆(t)

c

x⋆ x⋆(10)

Interior-point methods 12–6
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Dual points on central path

x = x⋆(t) if there exists a w such that

t∇f0(x) +

m
∑

i=1

1

−fi(x)
∇fi(x) +ATw = 0, Ax = b

• therefore, x⋆(t) minimizes the Lagrangian

L(x, λ⋆(t), ν⋆(t)) = f0(x) +

m
∑

i=1

λ⋆
i (t)fi(x) + ν⋆(t)T (Ax− b)

where we define λ⋆
i (t) = 1/(−tfi(x

⋆(t)) and ν⋆(t) = w/t

• this confirms the intuitive idea that f0(x
⋆(t)) → p⋆ if t→ ∞:

p⋆ ≥ g(λ⋆(t), ν⋆(t))

= L(x⋆(t), λ⋆(t), ν⋆(t))

= f0(x
⋆(t)) −m/t

Interior-point methods 12–7

Interpretation via KKT conditions

x = x⋆(t), λ = λ⋆(t), ν = ν⋆(t) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m
∑

i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.

2. Update. x := x⋆(t).

3. Stopping criterion. quit if m/t < ǫ.

4. Increase t. t := µt.

• terminates with f0(x) − p⋆ ≤ ǫ (stopping criterion follows from
f0(x

⋆(t)) − p⋆ ≤ m/t)

• centering usually done using Newton’s method, starting at current x

• choice of µ involves a trade-off: large µ means fewer outer iterations,
more inner (Newton) iterations; typical values: µ = 10–20

• several heuristics for choice of t(0)

Interior-point methods 12–11

Convergence analysis

number of outer (centering) iterations: exactly

⌈

log(m/(ǫt(0)))

logµ

⌉

plus the initial centering step (to compute x⋆(t(0)))

centering problem

minimize tf0(x) + φ(x)

see convergence analysis of Newton’s method

• tf0 + φ must have closed sublevel sets for t ≥ t(0)

• classical analysis requires strong convexity, Lipschitz condition

• analysis via self-concordance requires self-concordance of tf0 + φ
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations
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• starts with x on central path (t(0) = 1, duality gap 100)

• terminates when t = 108 (gap 10−6)

• centering uses Newton’s method with backtracking

• total number of Newton iterations not very sensitive for µ ≥ 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log
(

∑5
k=1 exp(aT

0kx+ b0k)
)

subject to log
(

∑5
k=1 exp(aT

ikx+ bik)
)

≤ 0, i = 1, . . . ,m

Newton iterations
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family of standard LPs (A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances

m
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number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(3)

• if x, s feasible, with s < 0, then x is strictly feasible for (2)

• if optimal value p̄⋆ of (3) is positive, then problem (2) is infeasible

• if p̄⋆ = 0 and attained, then problem (2) is feasible (but not strictly);
if p̄⋆ = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase I method

minimize 1Ts
subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m

Ax = b

for infeasible problems, produces a solution that satisfies many more
inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

bi − aT
i xmax

n
u
m

b
er
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0

20
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b
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60

bi − aT
i xsum

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 solutions
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example: family of linear inequalities Ax � b+ γ∆b

• data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0

• use basic phase I, terminate when s < 0 or dual objective is positive
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number of iterations roughly proportional to log(1/|γ|)
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Complexity analysis via self-concordance

same assumptions as on page 12–2, plus:

• sublevel sets (of f0, on the feasible set) are bounded

• tf0 + φ is self-concordant with closed sublevel sets

second condition

• holds for LP, QP, QCQP

• may require reformulating the problem, e.g.,

minimize
∑n

i=1 xi log xi

subject to Fx � g
−→ minimize

∑n
i=1 xi log xi

subject to Fx � g, x � 0

• needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

#Newton iterations ≤ µtf0(x) + φ(x) − µtf0(x
+) − φ(x+)

γ
+ c

• bound on effort of computing x+ = x⋆(µt) starting at x = x⋆(t)

• γ, c are constants (depend only on Newton algorithm parameters)

• from duality (with λ = λ⋆(t), ν = ν⋆(t)):

µtf0(x) + φ(x) − µtf0(x
+) − φ(x+)

= µtf0(x) − µtf0(x
+) +

m
∑

i=1

log(−µtλifi(x
+)) −m logµ

≤ µtf0(x) − µtf0(x
+) − µt

m
∑

i=1

λifi(x
+) −m−m logµ

≤ µtf0(x) − µtg(λ, ν) −m−m logµ

= m(µ− 1 − logµ)
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total number of Newton iterations (excluding first centering step)

#Newton iterations ≤ N =

⌈

log(m/(t(0)ǫ))

logµ

⌉(

m(µ− 1 − logµ)

γ
+ c

)

µ

N

1 1.1 1.2
0

1 104

2 104

3 104

4 104

5 104

figure shows N for typical values of γ, c,

m = 100,
m

t(0)ǫ
= 105

• confirms trade-off in choice of µ

• in practice, #iterations is in the tens; not very sensitive for µ ≥ 10
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polynomial-time complexity of barrier method

• for µ = 1 + 1/
√
m:

N = O

(√
m log

(

m/t(0)

ǫ

))

• number of Newton iterations for fixed gap reduction is O(
√
m)

• multiply with cost of one Newton iteration (a polynomial function of
problem dimensions), to get bound on number of flops

this choice of µ optimizes worst-case complexity; in practice we choose µ
fixed (µ = 10, . . . , 20)
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Generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
Ax = b

• f0 convex, fi : Rn → Rki, i = 1, . . . ,m, convex with respect to proper
cones Ki ∈ Rki

• fi twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible; hence strong duality holds and
dual optimum is attained

examples of greatest interest: SOCP, SDP
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Generalized logarithm for proper cone

ψ : Rq → R is generalized logarithm for proper cone K ⊆ Rq if:

• domψ = intK and ∇2ψ(y) ≺ 0 for y ≻K 0

• ψ(sy) = ψ(y) + θ log s for y ≻K 0, s > 0 (θ is the degree of ψ)

examples

• nonnegative orthant K = Rn
+: ψ(y) =

∑n
i=1 log yi, with degree θ = n

• positive semidefinite cone K = Sn
+:

ψ(Y ) = log detY (θ = n)

• second-order cone K = {y ∈ Rn+1 | (y2
1 + · · · + y2

n)1/2 ≤ yn+1}:

ψ(y) = log(y2
n+1 − y2

1 − · · · − y2
n) (θ = 2)

Interior-point methods 12–24
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properties (without proof): for y ≻K 0,

∇ψ(y) �K∗ 0, yT∇ψ(y) = θ

• nonnegative orthant Rn
+: ψ(y) =

∑n
i=1 log yi

∇ψ(y) = (1/y1, . . . , 1/yn), yT∇ψ(y) = n

• positive semidefinite cone Sn
+: ψ(Y ) = log detY

∇ψ(Y ) = Y −1, tr(Y∇ψ(Y )) = n

• second-order cone K = {y ∈ Rn+1 | (y2
1 + · · · + y2

n)1/2 ≤ yn+1}:

ψ(y) =
2

y2
n+1 − y2

1 − · · · − y2
n









−y1
...

−yn

yn+1









, yT∇ψ(y) = 2
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Logarithmic barrier and central path

logarithmic barrier for f1(x) �K1 0, . . . , fm(x) �Km 0:

φ(x) = −
m

∑

i=1

ψi(−fi(x)), domφ = {x | fi(x) ≺Ki
0, i = 1, . . . ,m}

• ψi is generalized logarithm for Ki, with degree θi

• φ is convex, twice continuously differentiable

central path: {x⋆(t) | t > 0} where x⋆(t) solves

minimize tf0(x) + φ(x)
subject to Ax = b
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Dual points on central path

x = x⋆(t) if there exists w ∈ Rp,

t∇f0(x) +

m
∑

i=1

Dfi(x)
T∇ψi(−fi(x)) +ATw = 0

(Dfi(x) ∈ Rki×n is derivative matrix of fi)

• therefore, x⋆(t) minimizes Lagrangian L(x, λ⋆(t), ν⋆(t)), where

λ⋆
i (t) =

1

t
∇ψi(−fi(x

⋆(t))), ν⋆(t) =
w

t

• from properties of ψi: λ
⋆
i (t) ≻K∗

i
0, with duality gap

f0(x
⋆(t)) − g(λ⋆(t), ν⋆(t)) = (1/t)

m
∑

i=1

θi
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example: semidefinite programming (with Fi ∈ Sp)

minimize cTx
subject to F (x) =

∑n
i=1 xiFi +G � 0

• logarithmic barrier: φ(x) = log det(−F (x)−1)

• central path: x⋆(t) minimizes tcTx− log det(−F (x)); hence

tci − tr(FiF (x⋆(t))−1) = 0, i = 1, . . . , n

• dual point on central path: Z⋆(t) = −(1/t)F (x⋆(t))−1 is feasible for

maximize tr(GZ)
subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0

• duality gap on central path: cTx⋆(t) − tr(GZ⋆(t)) = p/t
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.

2. Update. x := x⋆(t).

3. Stopping criterion. quit if (
P

i θi)/t < ǫ.

4. Increase t. t := µt.

• only difference is duality gap m/t on central path is replaced by
∑

i θi/t

• number of outer iterations:

⌈

log((
∑

i θi)/(ǫt
(0)))

logµ

⌉

• complexity analysis via self-concordance applies to SDP, SOCP
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Examples

second-order cone program (50 variables, 50 SOC constraints in R6)

Newton iterations
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semidefinite program (100 variables, LMI constraint in S100)

Newton iterations

d
u
al

it
y

ga
p

µ = 2µ = 50µ = 150

0 20 40 60 80 100

10−6

10−4

10−2

100

102

µ

N
ew

to
n

it
er

at
io

n
s

0 20 40 60 80 100 120

20

60

100

140

Interior-point methods 12–30



family of SDPs (A ∈ Sn, x ∈ Rn)

minimize 1Tx
subject to A+ diag(x) � 0

n = 10, . . . , 1000, for each n solve 100 randomly generated instances
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

• update primal and dual variables at each iteration; no distinction
between inner and outer iterations

• often exhibit superlinear asymptotic convergence

• search directions can be interpreted as Newton directions for modified
KKT conditions

• can start at infeasible points

• cost per iteration same as barrier method
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