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The general inequality constrained convex minimization problem is

minimize  f(x)
subject to  gi(x) <0, i=1,...,m (4.105)
Ax=0b

where f as well as the g;'s are convex and twice continuously differentiable. .
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HOMEWORK: IDENTIFY NON-AFFINE hj(x)=0 that yields
a convex domain.
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K.={A: AE >0V € K} is the cone dual to K
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eorem 1.2.F [Duality Theorem in Linear Programming| Consider a linear programming
progran
min {.zf'"r Ar > E:} (LP)
along with its dual
ma {17y | ATy = e, > 0 (LP*)

Then
1) The duality is symmetric: the problem dual to dual is equivalent to the primal;

2) The value of the dual objective at every dual feasible solution iz < the value of the primal
objective at every primal feasible solution \
3) The follounng 5 properties are equivalent to each other:

(i) The primal & feasible and bounded below.
(ii) The dual is M and bounded above.

(iii) The primal i
(iv) The dual i

?L__."\7 has O se\n
L€ N&X> o =\

Whenever (i) = (ii) = (iii) = (iv) = (v) is the case, the optimal values of the primal and the dua1

roblems are equal to each other. ‘S’Qm q ARy - (2\ ..\. (?)
- 7
ﬁoa{ Og < 1) g;m ’)agc R fS/ gf:ttpj\//ll\(/)v&/vcv:/)%.\ilsgpet.%%tfech.edu/~ nemirovs/L
Proof. 1) is quite straightforward: writing the dual problem (LP*) in our standard form, we

Eet
Iin 0
AT y— (—r.') 0%,
—AT r

where [, is the m-dimensional unit matrix. Applying the duality transformation to the latter
problem, we come to the problem

(v) Both primal and dual are feasible.

p T
min 4 —b" 1
L )

£ =0
T T \T n o= 0
max ) 78 +c n+(—c) f‘ ¢ =0 [
E—An+ A = —b

which 5 clearly equivalent to (LP) (set 2 = v — ).
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Theorem 2.1. Assuming A in (CP) is of full column rank, the following is true:

(i) The duality is symmetric: (D) is a conie problem, and the conie dual to (D)
s (equivalent to) (CP);

(ii) [weak duality] Opt(D) < Opt(CP);

(iii) [strong duality] If one of the programs (CP), (D) is bounded and strictly
feasible (i.e., the corresponding affine plane intersects the interior of the associated
cone), then the other is solvable and Opt(CP) = Opt(D). If both (CP). (D) are
strictly feasible, then both programs are solvable and Opt(CP) = Opt(D):

(iv) [optimality conditions] Assume that both (CP), (D) are |strictly feasible.
Then a patr (x,A) of feasible solutions to the problem is comprised of optima

solutions iff ¥ > = b7\ (Szere dualitipgap ™). same as iff \T[Ax — b] = 0 (Feoms
plementary slackness”™).
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Convex Optimization — Boyd & Vandenberghe

5. Duality

e Lagrange dual problem

e weak and strong duality

e geometric interpretation

e optimality conditions

e perturbation and sensitivity analysis
e examples

e generalized inequalities

Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m
—0.

variable z € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R” — R, with dom L = D x R™ x R?,
m p
L(z, A\ v) = folx) + > Nifilx) + > vihi(x)
i=1 i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(z) <0

e v; is Lagrange multiplier associated with h;(x) =0

Duality
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Lagrange dual function [ (x,) ) S fol)
Lagrange dual function: ¢ : R™ x R” — R, g | (}'4“) <§, ()
(2 ) of o) = mprea Gromgy
ot (fo(w) DRUCES uihi@c))

g is concave, can be —oo for some A, v

lower bound property: if A\ = 0, then g(\,v) < p*
Weak

proof: if x is feasible and A > 0, then
A.m\:lj

((U.S} et

minimizing over all feasible Z gives p* > g(\,v) &Q."\\‘(_‘X\(‘O

fO(i') > L(f,)\,l/) > lglf)L(I7)‘7V) = g()‘v V)
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Least-norm solution of linear equations

minimize ZC’TLC

subject to Ax =1b *utb

dual function Lat(A(\J 4 &n SubCE‘l -
L e d T

e Lagrangian is L(z,v) = aTx + vT(Ax — b)

Hial® ‘?‘Ul?'(a‘ .

find  prinal vars
ﬂ f} d.xod \IQN;

—(1/20A"v

e to minimize L over z, set gradient equal to zero:
Vol(z,v) =20 +ATv =0 = z'=

Pr of win en YV, L, )
,2_I>O

e plug in in L to obtain g:

/%Qz) = L((—1/2)ATV, v) = —ZVTAATV — Ty

Lagranq ¢ wn[
a concave function of v

lower bound iroperty: p* > —(1/4)vTAATY — b1y ff;.r all v
W fac “Swex alp)= L'[AA 2 can
i EE VA R (0 AR K
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e 06/11/2013. For the problem of least norm solution of linear equations (page no
13), show that A is an m X n matrix with m < n and if A has full row rank, strong
duality holds, that is, there exists a point x satisfying the primal constraints such
that the lower bound obtained using weak duality is actually attained. Hint: Refer

to this. Deadline: 8th November.
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Standard form LP

minimize ¢’z
subjectto Axr =0, x>0
dual function
e Lagrangian is
Lz, \v) = cTe+vT(Ax—b) -z
= bvt(c+ATv - Nz

e [ is linear in x, hence

Ty ATy —AN4+¢=0

g\ v) = igfL(at, Av) = { —00  otherwise

g is linear on affine domain {(\,v) | ATv — X\ + ¢ = 0}, hence concave

lower bound property: p* > —bTv if ATv+c¢ >0

Duality

Equality constrained norm minimization
minimize  ||z||
subject to Ax =1b

dual function

Vv ||ATv|. <1

g(y) - Hzl;f<||xH B VTA:E * bTV) - { —oo  otherwise

where [[v[|. = supj, <, v v is dual norm of || - |

proof: follows from inf,(||z|| — yTx) = 0 if ||y|l« < 1, —oo otherwise
o if ||y« <1, then ||z| — yTx > 0 for all z, with equality if z =0

o if ||y« > 1, choose = = tu where [Ju| <1, uTy = ||y||« > 1:
] = y" & = t(|Jull = [lyll.) = —o0 ast— oo

lower bound property: p* > bTv if |[ATy|, <1

Duality
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Two-way partitioning

.. . T - “%
minimize x' Wax
_ ) , % Mls
subjectto x?=1, i=1,...,n se‘, \ s 2
e a nonconvex problem; feasible set contains 2" discrete points xz: ! X L
e interpretation: partition {1,...,n} in two sets; W;; is cost of assigning
i, j to the same set; —1¥V/;; is cost of assigning to different sets
L
dual function
g(v) = inf(zTWa + Z vi(z? — 1)) = infa? (W + diag(v))z — 17v
X X
i

B —1Ty W + diag(v) = 0
o —00 otherwise

lower bound property: p* > —17v if W + diag(v) = 0
example: v = —Apin (W)1 gives bound p* > nApin (W)

o Chidy U connechtn  betoeen ©
& X v 0ff b

W
Lagrange dual and conjugate function 03

minimize  fo(x)
subject to Ax <Xb, Cx=d

dual function

ghv) = i ; (folz) + (ATA+CTv) e — "X —d"v)
redom fo

= —f3(=ATXN=CTv) —bT"A —d"v

e recall definition of conjugate f*(y) = sup,edom s (¥" = — f(x))

e simplifies derivation of dual if conjugate of fj is kown

example: entropy maximization

folz) =) wilogzs,  fily) =) e
=1 i=1

Duality 5-8



The dual problem
Lagrange dual problem

maximize  g(\,v)
subjectto A >0

finds best lower bound on p*, obtained from Lagrange dual function

e a convex optimization problem; optimal value denoted d*

A, v are dual feasible if A = 0, (\,v) € domg

often simplified by making implicit constraint (A, ) € dom g explicit

example: standard form LP and its dual (page 5-5)

minimize 'z maximize —blv
subject to Ax =1b subject to ATv +c¢>=0
x>0

Duality 5-9

Weak and strong duality
weak duality: d* < p*
e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —1Tv
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 5-7

strong duality: d* = p*
e does not hold in general
e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint cyifications

fov LP: Feasibil, > for Conic Png® Skact Feasibilg
PR BIRE | T ome bog: Shed



Slater’s constraint qualification

strong duality holds for a convex problem

minimize  fo(x)

1D  “aubjectto fi(z)<0, i=1,...,m

Ax =

if it is strictly feasible, i.e.,

dr €int D : filx) <0, i=1,...,m, Ar =10

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened: e.g., can replace int D with relint D (interior

relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . . Y N
S

there exist many other types of constraint qualifications

. \ - ' o.\'\d‘n
[Teesf of Swoney Aualiky unde~ coniant 4{up.\.§\c
I 53 1 235 e 8 v Lok

Inequality form LP

primal problem
minimize ¢’z

subject to Ax <b

dual function

g(A) =inf ((c + ATy — bT)\) —

x —00 otherwise

{ —bIN ATA+c=0

dual problem
maximize —bT\
subjectto ATA4+c=0, A>=0

e from Slater’'s condition: p* = d* if Az < b for some &

e in fact, p* = d* except when primal and dual are infeasible

Duality 5-12



Quadratic program

primal problem (assume P € S”/ )
minimize 2T Pz

subject to JAx <b !/1

1
—ZATAP_lATA — T\

dual function

g(\) = inf (27 Pz + AT (Az — b)) =

xT

dual problem
maximize —(1/4)ATAP7L1ATX — b\
subjectto A >0

e from Slater’s condition: p* = d* it Ax < b for some &

e in fact, p* = d* always

Duality

A nonconvex problem with strong duality

minimize 2l Az +2bTx
subject to zTx <1
A % 0, hence nonconvex
dual function: g(\) = inf, (27 (A + M)z + 272 — \)
e unbounded below if A+ A # 0orif A+ A = 0and b€ R(A+ \I)
e minimized by z = —(A + \I)Tb otherwise: g(\) = —bT (A + XI)Th — \

dual problem and equivalent SDP:

maximize —bT (A + AI)Th— A maximize —t — A
subjectto A+ A >0 : A+ b
beR(A+ ) subject to [ Tt } =0

strong duality although primal problem is not convex (not easy to show)

Duality
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min f(x)
xeD (48[}
subject to g;(x) <0,i=1,2,.

"
D\ (aq o con e exgueed

The AM-\ (5 06 a\jci)<o 4-}\J(x)<o
ACH el (4.81)

subject to A >0
wnede:  L7(A) =minL(x, ) = minf(x) + A" g(x)
vy swilat o
(et @4‘5‘?% }?
" .ﬂ e!j“\"‘“‘

T={(8,z)|s8€eR™, ze R, IxeD with g;(x) <s V1i<i<m, f(x)<:z}

Nexw: I T C\ Niah

?\6\; \- Example of the set 7 for a single constraint (i.e., for n = 1).
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Let us define a hyerplane H) ,, parametrized by A € ™ and a € R
Hw=4(5:2) |}LT,5 tz=a}
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max Y

subject to Hy 27T

' @ONT
Whese ﬁ;é s The ‘nm\g sYaCQ A
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HI,{:E = {(5-.3) MT-E +z > mf}

By definitions of 7, HI ., and the subset relation.

l

max 3]

subject to  AT.s+z>aV(s,2) €T
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Imax Y

subject to Als+z>aV(s,z)eT

A>0
18) Uswa e ’Sauc\ Mol eve ook, 0‘0
Q 0 N\-0L ust \o—;3 “S,s‘

(we 80.\ M’W- %o\\b\b.\“\s Q,U\u'\\; o\e(\"c D'Y‘\{\VNSO)(\V‘)
d?fo\o\un'.

max o
subject to A.g(x)+ f(x) > aVxeD

’O A>0
Qeca\\wﬁ Ak LK )= 7\3@) 1§ | e oetdo



m: 8!
CH
subject to L(x,A\)>aVxeD

A>0

Since, L*(\) = Elei%L(x, A), we can deal with (qulm\efd\:b

max Qv
(7).
subject to L*(A) > «
A>0

This problem can be restated as

max L*(\)
AN
subject to A > O

This is precisely the dual problem.

@\b\au\c "5 t%ge&r u% Cm\\feﬁt\?) ﬂg T on
Qo \etween rﬁv\md L dudl’?



1 %@.’(Q COL)LD % C~
NNCU'S\\IQ’J: /? 8'6\? bW edn (OIS\) ond

Dyl gop CO l . ‘_)

\ iade (we Can ReVER
- ‘1 | P oY o
(0.a,) J~ s 5“? OONI exist
@) |\ \
i | ]
H:}E.I-H:IEH; 2, _- % ’
Well hz‘mw@b\ cowex L 7 No daa\\‘c\\} %ﬁf
\ L2

\
(0,e) 7 N




Nb\( ue\\—(oe‘homd onwver L Cozs in fna

cose 05' Sc,mie&c&m’te— T&m9>'j7(xa
ch m\%\\‘ 51115\{

Ill\ ! D‘aalir} gap
(0,8,) H"'* | J
{“'."H]} H‘%}""'----------.--._________________
-...llll'..
.'w.,‘.
1"'..
\._l"ll-..
S . J'i'1




Necessau conditions ,fa-;
¢ oS YOINe OYI;\ mo-\?\':) ' [rge 284 onvads

QS’ http://www.cse.iitb.ac.in/~ CS709/notes/BasicsOf ConvexOptimization.pdf }

g1(x)=0

£=105
/=104

L 4
Vg,
£ =102

f£=101

Figure 4.39: At any non-optimal and non-saddle point of the equality con-
strained problem, the gradient of the constraint will not be parallel to that of
the function.



vf

g(x)=0
v F=105
£l f=104
F=103
f=102

F=101

Figure 4.40: At the equality constrained optimum, the gradient of the constraint
must be parallel to that of the function.

The necessary condition for an optimum at x* for the optimization problem
in (4.75) with m = 1 can be stated as in (4.76), where the gradient is now n+1

dimensional with its last component being a partial derivative with respect to

A.

VL(x",\*) = Vf(x*) + A"Vgy(x*) = 0 (4.76)

S: ol aloouk 'ma\)c‘ﬂv. Qﬂu\\g
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We will extend the necessary condition for optimality of a minimization
problem with single constraint to minimization problems with multiple equality
constraints (i.e., m > 1. in (4.75)). Let & be the subspace spanned by Vg;(x)
at any point x and let &1 be its orthogonal complement. Let (Vf)1 be the
component of V f in the subspace §1. At any solution x*, it must be true that
the gradient of f has (V f)1 = 0 (i.e., no components that are perpendicular to
all of the Vg;), because otherwise yvou could move x* a little in that direction
(or in the opposite direction) to increase (decrease) f without changing any
of the g;, i.e. without violating any constraints. Hence for multiple equality
constraints, it must be true that at the solution x*. the space & contains the
vector Vf, i.e., there are some constants A; such that V f(x*) = \;Vg;(x*).
We also need to impose that the solution is on the correct constraint surface
(i.e., g; = 0, ¥i). In the same manner as in the case of m = 1, this can

m
be encapsulated by introducing the Lagrangian L(x, A) = f(x) — Z Aigi(X),
=

whose gradient with respect to both x. and A vanishes at the solution.
This gives us the following necessary condition for optimality of (4.75):

VL(x*\*) =V | f(x) - ilig.g{x] =0 (4.77)

i} :
levespechee of comeill of L) o

4:(x)
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Now consider the general inequality constrained minimization probler

min f(x)

subject to ¢;(x) <0 i=1,2,...,m

See S:l%w(( beXow /9‘5 e Cose J;ms\

gi(x) <0
g1(x)=0

g1(x) >0

Ve, F=105
f=104

£=103
£=102

£=101

Figure 4.41: At the inequality constrained optimum, the gradient of the con-
straint must be parallel to that of the function.
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With multiple inequality constraints, for constraints that are active, as in the
case of multiple equality constraints, V f must lie in the space spanned by the

T

Vgi's, and if the Lagrangian is L = f + E Aigi, then we must additionally
g=1

have A; = (), Vi (since otherwise f could be reduced by moving into the feasible

region). As for an inactive constraint g; (g; < 0), removing g; from L makes

Tt
no difference and we can drop Ng; from Vf = — E AiVg; or equivalently set

i=1
A; = 0. Thus, the above KKT condition generalizes to A;gi(x*) = 0, Vi. The
necessary condition for optimality of (4.78) is summarily given as

VL(x*,\") =V (f{x] -3 .lfy,-lfx}) =0
=1

Vi Aigi(x) =0 (4.79)
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min f(x)

subject to gi(x) =0, i=1...,m (4.85)
filx) =0, Jj=1...ip
variable x = (21,...,%a)

Suppose that the primal and dual optimal values for the above problem are
attained and equal, that is, strong duality holds. Let X be a primal optimal and
(A, ) be a dual optimal point (A € ™, g € ®P). Thus,

f® =L"(\j)
= minf(x) + ATg(x) + A h(x)
< f(®) + ATg(R) + iTh(R)
< f(®)

The last inequality follows from the fact that X > 0, g(%) < 0, and h(X) = 0.
We can therefore conclude that the two inequalities in this chain must hold with
equality. Some of the conclusions that we can draw from this chain of equalities
are



Necessawy Condiitens S

0?13"\0&\ of onstramed
or-}m\SZa on dvoblem aAxe

celled X KT Condttions

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

primal constraints: f;(x) <0,i=1,...,m, hi(z)=0,1=1,...,p
dual constraints: A > 0

complementary slackness: \;f;(z) =0,i=1,...,m

= W b=

gradient of Lagrangian with respect to = vanishes:

m p
1=1 =1

from page 5-17: if strong duality holds and =, A, v are optimal, then they
must satisfy the KKT conditions

Duality 5-18



Complementary slackness

assume strong duality holds, x* is primal optimal, (A\*, v*) is dual optimal
P
foa*) = gO\v7) = inf ( )+ Z NIOEDS u;hi<x>>
i=1
< Jfo(z®) + Z Aifi(@") + Z vihi(z
i=1 i=1

fo(z7)

IA

hence, the two inequalities hold with equality
e z* minimizes L(xz, \*,v*)

o \fi(x*)=0fori=1,...,m (known as complementary slackness):

AN>0= fi(z*) =0, filz*)<0= N\ =0

Necessarny | conditions

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. primal constraints: f;(x) <0,i=1,...,m, hy(x)=0,i=1,...,p
dual constraints: A > 0

complementary slackness: \;f;(z) =0,i=1,...,m

= W

gradient of Lagrangian with respect to = vanishes:

V fol +Z)\ Vfi(x +Zyzw

from page 5-17: if strong duality holds and x, A, v are optimal, then they
must satisfy the KKT conditions

Duality 5-18




(Svgg‘(\'-‘\% .aKKT conditions for convex problem

if &, \, U satisfy KKT for a convex problem, then they are optimal:

e from complementary slackness: fy(Z) = L(&, A, D)

e from 4th condition (and convexity): g(\,7) = L(Z, \, D)

hence, fo(&) = g(\, ) $

if Slater’s condition is satisfied:

x is optimal if and only if there exist A\, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fo(x) = 0 for unconstrained problem

Duality 5-19

example: water-filling (assume a; > 0)

minimize  — Y7  log(x; + a;)
subjectto >0, 1Tz =1
x is optimal iff z > 0, 17z = 1, and there exist A € R”, v € R such that

1
l’i—FOéi

+>\i:V

o ifv<1/a;: \j=0and x; =1/v —
o ifv>1/a;: \ij=v—1/a; and z; =0

e determine v from 17z ="  max{0,1/v —a;} =1

interpretation
e n patches; level of patch i is at height «;

e flood area with unit amount of water

e resulting level is 1/v*

Duality 5-20



Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize  fo(x) maximize g(\,v)
subject to  fi(z) <0, i=1,....,m subjectto A >0
hi(x)=0, i=1,...,p

perturbed problem and its dual

min.  fo(x) max. g\, v) —uTA—vly
s.t. fz(l‘) < uy, 1= 1, o.M s.t. A =0
hi(ﬂi‘):’l}i, izl,...,p

e x is primal variable; u, v are parameters
e p*(u,v) is optimal value as a function of u, v

e we are interested in information about p*(u,v) that we can obtain from
the solution of the unperturbed problem and its dual

Duality 5-21

global sensitivity result

assume strong duality holds for unperturbed problem, and that \*, v* are
dual optimal for unperturbed problem

apply weak duality to perturbed problem:

= p*(0,0) —uT A\ —vTv*

p*(u,v) > g\, ) —ul A —oTv*

sensitivity interpretation

if A\¥ large: p* increases greatly if we tighten constraint ¢ (u; < 0)
e if A\¥ small: p* does not decrease much if we loosen constraint i (u; > 0)

o if ¥ large and positive: p* increases greatly if we take v; < 0;

if v* large and negative: p* increases greatly if we take v; > 0

e if ¥ small and positive: p* does not decrease much if we take v; > 0;
*

if v small and negative: p* does not decrease much if we take v; < 0

(2
*
(2

Duality 5-22



local sensitivity: if (in addition) p*(u,v) is differentiable at (0,0), then

. 0p*(0,0) . 0p*(0,0)
)\i B 8uz ’ Vi T 81]2'

proof (for A¥): from global sensitivity result,

* * ) ok
ou; N0 t
a * * t 7;’ _ * ,
p*(0,0) _ . P*(tei, 0) —p*(0 O)g—A;

ou; t 0 t
hence, equality
p*(u) for a problem with one (inequality)
constraint: U

u=0 p*(u)
p*(0) — A'u

Duality 5-23

Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice-versa
e transform objective or constraint functions

e.g., replace fo(x) by ¢(fo(z)) with ¢ convex, increasing

Duality 5-24



Introducing new variables and equality constraints

minimize  fo(Az + b)

e dual function is constant: g = inf, L(z) = inf, fo(Az + b) = p*

e we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize  fo(y) maximize bTv — f3(v)
subjectto Axr+b—y =0 subject to ATy =0

dual function follows from

g(v) = inf(foly) —v'y+vT Az +b"v)
T,y
B —fiw)+bvTv ATv =0
o —00 otherwise

Duality

norm approximation problem: minimize || Az — b||

minimize ||yl
subjectto y= Ax —b

can look up conjugate of || - ||, or derive dual directly
o) = inf(ly] + Ty — v Az +57v)
,y

o'y +infy([lyl| +v"y) ATv =0

—00 otherwise
viv ATv =0, |v|.<1
—0o0 otherwise

(see page 5-4)
dual of norm approximation problem

maximize b'v
subject to ATv =0, |v|.<1

Duality



Implicit constraints

LP with box constraints: primal and dual problem

minimize ¢’z maximize —bTv —1T); — 1T\,
subject to Az =b subjectto c+ ATv+ X =Xy =0
-1=<z=<1 AM=0, A=0

reformulation with box constraints made implicit

cle —1<z=<1

minimize  fo(z) = oo  otherwise

subjectto Ax =10
dual function
_ - T T _
o) = ot (To+vT(Az—1)
= —bTv—||ATv + |

dual problem: maximize —bTv — || ATv + ||,

Duality

Problems with generalized inequalities

minimize  fo(x)
subject to  fi(z) Xk, 0, i=1,...,m
hi(x)=0, i=1,...,p

=k, is generalized inequality on R™
definitions are parallel to scalar case:

e Lagrange multiplier for f;(z) <k, O is vector \; € RFi

e Lagrangian L: R" x R"' x ... x R*™ x RP — R, is defined as

m p
L(z, Aty Amov) = fol@) + AL file) + Y vihi(x)
=1 =1

e dual function g : R* x .-+ x R* x RP — R, is defined as

g1, A, V) = inEl%L(l’,)\l,"' y A,y V)

Duality



lower bound property: if \; == 0, then g1, A, v) < p*

proof: if Z is feasible and A EK; 0, then

fo(z) > fo(f)JFZ)\?fi(f)*‘ZVihi(f)

> inf L(z, A, ... A, V)

zeD
= g()\l,...,)\m,y)
minimizing over all feasible Z gives p* > g(A1,..., A, V)
dual problem
maximize  g(A1,..., A, V)
subject to \; k0, t=1...,m

e weak duality: p* > d* always

e strong duality: p* = d* for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)

Duality 5-29

Semidefinite program
primal SDP (F;, G € SF)
minimize ¢’z
subject to x1F1 + -+ x,F, X G

e Lagrange multiplier is matrix Z € sk
e Lagrangian L(z,2) = cTo +tr (Z(x1Fy + - - + 2, F, — G))

e dual function

—tr(GZ) tr(FiZ)+c¢; =0, i=1,...,n

9(Z) = igfL(mﬂ Z) = { —00 otherwise

dual SDP

maximize —tr(GZ)
subjectto Z >0, tr(F;Z)4+c¢; =0, i=1,....n

p* = d* if primal SDP is strictly feasible (3= with z1F} + -+ - + z, F,, < G)

Duality 5-30



Convex Optimization — Boyd & Vandenberghe

12. Interior-point methods

inequality constrained minimization

logarithmic barrier function and central path

barrier method

feasibility and phase | methods

complexity analysis via self-concordance

generalized inequalities

12-1

Inequality constrained minimization

minimize  fo(x)
subject to  fi(x) <0, i=1,....,m (1)
Az =b

fi convex, twice continuously differentiable

A € RP*™ with rank A = p
e we assume p* is finite and attained

e we assume problem is strictly feasible: there exists & with
T € dom f, fl<3~3)<0, 1=1,...,m, ATz =0

hence, strong duality holds and dual optimum is attained

Interior-point methods 12-2



Examples

e LP, QP, QCQP, GP
e entropy maximization with linear inequality constraints

minimize ) .., z;logz;
subject to Fx <g
Ax =10

with dom f, = R} |

e differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or ¢,.-norm approximation via LP

e SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)

Interior-point methods 12-3

Logarithmic barrier

reformulation of (1) via indicator function:

minimize  fo(z) + >0, I-(fi(x))
subject to Ax =10

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)

approximation via logarithmic barrier

minimize  fo(z) — (1/t) Yoi—, log(—fi(z))

subject to Ax =10

e an equality constrained problem

o fort >0, —(1/t)log(—u) is a
smooth approximation of 1_

e approximation improves as t — o0

Interior-point methods 12-4



logarithmic barrier function

¢(r) = - Zlog(—fi(w)), dom¢ = {z | fi(z) <0,..., fm(x) <O}

-

8 6 http://www.cse.iitb.ac.in/~ CS7
e convex (follows from composition rules) | g€ b 09/notes/eNotes/basicsOf Univ
P ariateOptAndltsGeneralisation

e twice continuously differentiable, with derivatives ~withHighlights.pdf -
Volr) = 3 L Vi@
= —filz)
N | U |
Vip(z) = Vfi(z)V fi(x)T + V2fi(x
(z) ;fi(x)g (2)V fi(z) ;—fi(x) (z)
Interior-point methods 12-5

Central path

e for t > 0, define x*(¢) as the solution of

minimize ¢ fo(z) + ¢(z)

subject to( Az =b__, Ywes ?.‘-1,,‘_“\.‘“\:; 1.“\;\\
syatt

(for now, assume x*(t) exists and is unique for each ¢ > 0)

e central path is {z*(¢) | t > 0}

example: central path for an LP

minimize Iz

subject to alx <b;, i=1,...,6

hyperplane ¢Tx = ¢T'x*(t) is tangent to
level curve of ¢ through x*(t)

Interior-point methods 12-6



Dual points on central path

x = x*(t) if there exists a w such that

tV fo(z) + Z%(:C)sz(x) + ATw =0, Az =b
i=1 7

e therefore, £*(¢) minimizes the Lagrangian
L{z, N*(8), (1)) = fola) + ) _ N (8) fi(x) +v*(6)T (Az — b)
i=1

where we define A*(t) = 1/(—tf;(x*(t)) and v*(t) = w/t

e this confirms the intuitive idea that fo(z*(t)) — p* if t — oo

p* > g\ (1), v (1))
= L(x*(t), \*(t), v*(t))

= Jo(z"(t)) —m/t

Interior-point methods 12-7

Interpretation via KKT conditions

x =x*(t), A = \*(t), v = v*(t) satisfy

1. primal constraints: f;(x) <0,i=1,...,m, Ax =b
dual constraints: A > 0

approximate complementary slackness: —\;fi(z) =1/t,i=1,...,m

= W N

gradient of Lagrangian with respect to = vanishes:

Vi) + > NVfi(z)+ ATv =0
=1

difference with KKT is that condition 3 replaces \; f;(x) =0

Interior-point methods 12-8



Barrier method

given strictly feasible x, t := t0 > 0, u4 > 1, tolerance € > 0.

repeat

1. Centering step. Compute z*(t) by minimizing ¢ fo + ¢, subject to Az = b.
2. Update. x := z*(t).

3. Stopping criterion. quit if m/t < e.

4. Increaset. t := ut.

e terminates with fo(x) — p* < € (stopping criterion follows from
fo(*(t)) — p* < m/t)
e centering usually done using Newton's method, starting at current x

e choice of y involves a trade-off: large u means fewer outer iterations,
more inner (Newton) iterations; typical values: p = 10-20

e several heuristics for choice of (9

Interior-point methods 12-11

Convergence analysis

number of outer (centering) iterations: exactly

[log(m/ (et(o)))l

log p

plus the initial centering step (to compute 2*(t(9)))

centering problem
minimize tfo(z) + ¢(x nwnshdlﬂc

1 o o\ge
see convergence analysis lof Newton's method ZDF W isee sd 3

e tfy+ ¢ must have closed sublevel sets for ¢ > £(0)
e classical analysis requires strong convexity, Lipschitz condition

e analysis via self-concordance requires self-concordance of tfy + ¢

Interior-point methods 12-12



Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

102 140
. 2 120
o
§D 10 5 100
21077 £ 80
E 4 § 60 ]
S -4l
10 ‘ Z 40/ '
| =
10 pu=50 pu=150 pu=2 20! ]
0 20 40 60 80 %O 40 80 120 160 200
Newton iterations w

e starts with = on central path (t(°) = 1, duality gap 100)

e terminates when ¢t = 108 (gap 10_6)

e centering uses Newton's method with backtracking

e total number of Newton iterations not very sensitive for p > 10

Interior-point methods

duality gap

12-13
geometric program (m = 100 inequalities and n = 50 variables)
minimize  log 22:1 exp(al,z + b%))
subject to log 2221 exp(ahz + bzk)) <0, i=1,...,m
=2
0 20 40 60 80 100 120
Newton iterations
12-14

Interior-point methods



family of standard LPs (4 € R™*?™)

minimize Lz

subjectto Axr =0, x>0

m = 10,...,1000; for each m, solve 100 randomly generated instances

35

(%2}

c

S

-

o

2

c

@]

-

2

[}

=
155 ‘ ‘

10! 102 10°

m

number of iterations grows very slowly as m ranges over a 100 : 1 ratio

Interior-point methods 12-15

Feasibility and phase | methods

feasibility problem: find x such that
filx) <0, i=1,...,m, Ar =0 (2)

phase |: computes strictly feasible starting point for barrier method

basic phase | method %5\(3
minimize (over x, s) s XCQS\LQ‘B
subject to filx) <s, 1=1,...,m 3
o G) ?ﬂfb\aﬂ oS

w\O‘ﬂs pred

e if x, s feasible, with s < 0, then z is strictly feasible for (2)
e if optimal value p* of (3) is positive, then problem (2) is infeasible

e if p* = 0 and attained, then problem (2) is feasible (but not strictly);
if p* = 0 and not attained, then problem (2) is infeasible

Interior-point methods 12-16



sum of infeasibilities phase | method
minimize 175
subjectto s>=0, fi(z)<s;, i=1,...,m
Az =b

for infeasible problems, produces a solution that satisfies many more
inequalities than basic phase | method

example (infeasible set of 100 linear inequalities in 50 variables)

60 60 -
o 40¢ o 40¢
0 Q0
S 1S
E 20 Z 20/
0 [l n 0 mee o TH HHA O n n
-1 -0.5 0 0.5 1 1.5 -1 -0.5 0 0.5 1 1.5

T T
b; — a; Tmax b; — a; Tsum

left: basic phase | solution; satisfies 39 inequalities
right: sum of infeasibilities phase | solution; satisfies 79 solutions

Interior-point methods 12-17

example: family of linear inequalities Az < b+ vAb
e data chosen to be strictly feasible for v > 0, infeasible for v < 0

e use basic phase |, terminate when s < 0 or dual objective is positive

—_
o
o

80r  Infeasible Feasible

Newton iterations

0.5 1

T o

ju—y
o
e}
ey
o
]

Newton iterations
Newton iterations

10 —1072 _ —107* —1076 10-6 1074 1072 10°
Y Y

number of iterations roughly proportional to log(1/|v])

Interior-point methods 12-18



Complexity analysis via self-concordance {

o . ° oY)
CLike io @se of uncondyaned X3 iz Ot
same assumptions as on page 12-2, plus: L&S\f‘s New\'w\ metho

e sublevel sets (of fp, on the feasible set) are bounded

e tfy+ ¢ is self-concordant with closed sublevel sets

second condition

e holds for LP, QP, QCQP

e may require reformulating the problem, e.g.,

- . n = . . n
minimize ) . x;logz;  —  minimize ) ., z;logz;
subjectto Fx =g subjectto Fxr <g, x>0

e needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply

Interior-point methods 12-19

Newton iterations per centering step: from self-concordance theory

pt fo(x) + o(x) — ptfo(z™) — o(a™)
Y

#Newton iterations <

+c

e bound on effort of computing ™ = z*(ut) starting at x = 2*(¢t)
e 7, c are constants (depend only on Newton algorithm parameters)

e from duality (with A = \*(¢), v = v*(¢)):
ptfo(x) + ¢(x) — ptfo(z™) — d(a™)

= ptfo(z) — ptfo(z™) + ) log(—puthifi(zt)) — mlog
=1

IA

ptfo(z) — ptfo(a™) — pt > " Nifi(z™) —m —mlog
=1

ptfo(z) — ptg(A,v) —m —mlog
= m(p—1-logpu)

Interior-point methods 12-20



Z

total number of Newton iterations (excluding first centering step)

#Newton iterations < N = {

log(m/(tm)ew (m(ﬂ —1-—logp) C)

log pu Y
510%
410 , -
figure shows N for typical values of v, c,

3104

_ M 105
2104 m = 100, 0. = 10
1107

O 1.1 1.2

w

e confirms trade-off in choice of

e in practice, #iterations is in the tens; not very sensitive for > 10

Interior-point methods 12-21

polynomial-time complexity of barrier method

o for u=1+1/\/m:

2o (1)

e number of Newton iterations for fixed gap reduction is O(y/m)

e multiply with cost of one Newton iteration (a polynomial function of
problem dimensions), to get bound on number of flops

this choice of 1 optimizes worst-case complexity; in practice we choose 1
fixed (u = 10,...,20)

Interior-point methods 12-22



Generalized inequalities

minimize  fo(x)
subject to  fi(z) <k, 0, i=1,...,m
b

e fyconvex, f;: R" — R, j = 1,...,m, convex with respect to proper
cones K; € RFi

fi twice continuously differentiable

A € RP*™ with rank A = p

e we assume p* is finite and attained

we assume problem is strictly feasible; hence strong duality holds and
dual optimum is attained

examples of greatest interest: SOCP, SDP
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Generalized logarithm for proper cone

1 : R? — R is generalized logarithm for proper cone K C R if:

e dom = int K and VZ(y) < 0 for y = 0
e Y(sy) =1(y) +0logs fory =k 0, s> 0 (0 is the degree of 1))

examples

e nonnegative orthant K = R}: ¢(y) = > ; logy;, with degree 0 =0
Cov (W\VC&(B M“'\‘z”tss

4’6? ‘YAB& &1 %

YY) =logdetY (0 = n) Qnttp:/iwww.cse.iitb.ac.in/~ CS709/notesle
Notes/basicsOfUnivariateOptAndltsGene
ralisation-withHighlights.pdf

e second-order cone K = {y € R"" | (y3 4+ - +y2)V2 < ypi1 }:

e positive semidefinite cone K = S':

v(y) =log(yap —yi— - —ya)  (0=2)
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properties (without proof): for y >k 0,

Vi(y) =g+ 0, yIVi(y) =6

e nonnegative orthant R": ¢ (y) = >_7_; logy;
Vo) =1/ yr- o 1ye), v VYY) =n
e positive semidefinite cone S7: ¥(Y) = logdetY

Vy(Y)=Y tr(YVy(Y)) =n

e second-order cone K = {y € R"™ | (y3 + -+ 942)V/2 <y }:

—
2 :
b(y) = s YTy =2
Y1 = Yi— YA | “Yn
Yn+1
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Logarithmic barrier and central path

logarithmic barrier for fi(z) <k, 0, ..., fm(2) <k, O

o(x) = —Zwi(—fi(x)), dom ¢ = {z | fi(z) <k, 0, i=1,...,m}

e 1, is generalized logarithm for K, with degree 6;

e ¢ is convex, twice continuously differentiable

central path: {z*(¢) | t > 0} where 2*(¢) solves

minimize  tfo(x) + ¢(x)
subject to Ax =10
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Dual points on central path

x = x*(t) if there exists w € R?,
tV fo(z) + ZDf@ VIV (— fi(z)) + ATw = 0

(Dfi(x) € R¥*™ is derivative matrix of f;)

e therefore, £*(¢) minimizes Lagrangian L(x, A\*(t),v*(t)), where

M) = VR @), (0 =

w
t
e from properties of ¥;: Af () = 0, with duality gap

folx™(t)) — g(N* (), v*(2)) = (1/1) Zei
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example: semidefinite programming (with F; € S?)

minimize ¢z

subject to  F'(z) =Y.z, F; + G =0

logarithmic barrier: ¢(x) = logdet(—F(z)™1)

central path: 2*(¢) minimizes tcf'x — log det(—F(z)); hence

te; —tr(FF(z*(t) ™D =0, i=1,...,n

dual point on central path: Z*(t) = —(1/t)F(2*(t))~ ! is feasible for
maximize tr(GZ2)

subject to tr(F;Z)+c¢; =0, i=1,...,n
Z =0

duality gap on central path: cTz*(t) — tr(GZ*(t)) = p/t
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Barrier method

given strictly feasible x, t := t© >0, u > 1, tolerance € > 0.

repeat

1. Centering step. Compute x*(t) by minimizing ¢ fo + ¢, subject to Az = b.

. Update. = := z*(t).

2
3. Stopping criterion. quit if (3>, 0;)/t < €.
4

. Increase t. t := ut.

e only difference is duality gap m/t on central path is replaced by ). 6;/t

e number of outer iterations:

log((3=; 0:)/(et'?))

log p

e complexity analysis via self-concordance applies to SDP, SOCP

Interior-point methods
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second-order cone program (50 variables, 50 SOC constraints in R®)

102
S 10°
eYo}
2102
=

—4

210 o

1076 pw=>50 u=200 p= 2

0 20 40 60 80

Newton iterations

Newton iterations

1

20

80

I

20 60 100 140 180
w

semidefinite program (100 variables, LMI constraint in $'°)

duality gap
S

104 ol
1076 p=150'p =50 p==2

0 20 40 60 80
Newton iterations
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family of SDPs (A € S", x € R")

minimize 1%z
subject to A + diag(z) = 0

n = 10,...,1000, for each n solve 100 randomly generated instances

35

Newton iterations

154

10! 102 103
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

e update primal and dual variables at each iteration; no distinction
between inner and outer iterations

e often exhibit superlinear asymptotic convergence

e search directions can be interpreted as Newton directions for modified
KKT conditions

e can start at infeasible points

e cost per iteration same as barrier method
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