First Order Descent Methods

Instructor: Prof. Ganesh Ramakrishnan

General descent algorithm

- So Local Co
- Let us say we want to minimize a function f(x)
- The general descent algorithm involves two steps: $x^{(k)}$ betermining a good descent direction $\Delta x^{(k)}$, typically forced to have unit norm
- Determining the step size using some line search technique • We want that $f(x^{(k+1)}) < f(x^{(k)})$
- If the function f is convex, we must have $\nabla^{\top} f(x^{(k)})(x^{(k+1)} x^{(k)}) < 0$
- That is, the descent direction $\Delta x^{(k)}$ must make an obtuse angle with the gradient vector $\nabla f(x^{(k)})$

$$3f(x^{k+1}) \supset f(x^k) + \sqrt{f(x^k)} + \sqrt{f(x$$

General descent algorithm

• In descent for a convex function f, we must have:

$$f(x^{(k+1)}) \ge f(x^{(k)}) + \nabla^{\top} f(x^{(k)}) (x^{(k+1)} - x^{(k)})$$

Here, the LHS is the actual value and RHS is the linear

- Since step size $t^{(k)} > 0$, $\nabla^{\top} f(x^{(k)}) \Delta x^{(k)} < 0$ only a necessary property $t^{(k)}$. Algorithm:

 1 Set a starting point $x^{(0)}$ is need to repeat

 2 repeat

 3 Determine $\Delta x^{(k)}$ • Since step size $t^{(k)} > 0$,
- Algorithm:

- - **O** Choose a step size $t^{(k)} > 0$ using line search
 - **3** Obtain $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$
 - Set k ← k + 1

until stopping criterion (such as $\left\| \nabla f(x^{(k+1)}) \right\| \le \epsilon$) is satisfied

Steepest descent

- The idea of steepest descent is to determine a descent direction such that for a unit step in that direction, the prediction of decrease in the objective is maximized $\rightarrow \nabla \mathcal{F}(x^k) \wedge x^k$ as
- However, consider $\Delta x = \operatorname{argmin}_{v} \begin{bmatrix} -5 & 10 & 15 \end{bmatrix} v$ negative possible $\frac{1}{2} = \frac{1}{2} = \frac{1}$

$$\implies \Delta x = \begin{bmatrix} \infty \\ -\infty \\ -\infty \end{bmatrix}$$

which is unacceptable

• Thus, there is a necessity to restrict the norm of v

• The choice of the descent direction can be stated as:

$$\Delta \mathbf{x} = \arg\!\min_{\mathbf{v}} \nabla^{\top} \mathbf{f}\!(\mathbf{x}) \mathbf{v}$$

s.t.
$$\| \mathbf{v} \| = 1$$

4 D > 4 D >

Various choices of the norm result in different solutions for Δx

- For 2-norm, $\Delta x = -\frac{\nabla f(x^{(k)})}{\|\nabla f(x^{(k)})\|}$ (gradient descent)
- ullet For 1-norm, $\Delta x = \operatorname{sign} \left(rac{\partial f(x^{(k)})}{\partial x_i^{(k)}}
 ight) e_i$, where e_i is the ithstandard basis vector (coordinate descent)

i= argmar | of(ak)

• For ∞ -norm, $\Delta x = -\operatorname{sign}(\nabla f(x^{(k)}))$

SDD in L∞ -norm

Steepest descent direction

Gradient Descent

Interpretation of gradient descent

$$\chi^{(k+1)} = \chi^{(k)} - \chi^{(k)} \vee f(\chi^{(k)}) \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} - \chi^{(k)} \vee f(\chi^{(k)}) \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} - \chi^{(k)} \vee f(\chi^{(k)}) \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} - \chi^{(k)} \vee f(\chi^{(k)}) \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} - \chi^{(k)} \vee f(\chi^{(k)}) \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} - \chi^{(k)} \vee f(\chi^{(k)}) \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} - \chi^{(k)} \vee f(\chi^{(k)}) \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} - \chi^{(k)} \vee f(\chi^{(k)}) \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} \wedge \chi^{(k)} \wedge \chi^{(k)} \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} \wedge \chi^{(k)} \wedge \chi^{(k)} \wedge \chi^{(k)} \qquad (\mathcal{L}_{\chi}^{k} = - \nabla f(\chi^{(k)}))$$

$$\chi^{(k+1)} = \chi^{(k)} \wedge \chi^{(k)$$

Consider the optimization problem

$$x^* = \arg\min_{x \in \mathbf{R}^n} f(x)$$

• The idea behind gradient descent is that you start with a

$$\mathbf{x}^0 \in \mathbf{R}^n$$
, and $\forall \mathbf{k} = 0, 1, 2, \dots$,

$$x^{k+1} = x^k + t^k \Delta x^k$$

• x^{k+1} can be treated as a solution to a quadratic approximation of f around x^k

of f around
$$x^k$$
 the optimal soln convex $f_{0k}(x) = f(x^k) + \nabla f(x^k) (x - x^k) + d ||x - x^k||^2$

min should be at x^{k+1}

March 31, 2015

• At each iteration, we can consider the quadratic approximation

$$\mathit{f}_{\mathit{Q}_{k}}(\mathit{x}^{k+1}) = \mathit{f}(\mathit{x}^{k}) + \nabla \mathit{f}(\mathit{x}^{k})^{\top}(\mathit{x}^{k+1} - \mathit{x}^{k}) + \frac{1}{2t} \left\| \mathit{x}^{k+1} - \mathit{x}^{k} \right\|^{2}$$

• Equating $\nabla f_{Q_k}(x^{k+1}) = 0$ $\implies \nabla f(x^k) + \frac{1}{t}(x^{k+1} - x^k) = 0$ $\implies x^{k+1} = x^k - t\nabla f(x^k)$

Gres An interpretation of gradient

4 m > 4 m >

Finding the step size t

- If t is too large, we get diverging updates of x
- If t is too small, we get a very slow descent
- We need to find a t that is just right
- We discuss two ways of finding t:
 - Exact line search ————

Backtracking line search

 $t^{k} = argmin f(x^{k} + t\Delta x^{k})$ For any descent

Be or are of the already to make $\nabla f(a^k) \Delta a^k$ algo provided to negative as dossible. $t=1 & t \rightarrow Bt (Be(0,1)) until f(a^{k+1}) < f(a^k) - ta \nabla f(a^k)$

Exact line search

$$\begin{aligned} t^{k+1} &= \operatorname*{argmin}_t f \Big(x^k - t \nabla f(x^k) \Big) \\ &= \operatorname*{argmin}_t \phi(t) \end{aligned}$$

- This method gives the most optimal step size in the given descent direction $\nabla f(x^k)$
- It ensures that $f(x^{k+1}) \le f(x^k)$
- If f is itself quadratic, it gives an optimal solution to the minimization of f (since the quadratic approximation f_Q would become exact and no longer approximate)

March 31, 2015 10 / 14

Backtracking line search

- The algorithm
 - Choose a $\beta \in (0,1)$
 - Start with t = 1

While
$$f\left(x^k - t\nabla f(x^k)\right) > f(x^k) - \frac{t}{2} \left\|\nabla f(x^k)\right\|^2$$
, do

* Update $t \leftarrow \beta t$

For good descent Dak - Vfrak)
$$d d = 1/2$$

Repeat until
$$f(x^k - \{\nabla f(x^k)\}) \leq f(x^k) - \frac{1}{2} ||\nabla f(x^k)||^2 \rightarrow \emptyset$$

Interpretation of backtracking line search

- $\Delta x = \text{direction of descent} = -\nabla f(x^k)$ for gradient descent
- A different way of understanding the varying step size with β : Multiplying t by β causes the interpolation to tilt as indicated in the figure

Assumptions for proving the convergence of gradient descent

- $f: \mathbf{R}^n \to \mathbf{R}$ is convex and differentiable
- *f* is Lipschitz continuous

• Claim: If $t^k \leq \frac{1}{L}$, then

$$f(x^k) - f(x^*) \le \frac{\|x^0 - x^*\|^2}{2tk}$$

- ► The gap between the optimal solution and the solution at the kth step is going to decrease with increasing step size t
- $O(\frac{1}{k})$ rate or linear convergence

March 31, 2015 14 / 14