First Order Descent Methods

Instructor: Prof. Ganesh Ramakrishnan
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General descent algorithm 5 '&i/
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%Q @ Let us say we want to minimize a function f{x) x>t Gm,_"{
'r @ The general descent algorithm involves two steps: )}0"_5 \3¢
» Determining a good descent direction Axt%) typically force?:f to

‘(: 7‘ have unit norm 3<,CD

» Determining theusing some line search technique
o Conves oo
R o We want tha\ﬁ( foe \nGa-coevit w4

o If the function fis convex, we must have  p w9 Kot %IJ
VT AXR) (k) — x0) < 0 o M

@ That is, the descent direction Ax(¥) must make an obtuse angle
with the gradient vector V(x¥))
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General descent algorithm

@ In descent for a convex function f, we must have:

lc(x(k+1)) > f(x(k)) —|—VT1‘(XU‘))(XU‘+1) - X(k))
Here, the LHS is the actual value and RHS is the linear
® X°

approximation of f{x{k*1) \
?P ' (k;( ) eﬂ:go-p got NG
@ Since step size t'% > 0, ,(\q,(.‘, g&\
VIAXR)AXO < 0 —> 0N \\\X
@ Algorithm: wqb\\(‘ Yoo 9@(\\@3
@ Set a starting point X*) . - \6 oNet
@ repeat I\

@ Determine Ax(¥)

@ Choose a step size t*) > () using line search
@ Obtain Xk = x(K 4 tl)AxK) 7
@ Set k k+1

until stopping criterion (such as HVF(X(%) is satisfied
N
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Steepest descent

e The idea of steepest descent is to determine a descent direction

such that for a unit step in that direction, the prediction of

decrease in the objective is maximized 2 Y/ /X/(o( ) Bi‘ as

e However, consider Ax = argmin, [—5 10 L)} v Tn?j‘* 699‘

= Ax= :052 VOC(“Q )S% c\I\c»\

which is unacceptable %}zX

@ Thus, there is a necessity to restrict the V>’f‘

@ The choice of the descent direction can be stated as:

Ax = argmin V' fix)v

st v =1
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Various choices of the norm result in different solutions for Ax
VHxK)

@ For 2-norm, Ax = _W
(gradient descent)

» @ For 1-norm, Ax = — sign (%) e;, where e; is the ith

3 standard basis vector vv; ot DE@Q \((y A
§  (coordinate descent) = 4 55 o \,W‘ 03(’
_"E- o For oc-norm, Ax = — sign(VAx¥)) J
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Gradient Descent



Interpretation of gradient descent

N7 Ve
(o, 19O ) ( . =*V§(°““>

o Consider the optimization problem > L

X = argxr1e"|g1rr f(x)

@ The idea behind gradient descent is that you start with a

x“ER“,ande=0,1,2,..., \&
\ o)
KT = XK HRAXE uv—
Y-
”

@ X! can be treated as avsc\)l/ut\ion to a quadratic approximation
of faround x¥ AR

chg(”q QL(@)* V{(a‘ﬂ(fx ) r o -z I

min Should be gt 2™

March 31, 2015 T7/14



@ At each iteration, we can consider the quadratic approximation

2

fou (1) = k) + VAR T (41— o) 51—
o Equating Vi, (x**1) =0 VOZ

— VA + L = X =0
N
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Finding the step size t

e If tis too large, we get diverging updates of x A
e If tis too small, we get a very slow descent \\"“3(
@ We need to find a t that is just right
e We discuss two ways of finding t:

@ Exact Iine.sear.ch\} ,l,/ Qqsmm /F(?L + )(,A# )
@ Backtracking line search ’k’)o

e g?cscu\)c
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Exact line search

= argmin f(xk — tVf(xk))

= argmin o(t)

@ This method gives the most optimal step size in the given
descent direction V{x¥)

e It ensures that f{x*"1) < f(x¥)

e If fis itself quadratic, it gives an optimal solution to the
minimization of f (since the quadratic approximation fg would
become exact and no longer approximate)
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Backtracking line search
& Wy ¢t hod 5 welte O
7 f% hos YeYter  chaaces %

@ The algorithm

» Choose a 3 € (0, 1)
» Start with t =1

G. While £ (3 — 67(x)) > fxk) - fHVf(xk)H2 do

* Update t + St ¥
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Interpretation of backtracking line search
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o Ax = direction of descent = —Vf{x*) for gradient descent

e A different way of understanding the varying step size with 3:
Multiplying t by (3 causes the interpolation to tilt as indicated in
the figure
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Assumptions for proving the convergence of
gradient descent

@ f: R"” — R is convex and differentiable

@ fis Lipschitz continuous
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o Claim: If t* < 1, then

o=
"(Xk)_f(x)ST

» The gap between the optimal solution and the solution at the
kth step is going to decrease with increasing step size t
» O(y) rate or linear convergence
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