Lipschitz continuity

@ Intuitively, a Lipschitz continuous function is limited in how fast
its gradient (slope) can change: there exists a definite real
number such that, for every pair of points on the graph of the
gradient, the absolute value of the slope of the line connecting

them is not greater than this real number
» This bound is called the function’s Lipschitz constant, L > 0

o [IVAx) — VA | < Lix—y
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Interpretation of Lipschitz continuity

e Consider Vf(x) € R, and Vf(x) = £ = f/(x)
o F(x)— F(y)| < Lix—y]
)

- |J’ih-)_Ai‘l (putting y = x + h)

e Taking limit h — 0, we get
()l < L

o f” represents curvature

50l mprt —— >
he F\\J}‘ i~ the
1"93‘0'“5 |
{Ju::twg

L Apil 17, 2015



Example: f{x) =%

3

fix) =% = f(x) =x

Claim: f(x) / f'(x) is locally Lipschitz continuous but not
globally

Consider xe R

Supye(x—l,x+1) |f”(y)| = Supye(x—l,x+1) |2y| < 2|X| +1
Applying mean value theorem:
d(y,2) € (x—1,x+ 1)%, )

fﬂ(/\) — '”U’i’:;'(z)
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f)-%fo

F'(y) = ()] = [f"(N)(y = 2)|
<214+ 1| ly—x, V(y,2) € (x— 1,x+ 1)

Thus, ESRIIEp— 1 Ye Gz xm FHLLE)

°
@ Therefore, fis Lipschitz continuous in (x— 1,x+1)
@ Butas x— o0, L - ¢
@ This implies that f may not be Lipschitz continuous everywhere
e Consider y # 0, and
fy)—f(0) _ = |y
ly=0l

o |y] > casy— o0
@ Thus, fis proved to not be Lipschitz continuous globally
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Another example

@ Consider

| Xsin(%) ifx#0
'TX)_{O if x = 0

@ We can verify that this function is continuous and differentiable
everywhere
i.e. f"(0) = 0 from left and right

@ However, we can show that f{x) is not Lipschitz continuous
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Lipschitz continuity: another example

e Consider: f'(x) = ||
o Since |f'(x) — f'(y)| = |Ixl — | < [x—y
fis Lipschitz continuous with L =1

1

@ However, it is not differentiable everywhere (not at 0)

e In fact, if fis differentiable everywhere, it is also Lipschitz
continuous

@ fis continuous O fis differentiable O f’ is continuous O ' is
Lipschitz continuous O f’ is differentiable
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Considering gradients in Lipschitz continuity

e If fis Lipschitz continuous, then
[ Vf(x) = VAy)| < Lllx—yll

e Taylor’'s theorem states that if f and its first n derivatives

f'.f" ..., f" are continuous in the closed interval [a, b], and
differentiable in (a, b), then there exists a number ¢ € (a, b) such
that

L i (gp— oy

f(b) = fla) + f'(a)(b — a) + Lf”(a}(b —a 4.+ lf{")(a}(b —a)" +
2! nl (n+ 1)
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@ We will invoke Taylor's theorem up to the second degree:

) = 9 + F (0 =) + 3 F( v — 0

where c € (x,y) and x,y € R
@ Let us generalize to f: R” — R:

1) = R0+ VTR =) + 5y =0 VA y — ¥

where c=x+T'(y—x), I' € (0,1), and x,y € R"
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For a Lipschitz continuous f: R” — R, we can show that for any
vector v,
o vIV2ixv< v Lv
= v (V2(x) — Liv< 0

o That is, V*f{x) — Ll is negative semi-definite
@ This can be written as:




o Convexity:
fly) > fix) + V' fx)(y — x)
@ Strict convexity:

fly) > f(x) + V fx)(y — x)

@ Strong convexity:

fy) > fx) + V(v — ) + Sy = xI°

» Strong convexity implies strict convexity
» Sy - X||2 can be 0 only when y = x
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