Overview

- We can find Δx as the change in x along some steepest descent direction of f without constraints
- Thus, let $x_u^{k+1} = x^k + \Delta x$ be the working set that reduces f(x) without constraints (unbounded)
- To find the constrained working set, we project x_u^{k+1} onto Ω to get x^{k+1}

$$\Omega = \int_{0}^{\infty} \left\{ x \mid g_{i}(\alpha) \leq 0 \right\}$$

Aigo: Inmialise:
$$x_u$$
) $x_p^{(0)} = P_{\Omega}(x_u^{(0)})$

until Convergence, $x_u^{(u+1)} = x_u^{(u)} - t^{(u)} = t^{(u)}$

To project x_u onto the non-empty closed convex set Ω to

• To project x_u onto the non-empty closed convex set Ω to get the projected point x_p , we solve:

$$x_p = P_{\Omega}(x_u) = \underset{z \in \Omega}{\operatorname{argmin}} ||x_u - z||_2^2$$

• That is, the projected point x_p is the point in Ω that is the closest to the unbounded optimal point x_{μ} if Ω is a non-empty closed convex set

Recoll: If gi's are lower semi-cts then I is closed convex & a unique xp is guaranteed to exist

6 / 13

Descent direction for a convex function

• For a descent in a convex function f, we must have $f(x^{k+1}) \ge \text{Value}$ at x^{k+1} obtained by linear interpolation from x^k

• ie.
$$f(x^{k+1}) \ge f(x^k) + \nabla^{\top} f(x^k)(x^{k+1} - x^k)$$

$$f(x_k) = f(x^k) + \nabla^{\top} f(x^k)(x^{k+1} - x^k)$$

$$+ \nabla^{\top} f(x^k)(x^{k+1} - x^k)$$

• Thus, for Δx^k to be a descent direction, it is necessary that $\nabla^{\top} f(x^k) \Delta x^k \leq 0$ (where $\Delta x^k = x^{k+1} - x^k$)

We want that the point obtained after the projection of x_u^{k+1} to be a descent from x^k for the function f

$$\nabla f(x^k) \cdot \Delta x_p \leq 0$$
 This is only necessary. For

(where
$$\Delta x_p = P_{\Omega}(x_u^{k+1}) - x^k$$
)

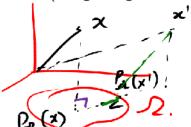
complete convergence

Ref Nemirovski Sec 5.3.1

• Claim: If $P_{\Omega}(x)$ is a projection of x, then

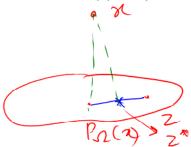
$$(z - P_{\Omega}(x))^{\top} (x - P_{\Omega}(x)) \le 0, \forall z \in \Omega$$

• That is, the angle between $(z - P_{\Omega}(x))$ and $(x - P_{\Omega}(x))$ is obtuse (or right-angled for the projected point), $\forall z \in \Omega$



Proof for $\langle z - P_{\Omega}(x), x - P_{\Omega}(x) \rangle \leq 0$

- To be more general, let us consider an inner product $\langle a, b \rangle$ instead of $a^{\top}b$
- Let $\mathbf{z}^* = (1 \alpha)P_{\Omega}(\mathbf{x}) + \alpha\mathbf{z}$, for some $\alpha \in (0, 1)$, and $\mathbf{z} \in \Omega$ $\implies \mathbf{z}^* = P_{\Omega}(\mathbf{x}) + \alpha(\mathbf{z} - P_{\Omega}(\mathbf{x}))$, $\mathbf{z}^* \in \Omega$



• Since $P_{\Omega}(x) = \operatorname{argmin}_{z \in \Omega} ||x - z||_{2}^{2}$, $||x - P_{\Omega}(x)||^{2} \le ||x - z^{*}||^{2}$

$$\|x - z^*\|^2$$

$$= \|x - (P_{\Omega}(x) + \alpha(z - P_{\Omega}(x)))\|^2$$

$$= \|x - P_{\Omega}(x)\|^2 + \alpha^2 \|z - P_{\Omega}(x)\|^2 - 2\alpha \langle x - P_{\Omega}(x), z - P_{\Omega}(x) \rangle$$

$$\geq \|x - P_{\Omega}(x)\|^2$$

$$\Rightarrow \langle x - P_{\Omega}(x), z - P_{\Omega}(x) \rangle \leq \frac{\alpha}{2} \|z - P_{\Omega}(x)\|^2, \forall \alpha \in (0, 1)$$

- \bullet Thus, the LHS can either be 0 or a negative value. Any positive value of the LHS will lead to a contradiction for some small $\alpha \to 0$
- Hence, we proved that $\langle z P_{\Omega}(x), x P_{\Omega}(x) \rangle \leq 0$

• We can also prove that if $\langle x - x^*, z - x^* \rangle \leq 0$, $\forall z \in \Omega$ s.t. $z \neq x^*$, and $x^* \in \Omega$, then

$$x^* = P_{\Omega}(x) = \underset{\bar{z} \in \Omega}{\operatorname{argmin}} ||x - \bar{z}||_2^2$$

- Consider $||x z||^2 ||x x^*||^2$ = $||x - x^* + (x^* - z)||^2 - ||x - x^*||^2$ = $||x - x^*||^2 + ||z - x^*||^2 - 2\langle x - x^*, z - x^* \rangle - ||x - x^*||^2$ = $||z - x^*||^2 - 2\langle x - x^*, z - x^* \rangle$ > 0
- $\Longrightarrow ||x-z||^2 > ||x-x^*||^2$, $\forall z \in \Omega$ s.t. $z \neq x^*$
- This proves that $x^* = P_{\Omega}(x)$

References

 Yu-Hong Dai, Roger Fletcher. New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. http://link.springer.com/content/pdf/10. 1007%2Fs10107-005-0595-2.pdf