Midsem 2015

38 Marks, 25% weightage, Open Notes, 2.5 Hours. You can assume anything that was stated in class. I have made every effort to ensure that all required additional assumptions have been stated. If absolutely necessary, do make more assumptions and state them very clearly.

1. A saddle point of a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \Re \cup\{ \pm \inf \}$ is a pair $(\bar{x}, \bar{y}) \in \mathcal{X} \times \mathcal{Y}$ satisfying

$$
\sup _{y} f(\bar{x}, y) \leq f(\bar{x}, \bar{y}) \leq \inf _{x} f(x, \bar{y})
$$

Show that if $f(x, y)$ has a saddle point (\bar{x}, \bar{y}) then

$$
\sup _{y} \inf _{x} f(x, y)=\inf _{x} \sup _{y} f(x, y)
$$

(4 Marks)

Thus
$\inf _{x} \sup _{y} f(x, y) \leq \sup _{y} \inf _{x} f(x, y) \rightarrow$ (2)
By (1) \& (2), we have min-max equally!

$$
\sup _{y} \inf f(x, y)=\inf _{x} \sup _{y} f(x, y) \leq f(\bar{x}, \bar{y})
$$

Illustration of saddle point at $(0,0)$ for $f\left(x_{1}, x_{2}\right) \leq x_{1}^{2}-x_{2}^{2}$ on pages $242 \& 243$ of http://www.cse.i.itb.ac.in/~cs709/note s/BasicsOfConvexOptimization.pdf

x_{2}
x_{1}
Figure 4.19: The hyperbolic paraboloid $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, which 1

Figure 4.20: The hyperbolic paraboloid $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, when vi the x_{1} axis is concave up.

Figure 4.21: The hyperbolic paraboloid $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, when vi the x_{2} axis is concave down.
2. (a) Show that a set $S \subseteq \Re^{n}$ is convex if and only if its intersection with any line is convex
(b) Derive a sufficient condition for the matrix $A \in \mathbf{S}^{n}$ so that the set S specified below (as the solution set of a quadratic inequality) is convex. Assume that $\mathbf{b} \in \Re^{n}$ and $c \in \Re$.

$$
S=\left\{\mathbf{x} \in \Re^{n} \mid \mathbf{x}^{T} A \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c \leq 0\right\}
$$

Is this condition on A also necessary? Explain.
(6 Marks)

Soln: (a) Eau of line is:
$L=\{x=a+\lambda b\}$ where $a \& b$ are two pts on the line $(\lambda \in \mathbb{R})$
\Rightarrow Say S is convex. To show $S \cap L_{a b}$ is convex for any a, b
Let $x_{1} t_{2} \in S \cap h_{a r} \& \theta \in[0,1]$
Then $\theta x_{1}+(1-\theta) x_{2} \in S$

$$
\begin{aligned}
\& & \theta x_{1}+(1-\theta) x_{2}=a+\left(\lambda \theta+\lambda_{2}(1-\theta)\right) b \in L_{a b} \\
& \Rightarrow \theta x_{1}+(1-\theta) x_{2} \in S \cap L_{a b}
\end{aligned}
$$

$<$ Say $S \cap L_{a b}$ is convex $\forall a, b \& x_{1}, x_{2} \in S$ Consider $L_{x_{1} x_{2}} \ldots S \cap L_{x_{1} x_{2}}$ is convex

$$
\begin{aligned}
& \Rightarrow \theta x_{1}+(1-\theta) x_{2} \in S \cap L_{x_{1} x_{2}} \forall \theta \in[0,1] \\
& \Rightarrow \theta x_{1}+(1-\theta) x_{2} \in S \quad \forall \theta \in[0,1]
\end{aligned}
$$

$\Rightarrow 5$ is convert
(b) We use result: in (a):

$$
S=\left\{x \in \mathbb{R}^{n} \mid x^{\top} A x+b^{\top} x+c \leq 0\right\} \text { is }
$$

convex if its intersection with any line $L_{u, v}$ is convert

$$
(u+\lambda v)^{\top} A(u+\lambda v)+b^{\top}(u+\lambda v)+c=p \lambda^{2}+q \lambda+v
$$

where: $p=v^{\top} A v \quad q=b^{\top} u+2 u^{\top} A v \quad \gamma=c+b^{\top} u+u^{\top} A u$

Thus the intersection $\left\{u+\lambda v \mid p \lambda^{2}+q \lambda+r \leqslant 0\right\}$ is convex if $p \geqslant 0 \ldots$ This is true $\forall u$ iff A is p.s.d
However, the converse does not hold. Eg: $A=-20 \quad b=0 \quad c=-10$ then $C=\mathbb{R}$ is convex, though A is NoT p.s.d
3. Let $\mathcal{I}_{1}=\left(V_{1},+_{1}, *_{1},<>_{1}\right)$ and $\mathcal{I}_{2}=\left(V_{2},+_{2}, *_{2},<>_{2}\right)$ be two inner product spaces (with respective addition, scalar multiplication and inner product as specified in the 4 -tuple) over the scalar field of reals.
(a) For any $C \subseteq V_{1}$, define the set polar (C) as follows

$$
\operatorname{polar}(C)=\left\{u \mid u \in V_{1},<u, v>_{1} \leq 1, \forall v \in C\right\}
$$

Show that C is a closed convex set containing the origin if and only if

$$
C=\operatorname{polar}(\operatorname{polar}(C))
$$

Thus, the polar helps provide a dual description of a convex set.
(6 Marks)
proposition B.2.2 in Nemirovski. Also http://people.orie.cornell.edu/dpw/orie6300/Lectures/lec07.pdf for polar
(d) $C \subseteq V$ is a closed convex set

Primal description:

$$
C=\operatorname{conv}(\text { convex }- \text { spanning }-\operatorname{set}(C))
$$

Dual description:

$$
\begin{aligned}
C= & \{v \in v|\langle v, u\rangle \leqslant| \forall u \in \operatorname{Polar}(C)\} \\
& \text { Polar }(C)=\{u \mid\langle u, v\rangle \leqslant 1 \quad \forall v \in C\}
\end{aligned}
$$

Claim: C is closed \& convex

$$
\left.\begin{array}{c}
\text { closed \& convex } \\
\pi \\
C=\operatorname{polar}(\operatorname{polar}(C))
\end{array}\right\} \begin{gathered}
\text { Assume } \\
O \in C
\end{gathered}
$$

By deft: $y \in \operatorname{Polar}(c), x \in C \Rightarrow\langle y, x\rangle \leq 1$

$$
\Rightarrow C \subseteq \operatorname{Polar}(\operatorname{Pol} \mid a r(C))
$$

Now let $\exists \bar{x} \in \operatorname{Polar}(\operatorname{Polar}(c)) \backslash C$ we need the separation the which states

Since C is non-emply, converse 4 closed $\& \bar{x} \notin C \quad \bar{x}$ can be "strongly separated" from C. That is, $\exists b$ sit

$$
\langle b, \bar{x}\rangle\rangle \sup _{x \in C}\langle b, a\rangle
$$

Now $O \in C \Rightarrow$ the LHS is positive
Using $a=\lambda b$ for some $\lambda>0$, we can get

$$
\langle a, \bar{x}\rangle>1 \geqslant \sup _{x \in C}\langle a, x\rangle
$$

This is a contradiction since $1 \geqslant \sup _{x \in a}\langle a, x\rangle$ implies that $a \in \operatorname{Polar}(C)$ But $\langle a, \bar{x}\rangle>1$ contradicts that

$$
\bar{x} \in \text { Polar (Polar }(C))
$$

(b) Consider the direct sum of the inner product spaces $\mathcal{I}_{1} \oplus \mathcal{I}_{2}$ given by $\mathcal{I}_{1} \oplus \mathcal{I}_{2}=\left(V_{1} \times V_{2},+_{3}, *_{3},<>_{3}\right)$ such that, for all $v_{11}, v_{12} \in V_{1}$ and $v_{21}, v_{22} \in V_{2}$ and $\alpha \in \Re$

$$
\alpha *_{3}\left(v_{11}, v_{21}\right)=\left(\alpha *_{1} v_{11}, \alpha *_{2} v_{21}\right)
$$

and

$$
\left(v_{11}, v_{21}\right)+_{3}\left(v_{12}, v_{22}\right)=\left(v_{11}+{ }_{1} v_{12}, v_{21}+{ }_{2} v_{22}\right)
$$

Let $K_{1} \subset V_{1}$ and $K_{2} \subset V_{2}$ be closed convex cones. Now answer the following questions:
i. Is $K_{1} \times K_{2}$ a closed convex cone?
ii. Write an expression for the dual cone $\left(K_{1} \times K_{2}\right)^{*}$ in terms of the dual cones K_{1}^{*} and K_{2}^{*}. Prove that your answer is correct.
(7 Marks)
Soln: (1) Yes. For any $\theta \& \lambda \geqslant 0, V_{11}, V_{12} \in K_{1} \quad V_{21}, V_{22} \in K_{2}$

$$
\begin{aligned}
\theta_{23}\left(v_{11}, v_{21}\right)+\lambda_{3} \lambda_{\cdot 3}\left(v_{12}, v_{22}\right) & =(\underbrace{\theta_{1} v_{11}+\lambda_{1} v_{12}}_{E K_{1}}, \underbrace{\theta_{\cdot 2} v_{21}+_{2} \lambda_{\cdot 2} v_{22}}_{E K_{2}}) \\
& \in K_{1} \times K_{2}
\end{aligned}
$$

$\Rightarrow K_{1} \times K_{2}$ is a convex cone. It is also closed

$$
\text { (2) }\left(k_{1} \oplus K_{2}\right)^{x}=\left(k_{1}^{*} \oplus k_{2}^{*}\right)
$$

We pore that

$$
\begin{gathered}
x \in\left(K_{1} \oplus K_{2}\right)^{*}, y \delta\left\langle x_{1} v\right\rangle \geqslant 0 \quad \forall v \in K_{1} \times K_{2} \\
\left(x=\left(x_{1}, x_{2}\right), v=\left(v_{1}, v\right)=\left\langle x_{1}, v_{1}\right\rangle_{1}+\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \forall v_{1} \in K \& v_{2} \in K_{2}\right.
\end{gathered}
$$

(ie if) $x_{1} \in K_{1}^{\prime} \& x_{2} \in K_{2}^{* \cdot(B)}$

That (B) \Rightarrow (A) is obvious since

$$
\begin{aligned}
x_{1} \in K_{1}^{+} \& x_{2} \in K_{2}^{*} & \Rightarrow\left\langle x_{1}, v_{1}\right\rangle_{1} \geqslant 0 \quad \&\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \\
& \forall v_{1} \in K_{1}, v_{2} \in K_{2} \\
& \Rightarrow\left\langle x_{1}, v_{1}\right\rangle_{1}+\left\langle x_{2}, v_{2}\right\rangle_{2}=\langle x, v\rangle_{3} \geqslant 0 \\
& \Rightarrow x \in\left(K_{1} \oplus K_{2}\right)^{*}
\end{aligned}
$$

To prove (A) $\Rightarrow(B)$ ie $\left\langle x_{1} v_{1}\right\rangle_{1}+\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \forall \begin{aligned} & v_{1} \in K_{1} \\ & v_{2} \in K_{2}\end{aligned}$ $v_{2} \in K_{2}$

$$
\Rightarrow\left\langle x_{1}, v_{1}\right\rangle_{1} \geqslant 0 \quad \& \quad\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0
$$

Taking $V_{1}=O$ (since $O \in K_{1}$), we get from (A) that

$$
\begin{aligned}
& \left\langle x_{1}, 0\right\rangle_{1}+\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \quad \forall \quad v_{2} \in K_{2} \\
& \Rightarrow\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \quad \forall v_{2} \in K_{2}
\end{aligned}
$$

Taking $V_{2}=0$ (since $O \in K_{2}$) we get from (B) that

$$
\begin{aligned}
& \left\langle x_{1}, v_{1}\right\rangle_{1}+\left\langle x_{2}, 0\right\rangle_{2} \geqslant 0 \quad \forall \quad v_{1} \in K_{1} \\
\Rightarrow & \left\langle x_{1}, v_{1}\right\rangle_{1} \geqslant 0 \quad \forall v_{1} \in K_{1}
\end{aligned}
$$

Hence proved if condition
4. Express the following problem as a conic program and write its dual as compactly as possible: Find the minimum eucledian distance to a given affine subspace of \Re^{n} from the origin $\left(\mathbf{0} \in \Re^{n}\right)$. (5 Marks)

Soln:

$$
\begin{gathered}
\min \|0-x\|_{2} \\
x \in \mathbb{R}^{n} \\
A x=b
\end{gathered}
$$

Sivictly speaking,
not a cone (linear cone) program
Dual: max $b^{\top} \lambda$

$$
\lambda\left\|A^{\top} \lambda\right\|_{2} \leq 1
$$

$$
\begin{aligned}
& \left\{(x, r)\|x\|_{2} \leq r\right\}=K=L-2 \text { norm cone } \\
& \left\{(x, r)\|x\|_{\leq} \leq r\right\}=K^{a}=12 \text { norm cone }
\end{aligned}
$$

5. In the class, we gave an analytic proof for the strong duality theorem for Conic Programs. In this question, we will attempt to give a geometrically motivated proof (under certain assumptions) for the special case of linear programs and your task will be to provide rigourous proofs for claims made in the process.
Let A be an $m \times n$ matrix of reals, that is, $A \in \Re^{m \times n}$. Let P be the primal linear program given in (1)

$$
\begin{array}{ll}
\min _{\mathbf{x} \in \Re^{n}} & \mathbf{c}^{T} \mathbf{x} \tag{1}\\
\text { subject to } & A \mathbf{x} \geq \mathbf{b}
\end{array}
$$

and D be the dual program given in (2)

$$
\begin{array}{ll}
\max _{\mathbf{y} \in \Re^{m}} & \mathbf{b}^{T} \mathbf{y} \\
\text { subject to } & A^{T} \mathbf{y}=\mathbf{c} \tag{2}\\
& \mathbf{y} \geq \mathbf{0}
\end{array}
$$

Assume that the dual D is feasible. Also, suppose \mathbf{x}^{*} is an optimal feasible solution for P . Let $\mathbf{a}_{i}^{T} \mathbf{x}^{*} \geq b_{i}$ for all $i \in I$ be all the constraints tight ${ }^{1}$ at \mathbf{x}^{*}. Here, vector \mathbf{a}_{i}^{T} is the $i^{\text {th }}$ row of A. In other words, I is the index of all inequalities in the primal, that become equalities at \mathbf{x}^{*}.
(a) We claim that the objective function vector \mathbf{c} is contained in the cone $K=\left\{\mathbf{x} \mid \mathbf{x}=\sum_{i \in I} \lambda_{i} \mathbf{a}_{i}, \lambda_{i} \geq 0\right\}$ generated by the set of vectors $\left\{\mathbf{a}_{i}\right\}_{i \in I}$. Prove this claim.
Hints: prove by contradiction and make use of the separating hyperplane theorem. ANS: Suppose for contradiction that c does not lie in this cone. Then there must exist a separating hyperplane between \mathbf{c} and K : i.e., there exists a vector $\mathbf{d} \in \Re^{n}$ such that $\mathbf{a}_{i}^{T} \mathbf{d} \geq 0$ for all $i \in I$, but $\mathbf{c}^{T} \mathbf{d}<\mathbf{0}$. Now consider the point $\mathbf{z}=\mathbf{x}^{*}+\epsilon \mathbf{d}$ for some tiny $\epsilon>0$. Note the following:
i. For small enough ϵ, the point \mathbf{z} satisifes the constraints $A \mathbf{z} \geq \mathbf{b}$. We prove this as follows.
For $j \in I$, we have $\mathbf{a}_{j}^{T} \mathbf{z}=\mathbf{a}_{j}^{T} \mathbf{x}^{*}+\epsilon \mathbf{a}_{j}^{T} \mathbf{d}=b_{j}+\epsilon \mathbf{a}_{j}^{T} \mathbf{d} \geq b_{j}$ since $\epsilon>0$ and $\mathbf{a}_{j}^{T} \mathbf{d} \geq 0$.
For $j \notin I$, by choosing small enough $\epsilon \leq \min _{j}\left(\frac{b_{j}-\mathbf{a}_{j}^{T} \mathbf{x}^{*}}{\mathbf{a}_{j}^{T} \mathbf{x}^{*}}\right)$, we have $\mathbf{a}_{j}^{T} \mathbf{z}=\mathbf{a}_{j}^{T} \mathbf{x}^{*}+\epsilon \mathbf{a}_{j}^{T} \mathbf{d} \geq b_{j}$.

[^0]ii. The objective function value decreases since $\mathbf{c}^{T} \mathbf{z}=\mathbf{c}^{T} \mathbf{x}^{*}+\mathbf{c}^{T} \mathbf{d}<$ $\mathbf{c}^{T} \mathbf{x}^{*}$.
This contradicts the fact that \mathbf{x}^{*} was optimal.
(b) Therefore, the vector \mathbf{c} lies within the cone $K=\left\{\mathbf{x} \mid \mathbf{x}=\sum_{i \in I} \lambda_{i} \mathbf{a}_{i}, \lambda_{i} \geq 0\right\}$ generated by the set of vectors $\left\{\mathbf{a}_{i}\right\}_{i \in I}$. Present a choice of λ_{i} such that $\sum_{i} \lambda_{i} b_{i}=\mathbf{c}^{T} \mathbf{x}^{*}$
ANS: Choose λ_{i} for $i \in I$ so that $\mathbf{c}=\sum_{i \in I} \lambda_{i} \mathbf{a}_{i}, \lambda \geq 0$ and set $\lambda_{j}=0$ for $j \notin I$.

- We know $\lambda \geq 0$.
- $A^{T} \lambda=\sum_{i \in I} \lambda_{i} \mathbf{a}_{i}=\mathbf{c}$
- $\mathbf{b}^{T} \lambda=\sum_{i \in I} b_{i} \lambda_{i}=\sum_{i \in I}\left(\mathbf{a}_{i}^{T} \mathbf{x}^{*}\right) \lambda_{i}=\mathbf{c}^{T} \mathbf{x}^{*}$

Therefore λ is a solution to the dual which yields dual objective value equal to that of primal.
(c) Prove that, if the primal has an optimal feasible solution, the dual must have an optimal feasible solution and that the optimal value of the objective for the dual equals the optimal value of the objective for the primal.
ANS: From the weak duality theorem, we know that the dual optimal cannot exceed the primal optimal. Since, for a given primal optimal, we have found a dual optimal that yields objective value equal to the primal optimal, we can be assured that the λ obtained above is a point of dual optimal.

(10 Marks)

[^0]: ${ }^{1} \mathrm{~A}$ constraint $\mathbf{a}_{i}^{T} \mathbf{x} \geq b_{i}$ is tight if $\mathbf{a}_{i}^{T} \mathbf{x}=b_{i}$

