
18 A Pathwise Algorithm for Covariance

Selection

Vijay Krishnamurthy kvijay@princeton.edu

ORFE, Princeton University

Princeton, NJ 08544, USA

Selin Damla Ahipaşaoğlu sahipasa@princeton.edu

ORFE, Princeton University

Princeton, NJ 08544, USA

Alexandre d’Aspremont aspremon@princeton.edu

ORFE, Princeton University

Princeton, NJ 08544, USA

Covariance selection seeks to estimate a covariance matrix by maximum

likelihood while restricting the number of nonzero inverse covariance matrix

coefficients. A single penalty parameter usually controls the tradeoff between

log-likelihood and sparsity in the inverse matrix. We describe an efficient al-

gorithm for computing a full regularization path of solutions to this problem.

18.1 Introduction

We consider the problem of estimating a covariance matrix from sample

multivariate data by maximizing its likelihood while penalizing the inverse

covariance so that its graph is sparse. This problem is known as covari-

ance selection and can be traced back at least to Dempster (1972). The

coefficients of the inverse covariance matrix define the representation of a

particular Gaussian distribution as a member of the exponential family;

hence sparse maximum likelihood estimates of the inverse covariance yield

sparse representations of the model in this class. Furthermore, in a Gaussian

480 A Pathwise Algorithm for Covariance Selection

model, zeros in the inverse covariance matrix correspond to conditionally

independent variables, so this penalized maximum likelihood procedure si-

multaneously stabilizes estimation and isolates structure in the underlying

graphical model Lauritzen (1996, see).

Given a sample covariance matrix Σ ∈ Sn, the covariance selection

problem is written as

maximize log detX −Tr(ΣX)− ρCard(X)

in the matrix variable X ∈ Sn, where ρ > 0 is a penalty parameter

controlling sparsity and Card(X) is the number of nonzero elements in X.

This is a combinatorially hard (nonconvex) problem and, as in Dahl et al.

(2008), Banerjee et al. (2006), and Dahl et al. (2005), we form the convex

relaxation

maximize log detX −Tr(ΣX)− ρ‖X‖1, (18.1)

which is a convex problem in the matrix variable X ∈ Sn, where ‖X‖1 is

the sum of absolute values of the coefficients of X here. After scaling, the

‖X‖1 penalty can be understood as a convex lower bound on Card(X). An-

other completely different approach, derived in Meinshausen and Bühlmann

(2006), reconciles the local dependence structure inferred from n distinct

�1-penalized regressions of a single variable against all the others. Both this

approach and the convex relaxation (18.1) have been shown to be consistent

in Meinshausen and Bühlmann (2006) and Banerjee et al. (2008), respec-

tively.

In practice, however, both methods are computationally challenging

when n gets large. Various algorithms have been employed to solve (18.1)

with Dahl et al. (2005), using a custom interior-point method, and Banerjee

et al. (2008), using a block coordinate descent method where each iteration

required solving a Lasso-like problem, among others. This last method is

efficiently implemented in the Glasso package by Friedman et al. (2008),

using coordinate descent algorithms from Friedman et al. (2007) to solve

the inner regression problems.

One key issue in all these methods is that there is no a priori obvious

choice for the penalty parameter. In practice, at least a partial regularization

path of solutions has to be computed, and this procedure is then repeated

many times to get confidence bounds on the graph structure by cross-

validation. Pathwise Lasso algorithms such as LARS (Efron et al., 2004)

can be used to get a full regularization path of solution using the method

in Meinshausen and Bühlmann (2006), but this still requires solving and

reconciling n regularization paths on regression problems of dimension n.

18.2 Covariance Selection 481

Our contribution here is to formulate a pathwise algorithm for solving

problem (18.1) using numerical continuation methods (see Bach et al. (2005)

for an application in kernel learning). Each iteration requires solving a large

structured linear system (predictor step), then improving precision using

a block coordinate descent method (corrector step). Overall, the cost of

moving from one solution of problem (18.1) to another is typically much

lower than that of solving two separate instances of (18.1). We also derive

a coordinate descent algorithm for solving the corrector step, where each

iteration is closed form and requires only solving a cubic equation. We

illustrate the performance of our methods on several artificial and realistic

data sets.

The paper is organized as follows. Section 18.2 reviews some basic convex

optimization results on the covariance selection problem in (18.1). Our main

pathwise algorithm is described in Section 18.3. Finally, we present some

numerical results in Section 18.4.

In what follows, we write Sn for the set of symmetric matrices of dimension

n. For a matrix X ∈ R
m×n, we write ‖X‖F its Frobenius norm; ‖X‖1 =∑

ij |Xij |, the �1 norm of its vector of coefficients; and Card(X), the number

of nonzero coefficients in X.

18.2 Covariance Selection

Starting from the convex relaxation defined above

maximize log detX −Tr(ΣX)− ρ‖X‖1 (18.2)

in the variable X ∈ Sn, where ‖X‖1 can be understood as a convex

lower bound on the Card(X) function whenever |Xij | ≤ 1 (we can always

scale ρ otherwise). Let us write X∗(ρ) for the optimal solution of problem

(18.2). In what follows, we will seek to compute (or approximate) the entire

regularization path of solutions X∗(ρ) for ρ ∈ R+. To remove the nonsmooth

penalty, we can set X = L−M and rewrite Problem (18.2) as

maximize log det(L−M)−Tr(Σ(L−M))− ρ1T (L+M)1

subject to Lij ,Mij ≥ 0, i, j = 1, . . . , n,
(18.3)

in the matrix variables L,M ∈ Sn. We can form the following dual to

problem (18.2) as

minimize − log det(U)− n

subject to Uij ≤ Σij + ρ, i, j = 1, . . . , n,

Uij ≥ Σij − ρ, , i, j = 1, . . . , n,

(18.4)

482 A Pathwise Algorithm for Covariance Selection

in the variable U ∈ Sn. As in Bach et al. (2005), for example, in the spirit

of barrier methods for interior-point algorithms, we then form the following

(unconstrained) regularized problem

min
U∈Sn

− log det(U)− t

⎛⎝ n∑
i,j=1

log(ρ+Σij − Uij) +

n∑
i,j=1

log(ρ− Σij + Uij)

⎞⎠
(18.5)

in the variable U ∈ Sn, and t > 0 specifies a desired tradeoff level between

centrality (smoothness) and optimality. From every solution U∗(t) corre-

sponding to each t > 0, the barrier formulation also produces an explicit

dual solution (L∗(t),M∗(t)) to Problem (18.4). Indeed, we can define ma-

trices L,M ∈ Sn as follows

Lij(U, ρ) =
t

ρ+Σij − Uij
and Mij(U, ρ) =

t

ρ− Σij + Uij
.

First-order optimality conditions for Problem (18.5) then imply

(L−M) = U−1.

As t tends to 0, (18.5) traces a central path toward the optimal solution to

Problem (18.4). If we write f(U) for the objective function of (18.4) and call

p∗ its optimal value, we get (as in Boyd and Vandenberghe (2004, §11.2.2)),
f(U∗(t))− p∗ ≤ 2n2t.

Hence t can be understood as a surrogate duality gap when solving the dual

Problem (18.4).

18.3 Algorithm

In this section we derive a predictor-corrector algorithm to approximate the

entire path of solutions X∗(ρ) when ρ varies between 0 and maxiΣii (beyond

which the solution matrix is diagonal). Defining

H(U, ρ) = L(U, ρ)−M(U, ρ)− U−1,

we trace the curve H(U, ρ) = 0, the first-order optimality condition for

Problem (18.5). Our pathwise covariance selection algorithm is defined in

Algorithm 18.1.

Typically, in Algorithm 18.1, h is a small constant, ρ0 = maxiΣii, and U0

is computed by solving a single (very sparse) instance of problem (18.5) for

18.3 Algorithm 483

Algorithm 18.1 Pathwise Covariance Selection

Input: Σ ∈ Sm

1: Start with (U0, ρ0) s.t H(U0, ρ0) = 0.
2: for i = 1 to k do
3: Predictor Step. Let ρi+1 = ρi + h. Compute a tangent direction by solving the

linear system

∂H

∂ρ
(Ui, ρi) + J(Ui, ρi)

∂U

∂ρ
= 0

in ∂U/∂ρ ∈ Sn, where J(Ui, ρi) = ∂H(U, ρ)/∂U ∈ Sn2 is the Jacobian matrix of the
function H(U, ρ).

4: Update Ui+1 = Ui + h∂U/∂ρ.
5: Corrector Step. Solve problem (18.5) starting at U = Ui+1.
6: end for
Output: Sequence of matrices Ui, i = 1, . . . , k.

example.

18.3.1 Predictor: Conjugate Gradient Method

In Algorithm 18.1, the tangent direction in the predictor step is computed

by solving a linear system Ax = b where A = (U−1 ⊗ U−1 +D) and D is a

diagonal matrix. This system of equations has dimension n2, and we solve

it using the conjugate gradient (CG) method.

18.3.1.1 CG iterations

The most expensive operation in the CG iterations is the computation

of a matrix vector product Apk, with pk ∈ R
n2

. Here, however, we can

exploit problem structure to compute this step efficiently. Observe that

(U−1 ⊗ U−1)pk = vec(U−1PkU
−1) when pk = vec(Pk), so the computation

of the matrix vector product Apk needs only O(n3) flops instead of O(n4).

The CG method then needs at most O(n2) iterations to converge, leading

to a total complexity of O(n5) for the predictor step. In practice, we will

observe that CG needs considerably fewer iterations.

18.3.1.2 Stopping criterion

To speed up the computation of the predictor step, we can stop the conjugate

gradient solver when the norm of the residual falls below the numerical

tolerance t. In our experiments here, we stopped the solver after the residual

decreases by two orders of magnitude.

484 A Pathwise Algorithm for Covariance Selection

18.3.1.3 Scaling and warm start

Another option, much simpler than the predictor step detailed above, is

warm starting. This means simply scaling the current solution to make it

feasible for the problem after ρ is updated. In practice, this method turns

out to be as efficient as the predictor step, as it allows us to follow the path

starting from the sparse end (where more interesting solutions are located).

Here, we start the algorithm from the sparsest possible solution, a diagonal

matrix U such that

Uii = Σii + (1− ε)ρmaxI, i = 1, . . . , n,

where ρmax = maxiΣii. Suppose, now, that iteration k of the algorithm

produced a matrix solution Uk corresponding to a penalty ρk. Then, the

algorithm with (lower) penalty ρk+1 is started at the matrix

U = (1− ρk+1/ρk)Σ + (ρk+1/ρk)Uk,

which is a feasible starting point for the corrector problem that follows. This

is the method that was implemented in the final version of our code and that

is used in the numerical experiments detailed in Section 18.4.

18.3.2 Corrector: Block Coordinate Descent

For small problems, we can use Newton’s method to solve (18.5). However,

from a computational perspective, this approach is not practical for large

values of n. We can simplify iterations by using a block coordinate descent

algorithm that updates one row/column of the matrix in each iteration

(Banerjee et al., 2008). Let us partition the matrices U and Σ as

U =

(
V u

uT w

)
and S =

(
A b

bT c

)
.

We keep V fixed in each iteration and solve for u and w. Without loss of

generality, we can always assume that we are updating the last row/column.

18.3.2.1 Algorithm

Problem (18.5) can be written in block format as

minimize − log(w − uTV −1u)− t(log(ρ+ c− w) + log(ρ− c+ w))

−2t (∑i log(ρ+ bi − ui) +
∑

i log(ρ− bi + ui)) ,

(18.6)

18.3 Algorithm 485

in the variables u ∈ R
(n−1) and w ∈ R. Here V ∈ S(n−1) is kept fixed in

each iteration. We use the Sherman-Woodbury-Morrison (SWM) formula

Algorithm 18.2 Block coordinate descent corrector steps

Input: U0, Σ ∈ Sn

1: for i = 1 to k do
2: Pick the row and column to update.
3: Solve the inner problem (18.6) using coordinate descent (each coordinate descent

step requires solving a cubic equation).
4: Update U−1.
5: end for
Output: A matrix Uk solving (18.5).

(see e.g., Boyd and Vandenberghe, 2004, Section C.4.3) to efficiently update

U−1 at each iteration, so it suffices to compute the full inverse only once,

at the beginning of the path. The choice and order of row/column updates

significantly affect performance. Although predicting the effect of a whole ith

row/column update is numerically expensive, we use the fact that the impact

of updating diagonal coefficients usually dominates all others and can be

computed explicitly at a very low computational cost. It corresponds to the

maximum improvement in the dual objective function that can be achieved

by updating the current solution U to U + weie
T
i , where ei is the ith unit

vector. The objective function value is a decreasing function of w and w must

be lower than ρ+ Σii − Uii to preserve dual feasibility, so updating the ith

diagonal coefficient will decrease the objective by δi = (ρ+Σii−Uii)U
−1
ii after

minimizing over w. In practice, updating the top 10 percent row/columns

with the largest δ is often enough to reach our precision target, and very

significantly speeds up computations. We also solve the inner problem (18.6)

by a coordinate descent method (as in (Friedman et al., 2007)), taking

advantage of the fact that a point minimizing (18.6) over a single coordinate

can be computed in closed form by solving a cubic equation. Suppose (u,w)

is the current point and that we wish to optimize coordinate uj of the vector

u. We define

α = −V −1
jj

β = −2uj(
∑

k �=j V
−1
kj uk)

γ = w − uTV −1u− αuj − βu2j .

(18.7)

The optimality conditions imply that the the optimal u∗j must satisfy the

cubic equation

p1x
3 + p2x

2 + p3x+ p4 = 0, (18.8)

486 A Pathwise Algorithm for Covariance Selection

where

p1 = 2(1 + 2t)α, p2 = (1 + 4t)β − 4(1 + 2t)αbj
p3 = 4tγ − 2(1 + 2t)βbj + 2α(b2j − 2ρ2), p4 = β(b2j − ρ2)− 4tγbj .

Similarly, the diagonal update w satisfies the following quadratic equation:

(1 + 2t)w2 − 2(t(uTV −1u) + c(1 + t))w + c2 − ρ2 + 2tc(uTV −1u) = 0

Here too, the order in which we optimize the coordinates has a significant

impact.

18.3.2.2 Dual Block Problem

We can derive a dual to Problem (18.6) by rewriting it as a constrained

optimization problem to get

minimize − log x1 − t(log x2 + log x3)− 2t (
∑

i(log yi + log zi))

subject to x1 ≤ w − uTV −1u

x2 = ρ+ c− w, x3 = ρ− c+ w

yi = ρ+ bi − ui, zi = ρ− bi + ui,

(18.9)

in the variables u ∈ R
(n−1), w ∈ R, x ∈ R

3, y ∈ R
(n−1), z ∈ R

(n−1). The dual

to Problem (18.9) is written

maximize 1 + 2t(2n− 1) + logα1 − α2(ρ+ c)− α3(ρ− c)

−∑i (βi(ρ+ bi) + ηi(ρ− bi))

+t log(α2/t) + t log(α3/t) + 2t (
∑

i (log(βi/2t) + log(ηi/2t)))

subject to α1 = α2 − α3

α1 ≥ 0,

(18.10)

in the variables α ∈ R
3, β ∈ R

(n−1) and η ∈ R
(n−1). Surrogate dual points

then produce an explicit stopping criterion.

18.3.3 Complexity

Solving for the predictor step using conjugate gradient as in Section 18.3.1

requires O(n2) matrix products (at a cost of O(n3) each) in the worst

case, but the number of iterations necessary to get a good estimate of the

predictor is typically much lower (see experiments in Section 18.4). Scaling

and warm start, on the other hand, have complexity O(n2). The inner and

outer loops of the corrector step are solved using coordinate descent, with

each coordinate iteration requiring the (explicit) solution of a cubic equation.

18.4 Numerical Results 487

Results on the convergence of the coordinate descent in the smooth case

can be traced back at least to Luo and Tseng (1992) or Tseng (2001), who

focus on local linear convergence in the strictly convex case. More precise

convergence bounds have been derived in Nesterov (2010), who shows linear

convergence (with complexity growing as log(1/ε)) of a randomized variant

of coordinate descent for strongly convex functions, and a complexity bound

growing proportionally to 1/ε when the gradient is Lipschitz continuous

coordinatewise. Unfortunately, because it uses a randomized step selection

strategy, the algorithm in its standard form is inefficient in our case here,

as it requires too many SWM matrix updates to switch between columns.

Optimizing the algorithm in Nesterov (2010) to adapt it to our problem (e.g.,

by adjusting the variable selection probabilities to account for the relative

cost of switching columns) is a potentially promising research direction.

The complexity of our algorithm can be summarized as follows.

Because our main objective function is strictly convex, our algorithm

converges locally linearly, but we have no explicit bound on the total number

of iterations required.

Starting the algorithm requires forming the inverse matrix V −1 at a cost

of O(n3).

Each iteration requires solving a cubic equation for each coordinatewise

minimization problem to form the coefficients in (18.7), at a cost of O(n2).

Updating the problem to switch from one iteration to the next, using SWM

updates, then costs O(n2). This means that scanning the full matrix with

coordinate descent requires O(n4) flops.

While the lack of a precise complexity bound is a clear shortcoming of our

choice of algorithm for solving the corrector step, as discussed by Nesterov

(2011), algorithm choices are usually guided by the type of operations

(projections, barrier computations, inner optimization problems) that can be

solved very efficiently or in closed form. In our case here, it turns out that

coordinate descent iterations can be performed very fast, in closed form

(by solving cubic equations), which seems to provide a clear (empirical)

complexity advantage to this technique.

18.4 Numerical Results

We compare the numerical performance of several methods for computing

a full regularization path of solutions to Problem (18.2) on several realistic

data sets: the senator votes covariance matrix from Banerjee et al. (2006),

488 A Pathwise Algorithm for Covariance Selection

the Science topic model in Blei and Lafferty (2007) with 50 topics, the

covariance matrix of 20 foreign exchange rates, the UCI SPECTF heart

dataset (diagnosing of cardiac images), the UCI LIBRAS hand movement

dataset, and the UCI HillValley dataset. We compute a path of solutions

using the methods detailed here (Covpath) and repeat this experiment using

the Glasso path code (Friedman et al., 2008), which restarts the covariance

selection problem at ρ+ε at the current solution of (18.2) obtained at ρ. We

also tested the smooth first-order code with warm start ASPG (described in

Lu (2010)) as well as the greedy algorithm SINCO by Scheinberg and Rish

(2009). Note that the latter only identifies good sparsity patterns but does

not (directly) produce feasible solutions to problem (18.4). Our prototype

code here is written in MATLAB (except for a few steps in C), ASPG

and SINCO are also written in MATLAB, and Glasso is compiled from

FORTRAN and interfaced with R. We use the scaling/warm start approach

detailed in Section 18.3 and scan the full set of variables at each iteration

of the block-coordinate descent algorithm (optimizing over the 10 percent

most promising variables sometimes significantly speeds up computations

but is more unstable), so the results reported here describe the behavior of

the most robust implementation of our algorithm. We report CPU time (in

seconds) versus problem dimension in Table 18.1. Unfortunately, Glasso does

not use the duality gap as a stopping criterion, but rather lack of progress

(average absolute parameter change less than 10−4). Glasso fails to converge

on the HillValley example.

Dataset Dimension Covpath Glasso ASPG SINCO

Interest Rates 20 0.036 0.200 0.30 0.007
FX Data 20 0.016 1.467 4.88 0.109

Heart 44 0.244 2.400 11.25 5.895
ScienceTopics 50 0.026 2.626 11.58 5.233

Libras 91 0.060 3.329 35.80 40.690
HillValley 100 0.068 - 47.22 68.815
Senator 102 4.003 5.208 10.44 5.092

Table 18.1: CPU time (in seconds) versus problem type for computing a reg-
ularization path for 50 values of the penalty ρ, using the path-following method
detailed here (Covpath), the Glasso code with warm-start (Glasso), the pathwise
code (ASPG) in Lu (2010) and the SINCO greedy code by Scheinberg and Rish
(2009).

As in Banerjee et al. (2008), to test the behavior of the algorithm on

examples with known graphs, we also sample sparse random matrices with

Gaussian coefficients, add multiples of the identity to make them positive

18.4 Numerical Results 489

semidefinite, then use the inverse matrix as our sample matrix Σ. We

use these examples to study the performance of the various algorithms

listed above on increasingly large problems. Computing times are listed in

Table 18.2 for a path of length 10, and in Table 18.3 for a path of length 50.

The penalty coefficients ρ are chosen to produce a target sparsity around 10

percent.

Dimension Covpath Glasso ASPG SINCO

20 0.0042 2.32 0.53 0.22
50 0.0037 0.59 4.11 3.80

100 0.0154 1.11 13.36 13.58
200 0.0882 4.73 73.24 61.02
300 0.2035 13.52 271.05 133.99

Table 18.2: CPU time (in seconds) versus problem dimension for computing a
regularization path for 10 values of the penalty ρ, using the path-following method
detailed here (Covpath), the Glasso code with warm-start (Glasso), the pathwise
code (ASPG) in Lu (2010) and the SINCO greedy code by Scheinberg and Rish
(2009) on randomly generated problems.

Dimension Covpath Glasso ASPG SINCO

20 0.0101 0.64 2.66 1.1827
50 0.0491 1.91 23.2 22.0436

100 0.0888 10.60 140.75 122.4048
200 0.3195 61.46 681.72 451.6725
300 0.8322 519.05 5203.46 1121.0408

Table 18.3: CPU time (in seconds) versus problem dimension for computing a
regularization path for 50 values of the penalty ρ, using the path-following method
detailed here (Covpath), the Glasso code with warm-start (Glasso), the pathwise
code (ASPG) in Lu (2010) and the SINCO greedy code by Scheinberg and Rish
(2009) on randomly generated problems.

In Figure 18.1, we plot the number of nonzero coefficients (cardinality)

in the inverse covariance versus the penalty parameter ρ, along a path of

solutions to problem (18.2). We observe that the solution cardinality appears

to be linear in the log of the regularization parameter. We then plot the

number of conjugate gradient iterations required to compute the predictor in

Section 18.3.1 versus number of nonzero coefficients in the inverse covariance

matrix. We notice that the number of CG iterations decreases significantly

for sparse matrices, which makes computing predictor directions faster at

the sparse (i.e., interesting) end of the regularization path. Nevertheless,

490 A Pathwise Algorithm for Covariance Selection

the complexity of corrector steps dominates the total complexity of the

algorithm, and there was little difference in computing time between using

the scaling method detailed in Section 18.3 and using the predictor step.

Hence the final version of our code and the CPU time results listed here

make use of scaling/warm start exclusively, which is more robust.

����

���

����

���

ρ

��� ��� ��� ��� ���

Figure 18.1: Left: We plot the fraction of nonzero coefficients in the inverse
covariance versus penalty parameter ρ, along a path of solutions to Problem (18.2).
Right: Number of conjugate gradient iterations required to compute the predictor
step versus number of nonzero coefficients in the inverse covariance matrix.

Finally, to illustrate the method on intuitive data sets, we solve for a

full regularization path of solutions to Problem (18.2) on financial data

consisting of the covariance matrix of U.S. forward rates for maturities

ranging from 6 months to 10 years from 1998 until 2005. Forward rates

move as a curve, so we expect their inverse covariance matrix to be close to

band diagonal. Figure 18.2 shows the dependence network obtained from the

solution of Problem (18.2) on this matrix along a path, for ρ = .02, ρ = .008,

and ρ = .006. The graph layout was formed using the yFiles–Organic option

in Cytoscape.

The string like dynamics of the rates clearly appear in the last plot. We

also applied our algorithm to the covariance matrix extracted from the

correlated topic model calibrated in Blei and Lafferty (2007) on 10 years

of articles from the journal Science, targeting a graph density low enough to

reveal some structure. The corresponding network is detailed in Figure 18.3.

Graph edge color is related to the sign of the conditional correlation (green

for positive, red for negative), while edge thickness is proportional to the

correlation magnitude. The five most important words are listed for each

topic.

18.5 Online Covariance Selection 491

1

0.5

1.5

2

8

9
7

7.5 8.5

6 10

4.5

5.5

6.5

7.5

8.5

9.5

9

10

8

7

4

3

2.5

1

0.5
1.5

2

6

8

7

9

10

9.5

8.5

7.5

6.5

5.5

4.5

4

3

12.5

0.5

1.5

2

Figure 18.2: Three sample dependence graphs corresponding to the solution of
problem (18.2) on a U.S. forward rates covariance matrix for ρ = .02 (left), ρ = .008
(center), and ρ = .006 (right).

18.5 Online Covariance Selection

In this section we will briefly discuss the online version of the covariance

selection problem. This version arises if we obtain a better estimate of the

covariance matrix after the problem is already solved for a set of parameter

values. We will assume that the new (positive definite) covariance matrix

Σ̂ is the sum of the old covariance matrix Σ and an arbitrary symmetric

matrix C. With such a change, the “new” dual problem can be written as

minimize − log det(U)− n

subject to Uij ≤ ρ+Σij + μCij , i, j = 1, . . . , n,

Uij ≥ Σij + μCij − ρ, , i, j = 1, . . . , n,

(18.11)

in the variable U ∈ Sn, where ρ is a parameter value for which the

corresponding optimal solution is already calculated with the old covariance

matrix Σ. The problem is parameterized with μ, so that μ = 0 gives the

original problem whereas μ = 1 corresponds to the new problem.

For many applications, one would expect C to be small and the optimal

solution U∗ of the original problem to be close to the optimal solution of

the new problem, say Û∗. Hence, regardless of the algorithm, U∗ should be

used as an initial solution instead of solving the problem from scratch.

In the spirit of the barrier methods and the predictor-corrector method

that we have devised in this chapter, we can develop a predictor-corrector

algorithm to solve the online version of the problem fast, as follows. We form

a parameterized version of the regularized problem

492 A Pathwise Algorithm for Covariance Selection

Figure 18.3: Topic network for the Science Correlated Topic Model in Blei and
Lafferty (2007). Network layout using cytoscape. Graph edge grayscale is related
to the magnitude of the conditional correlation while edge thickness is proportional
to the correlation magnitude.

min
U∈Sn

− log det(U)− t
∑n

i,j=1 log(ρ+Σij + μCij − Uij)

−t∑n
i,j=1 log(ρ− Σij − μCij + Uij)

(18.12)

in the variable U ∈ Sn, and t > 0 is the tradeoff level as before. Let us define

matrices L̂, M̂ ∈ Sn as follows:

L̂ij(U, μ) =
t

ρ+Σij + μCij − Uij
and M̂ij(U, μ) =

t

ρ− Σij − μCij + Uij
.

As before, optimal L̂ and M̂ should satisfy (L̂ − M̂) = U−1, and Problem

(18.12) traces a central path toward the optimal solution to Problem (18.11)

as t goes to 0.

18.5 Online Covariance Selection 493

Defining

Ĥ(U, μ) = L̂(U, μ)− M̂(U, μ)− U−1,

we trace the curve Ĥ(U, μ) = 0, the first-order optimality condition for

problem (18.12), from the solution for the original problem to one for the new

problem as μ goes from 0 to 1. The resulting predictor-corrector algorithm

is Algorithm 18.3, which solves the online version efficiently.

Algorithm 18.3 Online Pathwise Covariance Selection

Input: Σ, U∗ ∈ Sm, ρ ∈ R, and c ∈ R
n×r.

1: Start with (U0, μ0) s.t Ĥ(U0, μ0) = 0, specifically, set μ0 = 0 and U0 = U∗.
2: for i = 1 to k do
3: Predictor Step. Let μi+1 = μi + 1/k. Compute a tangent direction by solving the

linear system

∂Ĥ

∂μ
(Ui, μi) + J(Ui, μi)

∂U

∂μ
= 0

in ∂U/∂μ ∈ Sn, where J(Ui, μi) = ∂Ĥ(U, μ)/∂U ∈ Sn2 is the Jacobian matrix of the
function Ĥ(U, μ).

4: Update Ui+1 = Ui + (∂U/∂μ)/k.
5: Corrector Step. Solve Problem (18.12) for μi+1 starting at U = Ui+1.
6: end for
Output: Matrix Uk that solves Problem (18.11).

As for the offline version, the most demanding computation in this algo-

rithm is the calculation of the tangent direction, which can be carried out by

the CG method discussed above. When carefully implemented and tuned,

it produces a solution for the new problem very fast. Although one can try

different values of k, setting k = 1 and applying one step of the algorithm

is usually enough in practice. This algorithm, and the online approach dis-

cussed in this section in general, would be especially useful and sometimes

necessary for very large datasets, as solving the problem from scratch is an

expensive task for such problems and should be avoided whenever possible.

Acknowledgements

The authors are grateful to two anonymous referees whose comments signif-

icantly improved the chapter. The authors would also like to acknowledge

support from NSF grants SES-0835550 (CDI), CMMI-0844795 (CAREER),

CMMI-0968842, a Peek junior faculty fellowship, a Howard B. Wentz Jr.

award, and a gift from Google.

494 A Pathwise Algorithm for Covariance Selection

18.6 References

F. Bach, R. Thibaux, and M. Jordan. Computing regularization paths for learn-
ing multiple kernels. In Advances in Neural Information Processing Systems,
volume 17, pages 73–80. MIT Press, 2005.

O. Banerjee, L. El Ghaoui, A. d’Aspremont, and G. Natsoulis. Convex optimization
techniques for fitting sparse Gaussian graphical models. In Proceedings of the 23rd
International Conference on Machine Learning, 2006.

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse
maximum likelihood estimation for multivariate Gaussian or binary data. Journal
of Machine Learning Research, 9:485–516, 2008.

D. Blei and J. Lafferty. A correlated topic model of science. Annals of Applied
Statistics, 1(1):17–35, 2007.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

J. Dahl, V. Roychowdhury, and L. Vandenberghe. Maximum likelihood estimation
of gaussian graphical models: numerical implementation and topology selection.
UCLA preprint, 2005.

J. Dahl, L. Vandenberghe, and V. Roychowdhury. Covariance selection for non-
chordal graphs via chordal embedding. Optimization Methods and Software, 23
(4):501–520, 2008.

A. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals
of Statistics, 32(2):407–499, 2004.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate
optimization. Annals of Applied Statistics, 1(2):302–332, 2007.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

S. Lauritzen. Graphical Models. Clarendon Press, 1996.

Z. Lu. Adaptive first-order methods for general sparse inverse covariance selection.
SIAM Journal on Matrix Analysis and Applications, 31(4):2000–2016, 2010.

Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method
for convex differentiable minimization. Journal of Optimization Theory and
Applications, 72(1):7–35, 1992.

N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection
with the Lasso. Annals of Statistics, 34(3):1436–1462, 2006.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. CORE Discussion Papers, 2010/2, 2010.

Y. Nesterov. Barrier subgradient method. Mathematical Programming, Series B,
127:31–56, 2011.

K. Scheinberg and I. Rish. SINCO—a greedy coordinate ascent method for sparse
inverse covariance selection problem. 2009.

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of Optimization Theory and Applications, 109(3):475–494,
2001.

