
Chapter 7

Graphical Models

Graphical models [Lau96, CGH97, Pea88, Jor98, Jen01] provide a pictorial rep-
resentation of the way a joint probability distribution factorizes into a product
of factors. They have been widely used in the area of computer vision, con-
trol theory, bioinformatics, communication, signal processing, sensor networks,
neurovision, etc.

There is a relation between the conditional independence properties of a
joint distribution and its factorization properties. Each of these properties can
be represented graphically. This allows us to

1. organize complicated mathematics through graph based algorithms for
calculation and computation and thus save complicated computations (in
many cases, map the pictorial representation onto computations directly)

2. gain new insights into existing models; it is a standard practice to modify
an existing model by addition/delection of nodes or links and adopt it to
the problem at hand

3. motivate new models by simply ammending pictures

However, everything that you could do in graphical models using pictures
could also be done without pictures, by grinding through all the mathematics
while consistently using the innocuous-looking sum (7.1) and product (7.2) rules
of probability

Pr (X) =
∑

y∈Y
Pr (X = x, Y = y) (7.1)

Pr (X = x, Y = y) = Pr (X = x | Y = y) Pr (Y = y) (7.2)

387

388 CHAPTER 7. GRAPHICAL MODELS

where X and Y are discrete random variables, assuming values x ∈ X =
{x1, x2, . . . , xm} and y ∈ Y = {y1, y2, . . . , yn} respectively. A combination of
the two rules yields the Bayes theorem:

Pr (X = xi, Y = yj) =
Pr (X = xi | Y = yj) Pr (Y = yj)

Pr (X = xi)

=
Pr (X = xi | Y = yj) Pr (Y = yj)∑

yj∈Y
Pr (X = xi | Y = yj) Pr (Y = yj)

(7.3)

The two main kinds of graphical models are directed and undirected models.
The problems we will address in graphical models include

1. Inference: Broadly, there are two inference techniques for graphical mod-
els, viz., exact and approximate inference. Exact inference is appropriate
if the graphic is a tree, since it is a linear time algorithm. But for complex
graphical models, exact inference may or may not be appropriate, since
exact algorithms could be very slow. In such cases, approximate inference
schemes are often resorted to. Markov chain monte carlo (which is exact
if there were an infinite amount of computing resources and approximate
otherwise) and variational inference (by approximating the analytical form
for the posterior distribution) are two popular techniques. While varia-
tional techniques scale better, their other strengths and weaknesses are
complementary to those of MCMC. An often adopted stepping stone for
explaining variational inference is the expectation maximization algorithm
(EM) and we will take the same route.

2. Learning:

7.1 Semantics of Graphical Models

We will first discuss the semantics of graphical models, both directed and undi-
rected. In the sections that follow, we will discuss the computational aspects of
graphical models - in particular, inferencing and learning techniques.

7.1.1 Directed Graphical Models

We will start with the example of a directed graphical model. Consider an arbi-
trary joint distribution Pr (X1 = x1, X2 = x2, X3 = x3) over three discrete ran-
dom variables X1, X2 and X3 that assume values x1 ∈ X1, x2 ∈ X2 and x3 ∈ X3

respectively. Denoting1 Pr (Xi = xi) by p(xi) and Pr (X1 = x1, X2 = x2, X3 = x3)
by p(x1, x2, x3) and applying the product rule of probability successively, we ob-
tain

1As a convention, we will use capital letters to denote random variables and lower case
letters to denote their realizations.

7.1. SEMANTICS OF GRAPHICAL MODELS 389

p(x1, x2, x3) = p(x1)p(x2, x3 | x1) = p(x1)p(x2 | x1)p(x3 | x1, x2) (7.4)

The successive application of the product rule is often termed as the chain rule.
We should note that this rule applies even if x1, x2 and x3 happen to be continu-
ous random variables (in which case p is a density function) or vectors of random
variables. We should note that this factorization is quite non-symmetrical in
the three random variables. This factorization can be represented in the form of
the following directed graph: There is one node for each variable. We draw a di-
rected edge between every conditioning variable (i.e. the corresponding node) to
the conditioned variable. The way to go from a graph to the factorization of the
joint distribution is to write down the product of the conditional distribution of
every node (i.e., the corresponding variable) conditioned on its parents within
the graph. In the example above, x1 had no parent, and therefore the term
corresponds to its conditional p(x1) turned out to be its marginal distribution.

The factorization in the last example holds for any joint distribution over any
three variables and the graph is therefore uninformative. In fact, any completely
connected graph will be uninformative, as we will soon see. What interests us
in graphical models is not the presence of edges but rather, the absence of
edges. Since the graph in the previous example had no missing edges, it was
uninteresting.

Definition 43 Let R = {X1, X2, . . . , Xn} be a set of random variables, with
each Xi (1 ≤ i ≤ n) assuming values xi ∈ Xi. Let XS = {Xi | i ∈ S} where
S ⊆ {1, 2, . . . , n}. Let G =< V, E > be a directed acyclic graph with vertices
V = {1, 2, . . . , n} and E ⊆ V × V such that each edge e = (i, j) ∈ E is a directed
edge. We will assume a one to one correspondence between the set of variables
R and the vertex set V; vertex i will correspond to random variable Xi. Let
πi be the set of vertices from which there is edge incident on vertex i. That
is, πi = {j | j ∈ V, (j, i) ∈ E}. Then, the family F(G) of joint distributions
associated with the DAG2 G is specified by the factorization induced by G as
follows:

2As we saw earlier, the family of probability distributions specified by the related formalism
of undirected graphical models is somewhat different.

390 CHAPTER 7. GRAPHICAL MODELS

F(G) =

{
p(x)

∣∣∣∣∣p(x) =
n∏

i=1

p(xi | xπi
), p(xi | xπi

)∀ 1 ≤ i ≤ n ≥ 0,
∑

xi∈Xi

p(xi | xπi
) = 1

}

(7.5)

where, x denotes the vector of values [x1, x2, . . . , xn] and xi is the value assumed
by random variable Xi and xπi

denotes the vector of values from x, composed
from positions in πi.

For notational convenience with directed acyclic graphs, it is a common
practice to assume a topological ordering on the indices of vertices in V so
that πi ⊆ µi−1 = {1, 2, . . . , i − 1}. Note that, by the chain rule, the following
factorization always holds:

p(x) =

n∏

i=1

p(xi | xµi−1) (7.6)

Making use of the sum rule, in conjunction with (7.5), for any p ∈ F(G), we
have

p(xµi
) =

∑

xi+1∈Xi+1,...,xn∈Xn

p(x)

=
∑

xi+1∈Xi+1,...,xn∈Xn

p(x1)p(x2 | xπ2
) . . . p(xi | xπi

) (7.7)

Since the vertex indices are topologically ordered, it can be proved using the
principle of induction (working backwards from n) on the basis of the sum rule
in (7.7), that for any p ∈ F(G):

p(xµi
) =

i−1∏

j=1

p(xi | xπi
) (7.8)

Contrasting (7.6) against (7.5), we can think of the set of probability dis-
tribution F(G) as a sort of restricted class of distributions that arises from
throwing away some of the dependencies. In particular, if p ∈ F(G) then

p(xi | xµi−1
) = p(xi | xπi

)

that is, Xi is independent of Xµi−1
, given Xπi

. The independence is denoted
by: Xi ⊥ Xµi−1

| Xπi
. This leads us to another approach to defining the class

of probability distributions based on a DAG G.

7.1. SEMANTICS OF GRAPHICAL MODELS 391

Definition 44 Let R = {X1, X2, . . . , Xn} be a set of random variables, with
each Xi (1 ≤ i ≤ n) assuming values xi ∈ Xi. Let XS = {Xi | i ∈ S} where
S ⊆ {1, 2, . . . , n}. Let G =< V, E > be a directed acyclic graph with vertices
V = {1, 2, . . . , n} and E ⊆ V×V such that each edge e = (i, j) is a directed edge.
Let πi = {j | j ∈ V, (j, i) ∈ E}. Then, the family C(G) of joint distributions
associated with the DAG G is specified by the conditional independence induced
by G as follows:

C(G) =

{
p(x)

∣∣∣∣∣Xi ⊥ Xµi−1
| Xπi

∀ 1 ≤ i ≤ n,
∑

x

p(x) = 1

}
(7.9)

We will next show that the class F(G) defined in terms of factorizations is
equivalent to the class C(G) defined in terms of independences. This is called
the Hammersley Clifford theorem.

Theorem 87 The sets F(G) and C(G) are equal. That is p ∈ F(G) iff p ∈ C(G)

Proof: ⇐: We will first prove that F(G) ⊆ C(G). Let p ∈ F(G). We will prove
that p ∈ C(G), that is, p(xi | xµi−1 ,xπi

) = p(xi | xπi
). This trivially holds for

i = 1, since xπi
= ∅. For i = 2:

p(x1, x2) = p(x1)p(x1 | x2) = p(x1)p(x1 | xπ2)

where, the first equality follows by chain rule, whereas the second equality fol-
lows by virtue of (7.8). Consequently,

p(x1 | x2) = p(x1 | xπ2
)

Assume that p(xi | xµi−1) = p(xi | xπi
) for i ≤ k. For i = k + 1, it follows from

chain rule and from (7.8) that

p(xµk+1
) =

k+1∏

i=1

p(xi | xµi−1) =
k+1∏

i=1

p(xi | xπi
)

Making use of the induction assumption for i ≤ k in the equation above, we can
derive that

p(xk | xµk−1
) = p(xk | xπk

)

By induction on i, we obtain that p(xi | xµi−1) = p(xk | xπi
) for all i. That is,

p ∈ C(G). Since this holds for any p ∈ F(G), we must have that F(G) ⊆ C(G).
⇒: Next we prove that C(G) ⊆ F(G). Let p′ ∈ C(G) satisfy the conditional

independence assertions. That is, for any 1 ≤ i ≤ n, p′(xi | xµi−1
) = p′(xi | xπi

).
Then by chain rule, we must have:

p′(xµn
) =

n∏

i=1

p′(xi | xµi−1) =
k+1∏

i=1

p′(xi | xπi
)

392 CHAPTER 7. GRAPHICAL MODELS

Figure 7.1: A directed graphical model.

which proves that p′ ∈ F(G) and consequently that C(G) ⊆ F(G) 2

As an example, we will discuss the directed graphical model, as shown in Fig-
ure 7.1. Based on theorem 87, the following conclusions can be drawn from the
graphical representation of a family of distributions represented by Figure 7.1.

1. Given the value of X3, the values of X1, X2 and X4 will be completely un-
informative about the value of X5. That is, (X5 ⊥ {X1, X2, X4} | {X3}).
Similarly, given the value of X2, the values of X1 and X3 will be completely
uninformative about the value of X4. That is, (X4 ⊥ {X1, X3} | {X2}).

2. Secondly, since p ∈ F(G), we have

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3 | x1, x2)p(x4 | x2)p(x5|x3)

What about other independence assertions? Is X5 independent of X4 given
X2? Is X3 independent of X4, given X2? The answer to both these questions
happens to be yes. And these could be derived using either of the equivalent
definitions of graphical models. In fact, some such additional conditional in-
dependence assertions can always follow from the two equivalent definitions of
graphical models. Before delving into these properties, we will define an impor-
tant concept called d-separation, introduced by Pearl [Pea88].

Definition 45 A set of nodes A in a directed acyclic graph G is d-separated
from a set of nodes B by a set of nodes C, iff every undirected path from a
vertex A ∈ A to a vertex B ∈ B is ‘blocked’. An undirected path between A and
B is blocked by a node C either (i) if C ∈ C and both the edges (which might be
the same) on the path through C are directed away from C (C is then called a
tail-to-tail node) or (ii) if C ∈ C and of the two edges (which might be the same)
on the path through C, one is directed toward C while the other is directed away
from C (C is then called a head-to-tail node) or (iii) if C 6∈ C and both the edges
(which might be the same) on the path through C are directed toward C (C is
then called a head-to-head node).

In Figure 7.1, node X2 blocks the only path between X3 and X4, node X3

blocks the path between X2 and X5. Whereas, node X3 does not block the

7.1. SEMANTICS OF GRAPHICAL MODELS 393

path between X1 and X2. Consequently, {X3} and {X4} are d-separated by
{X2}, while {X2} and {X5} are d-separated by {X3}. However, {X1} and
{X2} are not d-separated by {X3}, since X3 is a head-to-head node. X3 does
not d-separate X1 and X2 even though it separates them. Thus, not every pair
of (graph) separated nodes in the graph need be d-separated. We next define
a family of probability distribution that have independences characterized by
d-separation.

Definition 46 The set of probability distributions D(G) for a DAG G is defined
as follows:

D(G) = {p(x) |XA ⊥ XB | XC , whenever A and B are d − separated by C }
(7.10)

It can be proved that the notion of conditional independence is equivalent to
the notion of d-separation in DAGs. That is,

Theorem 88 For any directed acyclic graph G, D(G) = C(G) = F(G).

Thus, in Figure 7.1. {X3} ⊥ {X4} | {X2} and {X2} ⊥ {X5} | {X3}. Whereas,
{X1} 6⊥ {X2} | {X3}. We could think of X1 and X2 as completing explanations
for X3. Thus, given a value of X3, any value of X1 will, to some extent ‘explain
away’ the value of X3, thus withdrawing the independence of X2. In terms of a
real life example, if X1, X2 and X3 are discrete random variables corresponding
to ‘the color of light’, ‘the surface color’ and ‘the image color’ respectively, then,
given the value of X3 (image color), any value of X1 (color of light) will explain
away the color of the image, thus constraining the values that X3 (surface
color) might take. On the other hand, {X1} ⊥ {X2} | {}. What about the
independence of X1 and X2 given X5? The path X1, X3, X5, X3, X2 involves a
head-to-head node X5 and therefore, X1 6⊥ X2 | {X5}. The Bayes ball algorithm
provides a convenient algorithmic way for deciding if XA ⊥ XB | XC , by using
the d-separation property.

Bayesian Networks and Logic

The logical component of Bayesian networks essentially corresponds to a propo-
sitional logic program. This has already been observed by Haddawy [1994] and
Langley [1995]. Langley, for instance, does not represent Bayesian networks
graphically but rather uses the notation of propositional definite clause pro-
grams. Consider the following program. This program encodes the structure
of the blood type Bayesian network in Figure 7.2. Observe that the random
variables in this notation correspond to logical atoms. Furthermore, the di-
rect influence relation in the Bayesian network corresponds to the immediate
consequence operator.

394 CHAPTER 7. GRAPHICAL MODELS

Figure 7.2: The graphical structure of a Bayesian network modeling the inheri-
tance of blood types within a particular family.

PC(ann). PC(brian).

MC(ann). MC(brian).

MC(dorothy) : −MC(ann), PC(ann). PC(dorothy) : −MC(brian), PC(brian).

BT (ann) : −MC(ann), PC(ann). BT (brian) : −MC(brian), PC(brian).

BT (dorothy) : −MC(dorothy), PC(dorothy).

7.1.2 Undirected Graphical Models

We will move on to an undirected graphical models (also known as Markov
Random fields) primer, while drawing parallels with the directed counterpart.
An undirected graph G is a tuple < V, E > where E ⊆ V × V and such that
each edge e = (i, j) ∈ E is a directed edge. While the conditional independence
property for directed graphical models was tricky (involving concepts such as d-
separation, etc.), the conditional independence property for undirected models
is easier to state. On the other hand, the factorization property for directed
graphical models simply involved local conditional probabilities as factors. It
is however not as simple with undirected graphical models. Taking the easier
route, we will first define the conditional independence property for undirected
graphical models. Toward that, we introduce the notion of graph separation.

Definition 47 Given an undirected graph G =< V, E >, and A,B, C ⊆ V, we
say that C separates A from B in G if every path from any node A ∈ A to any
node B ∈ B passes through some node C ∈ C. C is also called a separator or a
vertex cut set in G.

In Figure 7.3, the set A = {X1, X7, X8} is separated from B = {X3, X4, X5}
by the (vertex cut) set C = {X2, X6}. It is easy to see that separation is sym-
metric in A and B. This simple notion of separation gives rise to a conditional
indpendence assertion for undirected graphs. A random vector XC for C ⊆ V

7.1. SEMANTICS OF GRAPHICAL MODELS 395

Figure 7.3: A directed graphical model.

is said to be markov with respect to a graph G if XA ⊥ XB | XC whenever C
separates A from B. That is, the random variables corresponding to the vertex
cut set acts like a mediator between the values assumed by variables in A and
B so that the variables in A and B are independent of each other, if we knew
the values of variables in C. It is straightforward to develop a ‘reachability’
algorithm (as with the bayes ball algorithm) for undirected graphs, to assess
conditional independence assumptions. Based on the definition of markov ran-
dom vector, we next define the family M(G) of distributions associated with an
undirected graph G.

Definition 48 Let R = {X1, X2, . . . , Xn} be a set of random variables, with
each Xi (1 ≤ i ≤ n) assuming values xi ∈ Xi. Let XS = {Xi | i ∈ S}
where S ⊆ {1, 2, . . . , n}. Let G =< V, E > be an undirected graph with vertices
V = {1, 2, . . . , n} and E ⊆ V × V such that each edge e = (i, j) ∈ E is an
undirected edge. Then, the family M(G) of joint distributions associated with G
is specified as follows:

M(G) = {p(x) |XA ⊥ XB | XC ∀ A,B, C ⊆ V, whenever C seperates A from B}
(7.11)

As in the case of directed models, there is another family of probability
distributions that could be specified for a given undirected graph G based on a
factorization assertion. The main difference is that, while the factorization for
DAGs was obtained in terms of local conditional probabilities or local marginals,
it turns out that this factorization is not possible for a general undirected graph
(specifically when it has a cycle). Instead there is another notion of ‘local’ for
undirected graphs – there should be no function involving any two variables
Xi and Xj where (i, j) 6∈ E (otherwise, such a term will not break further,
prohibiting assertions about conditional independences). Instead, we will have
a function φC(XC) for every clique C ⊆ V, since a clique is a subset of vertices
that all ‘talk to’ one another. The most general version of factorization will be
one for which there is a function corresponding to each maximal clique; all other

396 CHAPTER 7. GRAPHICAL MODELS

factorizations involving factors over smaller cliques will be specialized versions.
These functions will be referred to as compatibility or potential functions. A
potential or compatibility function on a clique C is a non-negative real valued
function φC(xC) defined over all instantiations x ∈ X1 × X2 × . . . × Xn of X.
Other than these restrictions, the potential function can be arbitrary.

Definition 49 Let R = {X1, X2, . . . , Xn} be a set of random variables, with
each Xi (1 ≤ i ≤ n) assuming values xi ∈ Xi. Let XS = {Xi | i ∈ S}
where S ⊆ {1, 2, . . . , n}. Let G =< V, E > be an undirected graph with vertices
V = {1, 2, . . . , n} and E ⊆ V × V such that each edge e = (i, j) ∈ E is an
undirected edge. Then, the family M(G) of joint distributions associated with G
is specified as follows:

F(G) =

{
p(x)

∣∣∣∣∣p(x) =
1

Z

∏

C∈Π

φC(xC), such that φC(xC) ∈ ℜ+,∀C ∈ Π

}

(7.12)

where, Π is the set of all cliques in G, x denotes the vector of values [x1, x2, . . . , xn],
xi ∈ Xi is the value assumed by random variable Xi and where each φC is a po-
tential function defined over the clique C ⊆ V. Without loss of generality, we can
assume that Π is the set of maximal cliques in G. The normalization constant
Z is called the partition function and is given by

Z =
∑

x1∈X1,...,xn∈Xn

∏

C∈Π

φC(xC) (7.13)

The potential functions are typically represented as tables – each row listing
a unique assignment of values to the random variables in the clique and the
corresponding potential. Thus, the value φC(xC) can be obtained by a simple
table lookup.

The form of the potential function can be chosen based on the particular
application at hand. For instance, the clique potential can be decomposed into
a product of potentials defined over each edge of the graph. When the do-
main of each random variable is the same, the form of the potential can be
chosen to either encourage or discourage similar configurations (such as sim-
ilar disease infection for patients who are related) at adjacent nodes. The
potential function is often interpreted as an energy function in the model-
ing of crystals, protein folding, etc., where a minimum energy configuration
is desirable. Frequently, the energy function is assumed to have the form
φC(XC) = exp (−θC(XC)), which leads to the factorization as an exponential

form distribution p(x) = exp (−
∑

C∈Π

θC(xC) − log Z). The quantities θC(XC) are

called sufficient statistics.

7.1. SEMANTICS OF GRAPHICAL MODELS 397

From our discussion on the equivalence of directed and undirected trees in
terms of conditional independencies, we may be tempted to conclude that the
factors for the undirected tree can be the local conditional probabilities. This
is easily established if we prove that for strictly positive distributions, the def-
inition of an undirected graphical model in terms of conditional independences
is equivalent to the definition in terms of factorization, that is, M(G) = F(G).

Theorem 89 For strictly positive distributions, M(G) = F(G). That is, M(G)∩
D+ = F(G) ∩ D+, where, D+ = {p(x) |p(x) > 0,∀x ∈ X1 ×X2 . . . ×Xn }.

Proof: The proof that M(G) ⊆ F(G) is a bit involved and requires Mobius
inversion. On the other hand, that F(G) ⊆ M(G) can be shown as follows. For
any given A,B ⊆ V that are separated by C ⊆ V, consider the partitions P1, P2

and P3 of Π:
P1 = {K |K ∈ ΠandK ⊆ A ∩ C and K 6⊆ C }
P2 = {K |K ∈ ΠandK ⊆ B ∩ C and K 6⊆ C }

P3 = {K |K ∈ ΠandK ⊆ C }
Now, p(x) can be factorized into factors involving cliques in P1, P2 and P3.
Consequently,

p(xA,xB,xC)

p(xB,xC)
=

∏

K∈P1

φK(xK)
∏

K∈P2

φK(xK)
∏

K∈P3

φK(xK)

∑

xA

∏

K∈P1

φK(xK)
∏

K∈P2

φK(xK)
∏

K∈P2

φK(xK)
=

∏

K⊆A∪C
φK(xK)

∑

xA

∏

K⊆A∪C
φK(xK)

= p(xA | xC)

2

While conditional independence is useful for modeling purposes, factoriza-
tion is more useful for computatinal purposes.

7.1.3 Comparison between directed and undirected graph-

ical models

Is there any difference between the undirected and directed formalisms? Are
they equally powerful? Or is more powerful than the other. It turns out that
there are families of probability distributions which can be represented using
undirected models, whereas they have no directed counterparts. Figure 7.4
shows one such example. Imagine that random variables X1 and X3 represent
hubs in a computer network, while X2 and X4 represent computers in the net-
work. Computers do not interact directly, but only through hubs. Similarly,
hubs interact only through computers. This leads to two independences: (i)
conditioned on X1 and X3 (the hubs), nodes X2 and X4 (the computers) be-
come independent and (ii) conditioned on X2 and X4, nodes X1 and X3 become
independent. However, with a directed acyclic graph on four nodes, we will al-
ways have some head-to-head node and therefore, it is impossible to simultane-
souly satisfy both conditions (i) and (ii) using a DAG. Larger bipartitie graphs

398 CHAPTER 7. GRAPHICAL MODELS

Figure 7.4: An undirected graphical model which has no equivalent directed
model.

Figure 7.5: A directed graphical model which has no equivalent undirected
model.

will have similar conditional independence assertions, which are inexpressible
through DAGs.

Similarly, there are familiies of probability distibutions which can be rep-
resented using directed models, whereas they have no undirected counterparts.
Figure 7.5 shows one such example and corresponds to the ‘explaining away’ phe-
nomenon, which we discussed earlier in this chapter. The node X3 is blocked
if not observed (so that {X1} ⊥ {X2} | ∅), whereas it is unblocked if its value
is known (so that {X1} 6⊥ {X2} | {X3}). Can you get this behaviour with an
undirected graph? The answer is no. This is because, with an undirected graph,
there is no way of getting dependence between X1 and X2 if they were apriori
independent.

On the other hand, for graphical models such as markov chains, dropping the
arrows on the edges preserves the independencies, yielding an equivalent undi-
rected graphical model. Similarly, directed trees are fundamentally no different
from undirected trees.

An important point to note is that it is the absence of edges that char-
acterizes a graphical model. For any graphical model, it is possible that the
compatibility functions (or local conditional probabilities) assume a very spe-
cial form so that there are more (conditional) independences that hold than

7.2. INFERENCE 399

what is indicated by the graphical model (which means that some of the edges
in the graph could be redundant).

7.2 Inference

In this section, we discuss the problem of determining the marginal distribution
p(xA), the conditional distribution p(xA | xB) and the partition function Z,
given a graphical model G =< V, E > and for any A,B ⊆ V. We will assume that
the conditional probability tables (for directed models) or the potential function
table (for undirected models) are already known. The sum and product rules of
probability yield the following formulae3 for the marginal, the conditional4 and
the partition function5 respectively:

p(xA) =
∑

xV\A

p(x)

p(xA | xO) =
p(xA,xO)

p(xO)

Z =
∑

x∈X1×X2×...Xn

∏

C∈Π

φC(xC)

All these problems are somewhat similar, in that they involve summation over
a very high dimensional space. Computing any of these quantities will involve
number of computations that are atleast exponential in the size of V \A. This is
not feasible in many practical applications, where the number of nodes will run
into the hundreds or the thousands. As we will see, there is ample redundancy
in these computations. We will briefly discuss a simple and pedagogical algo-
rithm called the elimination algorithm that provides the intuition as to how the
structure of the graph could be exploited to answer some of the questions listed
above. More clever algorithms such as the sum-product algorithm that captures
redundancies more efficiently will be discussed subsequently.

A problem fundamentally different from the three listed above is that of
maximum aposteriori optimization - determining the mode of a conditional dis-
tribution.

x̂A = argmax
xA

p(xA | xO)

For discrete problems, this is an integer linear programming problem. For gen-
eral graphs, you cannot do much better than a brute force, whereas, for special
graphs (such as trees), this mode can be computed efficiently.

3For continuous valued random variables, you can expect the summation to be replaced
by integration in each formula.

4The problem of computing conditionals is not fundamentally different from the problem
of computing the marginals, since every conditional is simply the ratio of two marginals.

5The partition function needs to be computed for parameter estimation.

400 CHAPTER 7. GRAPHICAL MODELS

7.2.1 Elimination Algorithm

The elimination algorithm provides a systematic framework for optimizing com-
putations by rearranging sums and products, an instance of which we saw in the
proof of theorem 89. Consider the simple directed graph in Figure 7.1. Let us
say each random variable takes values from the set {v1, v2, . . . , vk}. Brute force

computation of p(x1 | x5) = p(x1,x5)
p(x5)

will involve k × k3 = k4 computations for

the numerator and k×k4 = k5 computations for the denominator. To take into
account conditioning, we introduce a new potential function δ(xi, x

′
i) which is

defined as follows:

δ(xi, x
′
i) =

{
1 if xi = x′

i

0 otherwise

and simply write the conditional as

p(x1 | x5) =
p(x1, x5)

p(x5)
=

∑

x2,x3,x4,x′
5

p(x′
5|x3)δ(x5, x

′
5)p(x3|x1, x2)p(x4|x2)p(x2)

That is, whenever a variable is observed, you imagine that you have imposed
the indicator function for that observation into the joint distribution. Given
this simplicification, we will focus on efficiently computing p(x1), assuming that
the δ function will be slapped onto the corresponding factor while computing
conditionals.

Using the structure of the graphical model (implicit in the topological or-
dering over the indices) , we can rearrange the sums and products for p(x1|x5)

p(x1 | x5) =


∑

x2

p(x2)


∑

x3

p(x3|x1, x2)

(∑

x4

p(x4|x2)

)
∑

x′
5

p(x′
5|x3)δ(x5, x

′
5)








(7.14)

where brackets have been placed at appropriate places to denote domains of
summation.

Analysing this computational structure inside-out,

1. We find two innermost factors to be common across all the summations,
viz.,

mx4(x2) =
∑

x4

p(x4|x2)

mx5
(x3) =

∑

x′
5

p(x′
5|x3)δ(x5, x

′
5)

where mx4 is a message function of x2 and is obtained using k × k = k2

computations and mx5
is a message function of x3 and similarly obtained

using k2 computations.

7.2. INFERENCE 401

2. Further, we can decipher from (7.14), the following message function mx3

of x1 and x2 which can be computed using k3 operations:

mx3(x1, x2) =
∑

x3

p(x3|x1, x2)mx4(x2)mx′
5
(x3)

3. Putting all the messages together, we get the message function mx2
of x1,

computable with k2 operations.

mx2
(x1) =

∑

x2

mx3
(x1, x2)

Thus, the summation over the factorization can be expressed as a flow of
message from one node to another; when the message from a node passes on
to another, the former gets stripped or eliminated. In the step (1), nodes x4

and x5 got stripped. In step (2), node x3 was stripped and finally, in step (3),
x2 got stripped. This yields an elimination ordering6 [x4, x5, x3, x2]. The order
of computation is thus brought down from O(k5) to O(max(k2, k3)) = O(k3)
computations. While some researchers could argue that this may not be a
substantial decrease, for larger graphs the gain in speed using this procedure is
always substantial.

More formally, consider a root to leaf ordering I of the nodes, where r is
the root node (equivalently, an ordering that corresponds to leaf stripping).
Figure 7.1 shows a numbering of the nodes corresponding to such an ordering.
We will define as the current active set A(k), a set of indices of general potential
functions. At each step of the algorithm the potential functions are of three
different types: (i) some of the local conditional probabilities p(xi|xπi

), (ii)
some of the indicators δ(xj , x

′
j) of the observed nodes and (iii) some messages

(c.f. page 400) generated so far. More formally, the active set of potentials
is given by {Ψα(xα)}α∈A(k) , with α being a generic index that ranges over
sets of nodes. A(0) is initialized as the set of all cliques that are associated
with potential functions in the graphical model. For example, in Figure 7.1,
A(0) = {{1}, {2}, {3, 2, 1}, {2, 4}, {3, 5}}. Then, A(k) can be computed using
the algorithm presented in Figure 7.6.

When the active set construction is complete, the desired conditional/marginal
probability can be obtained as

p(xr | xo) =
Ψ{r}xr∑

xr

Ψ{r}xr

A flip side of the elimination algorithm is that it requires a ‘good’ elimination
order to be first determined. The number of elimination orderings is obviously
a large value of (n − 1)!, where n is the number of nodes. Finding a good
elimination ordering is an NP hard problem and heuristics have been the only
recourse. We will not discuss the elimination algorithm any further, but instead
jump to the more efficient sum-product algorithm.

6Since either x4 and x5 may get stripped first, [x5, x4, x3, x2] is also a valid elimination
ordering.

402 CHAPTER 7. GRAPHICAL MODELS

1. Construct an elimination ordering of the nodes so that the target node
at which condition/marginal is desired, is last in the ordering.
2. Initialize A(0) to the set of all cliques on which potentials are defined.
Set k = 0.
for Each i ∈ I do

4. Compute Ψβi
(xβi

) =
∏

{α∈A(k)|i∈α}
Ψα(xα) where, βi = {i} ∪

{
j | ∃α ∈ A(k), {i, j} ⊂ α

}
. That is, Ψβi

(xβi
) is a product of potentials

that have shared factors with {i}.
5. Message Computation: Compute the message communicated to
xi by stripping out xi through summing over xi. Mi(xγi

) = Ψγi
(xγi

) =∑

xi

Ψβi
(xβi

), where, γi = βi\{i}, that is, γi is the resudial left after strip-

ping out {i} from βi and the message Mi depends only on this residual.
The computational complexity is determined by the size of the residuals.
6. Stripping out factors: Remove all α such that i ∈ α and add γi to
the current active set to obtain A(k+1).

A(k+1) = A(k) \ {α ∈ A(k) | i ∈ α} ∪ {γi}

end for

Figure 7.6: Procedure for constructing the active set, and the message at the
desired target node t.

7.2.2 Sum-product Algorithm

The sum-product algorithm builds on the idea of ‘messages’ as motivated by
the elimination algorithm. It involves local computations at nodes, to gener-
ate ‘messages’ which are related by nodes along their edges to their neighbors.
This formalism enables simultaneous computation of marginals, conditionals
as well as modes for several variable sets. This algorithm generalizes special
algorithms such as viterbi, the forward-backward algorithm, kalman filtering,
gaussian elimination as well as the fast fourier transform.

We will initially restrict our attention to undirected trees and will later
generalize the algorithm. Figure 7.7 shows an example tree structured graph-
ical model. Since the cliques consist of edges and individual nodes, the po-
tential functions are basically either node potentials φp(xp) or edge potentials
φp,q(xp, xq). The joint distribution for the tree is

p(x) =
1

Z

∏

p∈V
φp(xp)

∏

(p,q)∈E
φp,q(xp, xq) (7.15)

Note that, all discussions that follow, hold equally well for directed trees, with
the special parametrization φp,q(xp, xq) = p(xp|xq) if xp ∈ πxq

and φp(xp) =

7.2. INFERENCE 403

Figure 7.7: A tree graphical model.

p(xp).
We will deal with conditioning in a manner similar to the way we dealt

with conditioning in the case of directed graphical models. For every observed
variable Xo = xo, we impose the indicator function δ(xo, x

′
o) onto φo(x

′
o). Then,

for a set of observed variables XO, the conditional then takes the form:

p(x | xO) =
1

ZO

∏

p∈V\O
φp(xp)

∏

o∈O
φo(x

′
o)δ(xo, x

′
o)

∏

(p,q)∈E
φp,q(xp, xq) (7.16)

Thus, modifying the compatibility functions appropriately reduces the condi-
tional problem to an instance of the base problem.

The crux of the sum-product algorithm is the following observation on the
application of the leaf stripping and message construction procedure in Fig-
ure 7.6 to a tree-structured graphical model.

Theorem 90 When a node i is eliminated, γi = {p}, where p is the unique
parent of node i. This means, we can write the message as Mi→p.

Proof Sketch: This can be proved by induction on the number of steps in the
leaf-stripping (elimination) order. You will need to show that at every step,
βi = {i, p}, where p is the unique parent of i. Consequently, γi = {p} and we
can derive the (recursive) expression for Mi→p(xp) as

Mi→p(xp) = Ψxp
(xp) =

∑

xi

φi(xi)φi,p(xi, xp)

︸ ︷︷ ︸
SUM

∏

q∈N (i)\p

Mq→i(xi)

︸ ︷︷ ︸
PRODUCT

(7.17)

Note that the proof of this statement will again involve induction. 2

404 CHAPTER 7. GRAPHICAL MODELS

Figure 7.8: An illustration of (7.17) on a part of a tree structured (undirected)
graphical model.

Figure 7.8 illustrates an application of (7.17) on a part of a tree structured
graphical model.

Theorem 90 provides a very useful observation; the message is not a function
of the vector of all nodes eliminated so far (which could have assumed km possi-
ble values for m eliminated nodes having k possible values each), but is instead
is a function only of the child from which the message is being passed. This
allows us to move from the elimination algorithm to the sum-product algorithm.
In particular, the parts underlined as ‘SUM’ and ‘PRODUCT’ in (7.17) form
the basis of the sum-product algorithm. In the sum-product algorithm, at every
time step, the computation in (7.17) is performed at every node; each node does
local computations and passes ‘updated’ messages to each of its neighbors. In
this way, the computations are not tied to any particular elimination ordering.

Theorem 91 Consider an undirected tree structured graphical model G = (V, E)
with factorization given by (7.15). Let each random variable Xi, i ∈ V assume
k possible values from X = {α1, α2, . . . , αk}. For each edge (u, v), define non-
negative messages along both directions: Mv→u(αi) along v → u and Mu→v(αi)
along u → v for each αi ∈ X . If r is the iteration number, then the update rule

M (r+1)
u→v (xv) =

1

Z
(r)
u→v

∑

xu

φu(xu)φu,v(xu, xv)
∏

q∈N (u)\v

M (r)
q→u(xu)

︸ ︷︷ ︸
˜

M
(r+1)
u→v (xv)

can be executed parallely at every node u along every edge u, v originating at u

and will converge, resulting in a fix-point for each M
(r∗)
u→v(xv) for some r∗. That

is, there exists an r∗ such that M
(r∗+1)
u→v (xv) = M

(r∗)
u→v(xv) for all (u, v) ∈ E. At

convergence,

p(xv) = φ(xv)
∏

u∈N (v)

Mu→v(xv) (7.18)

7.2. INFERENCE 405

Note that Z
(r)
u→v is the normalization factor (required for ensuring numerical sta-

bility across iterations but not otherwise) and can be computed at each iteration
as

Z(r)
u→v =

∑

xv

˜
M

(r+1)
u→v (xv)

Theorem 91 does away with the need for any elimination ordering on the
nodes and lets computations at different nodes happen in parallel. It leads to
the sum-product algorithm7 for trees, which is summarized in Figure 7.9. The
so-called flooding8 schedule does a ‘for’ loop at each iteration of the algorithm,
for each node in V. By Theorem 91, the procedure will converge. In fact, it can
be proved that the algorithm will converge after at most κ iterations, where κ
is the diameter (length of the longest path) of G. The intuition is that message
passing needs the message from every node to reach every other node and this
will take κ iterations for that to happen in the sum-product algorithm.

Initialize M
(0)
u→v(xv) for each (u, v) ∈ E to some strictly positive random

values.
Set r = 0.
repeat

for Each u ∈ V do

for Each v ∈ N (u) do

M
(r+1)
u→v (xv) = 1

Z
(r)
u→v

∑

xu

φu(xu)φu,v(xu, xv)
∏

q∈N (u)\v

M (r)
q→u(xu).

end for

end for

Set r = r + 1.
until M

(r)
u→v(xv) = M

(r−1)
u→v (xv) for each (u, v) ∈ E and each xv ∈ X

Set r∗ = r − 1.

Figure 7.9: The sum-product algorithm for a tree, using the flooding schedule.
It converges for r∗ ≤ κ, κ being the tree diameter.

There have been modern, interesting uses of message passing techniques on
graphs with cycles, such as in the field of sensor networks, where locally paral-
lelizable algorithms such as message passing are highly desirable. While there is
nothing that stops us in principle from applying the algorithm in Figure 7.9 to
general graphs having cycles, the theory does not guarantee anything at all - nei-
ther in terms of convergence nor in terms of the number of iterations. However,
in solving partial differential equations, the message passing algorithm is often
used. The algorithm is widely used on certain interesting cyclic graphs in the

7SIMPLE EXERCISE : Implement the algorithm using Matlab.
8The flooding schedule somewhat mimics the flow of water or some liquid through a net-

work; water flows in to a node along an edge and then spreads through the other edges incident
on the node.

406 CHAPTER 7. GRAPHICAL MODELS

field of communications. For special problems such as solving linear systems,
this method converges9 on graphs with cycles as well.

However, a schedule such as in Figure 7.9 will typically incur a heavy com-
munication cost, owing to message transmissions. While the flooding schedule
is conceptually easy in terms of parallelization, an alternative schedule called
the serial schedule is often preferred when parallelization is not of paramount
importance. The serial schedule minimizes the number of messages passed. In
this schedule, a node u transmits message to node v only when it has received
messages from all other nodes q ∈ N (u) \ v. This algorithm will pass a message
only once along every direction of each edge (although during different steps).
Thus, the scheduling begins with each leaf passing a message to its immediate
neighbor. An overhead involved in the serial schedule is that every node needs
to keep track of the edges along which it has received messages thus far. For
chip level design, the highly parallelizable flooding schedule is always preferred
over the serial schedule.

A point to note is that while the algorithm in Figure 7.9 is guaranteed to
converge within κ steps, in practice, you might want to run the algorithm for
fewer steps, until the messages reasonably converge. This strategy is especially
adopted in the belief propagation algorithm, which consists of the following steps
at each node of a general graphical model, until some convergence criterion is
met:

1. form product of incoming messages and local evidence

2. marginalize to give outgoing message

3. propagate one message in each direction across every link

The belief propagation algorithm will be discussed later.

7.2.3 Max Product Algorithm

The max product algorithm solves the problem of determining the mode or peak
of a conditional distribution, specified by a graphical model G, first addressed
on page 399.

x̂A = argmax
xA

p(xA | xO)

where XO is the set of observed variables, having observed values xO, and XA
are the query variables.

Before looking at the procedure for finding the model of a distribution, we
will take a peek at an algorithm for determining the maximum value of p(x),
assuming it to be a distribution over an undirected tree G. This algorithm is
closely related to the sum product algorithm and can easily be obtained from
the sum-product algorithm by replacing the ‘SUM’ with a ‘MAX’ in (7.17). This
is because, maximums can be pushed inside products and computations can be

9For solving linear systems, the message passing algorithm is more efficient than Jacobi,
though less efficient than conjugate gradient.

7.2. INFERENCE 407

structured in a similar manner as in the sum product algorithm. This places
max-product in the league of message passing algorithms.

The sum-product and max-product algorithms are formally very similar.
Both methods are based on the distributive law10:

• For sum-product: ab + ac = a(b + c).

• For max-product (whenever a ≥ 0): max {ab, ac} = a × max {b, c}.

Initialize M
(0)
u→v(xv) for each (u, v) ∈ E to some strictly positive random

values.
Set r = 0.
repeat

for Each u ∈ V do

for Each v ∈ N (u) do

M
(r+1)
u→v (xv) = 1

Z
(r)
u→v

max
xu

φu(xu)φu,v(xu, xv)
∏

q∈N (u)\v

M (r)
q→u(xu).

end for

end for

Set r = r + 1.
until M

(r)
u→v(xv) = M

(r−1)
u→v (xv) for each (u, v) ∈ E and each xv ∈ X

Set r∗ = r − 1.

Figure 7.10: The max-product algorithm for a tree, using the flooding schedule.
It converges for r∗ ≤ κ, κ being the tree diameter.

The max-product and sum-product algorithms can be implemented in a com-
mon framework, with a simple flag to toggle between the two. The convergence
of the max-product algorithm in Figure 7.10 is very similar to the proof of the
convergence of the sum-product algorithm in Figure 7.9 (the proof is rooted in
Theorem 91). After convergence of the max-product algorithm in Figure 7.10,
the maxium value of Pr(X = x) can be retrieved as

max
x

Pr(X = x) = max
xr

φ(xr)
∏

u∈N (r)

Mu→r(xr) (7.19)

where, we assume that xr is the root of the tree. However, we need to go
beyond the maximum value of a distribution; we need to find the point at
which the maximum is attained. To traceback this, and in general to compute
argmax

xA

p(xA | xO) we will introduce some additional machinery.

As before (c.f. page 403), the conditioning can be obtained as in (7.16).

10See commutative semirings for the general algebriac framework. Also refer to work on
generalized distributive laws.

408 CHAPTER 7. GRAPHICAL MODELS

Definition 50 We define the singleton marginal of a distribution p(x) as

µs(xs) =
1

α
max

x\{xs}
p(x) (7.20)

and the pairwise marginal as

νs(xs, xt) =
1

α
max

x\{xs,xt}
p(x) (7.21)

where
α = max

x
p(x)

The max marginals are analogs of marginilization, but with the summation
replaced by the max operator over all variables, except xs in the former or
(xs, xt) in the latter. While µs(xs) gives a vector of max-marginals for the
variable Xs, νs(xs, xt) corresponds to a matrix of values, for the pair of variables
(Xs, Xt). You can easily convince yourself that the maximum value of any max-
marginal is 1 and it will be attained for atleast one value xs for each variable
Xs.

How can the marginals be tracedback efficiently? And how can they be
useful? The marginals encode preferences in the form of sufficient statistics.
For example:

µ1(x1) =
1

α
max

x2,x3,...,xn

p(x)

In fact, we can look at the local maximal configurations, when they are unique
and traceback the (unique) global maximal configuration. This is stated in the
following powerful theorem.

Theorem 92 If argmax
xs

µs(xs) = {x∗
s} ∀s ∈ V (that is, there is a unique value

of variable Xs that maximizes µs(xs) for every s ∈ V), then x∗ = {x∗
1, x

∗
2, . . . , x

∗
n} =

argmax
x

p(x) is the unique MAP configuration.

Proof Sketch: The theorem can be equivalently stated as follows: if µi(x
∗
i) >

µi(xi) for all xi 6= x∗
i , and for all i ∈ V, then p(x∗) ≥ p(x) for all x 6= x∗. This

can be proved by contradiction as follows. Suppose x′ ∈ argmax
x

p(x). Then,

for any s ∈ V,

µs(x
′
s) = max

x
p(x) = max

xs

max
x\xs

p(x) > µs(xs) ∀ xs

But by definition

max
xs

max
x\xs

p(x) = max
xs

µs(xs) = {x∗
s}

Thus, x′
s = x∗

s. Since s ∈ V was arbitrary, we must have x′ = x∗. 2

The singleton max marginal µs(xs) can be directly obtained as an outcome
of the max-product algorithm:

7.2. INFERENCE 409

µs(xs) ∝ φs(xs)
∏

u∈N (s)

Mu→s(xs) (7.22)

What if {x1
s, x

2
s} ⊆ µs(xs)? That is, if µs(xs) violates the assumption in the-

orem 92? Then we have to start worrying about what is happening on the edges,
through the medium of the max marginal νs,t(xs, xt). All we do is randomly
sample from the set of configurations that have maximum probability, without
caring which one we really get. We first randomly sample from argmax

xr

µr(xr)

at the root r of the tree and then keep randomly sample for a configuration
for a child s, given its parent t (i.e. for an edge) argmax

xs

νst(xs, xt) which re-

spects the pairwise coupling. The following theorem states the general traceback
mechanism.

Theorem 93 Given a set of singleton max-marginals, {µs | s ∈ V} and a set of
pairwise marginals: {νst | (s, t) ∈ E} on a tree G =< V, E >, x∗ = (x∗

1, . . . , x
∗
n),

constructed using the following procedure is a maximal configuration, that is
x∗ ∈ argmax

x

p(x).

1. Let r be the root. Let x∗
r ∈ argmax

xr

µr(xr).

2. In root to leaf order, choose x∗
s ∈ argmax

xs

νst(xs, x
∗
t)

Proof: We will first prove that x∗ is optimal for the root term. For any arbitrary
x, by step 1,

µr(xr) ≤ µr(x
∗
r) (7.23)

If t → s is an edge, then we have by definition of the singleton max-marginal

argmax
xs

νst(xs, xt) = µt(xt)

Thus,
νst(xs, xt)

µt(xt)
≤ 1

Since x∗
s ∈ argmax

xs

νst(xs, x
∗
t) by step 2, we must have νst(x

∗
s, x

∗
t) = µt(x

∗
t) and

therefore, the following upperbound

νst(xs, xt)

µt(xt)
≤ νst(x

∗
s, x

∗
t)

µt(x∗
t)

(7.24)

410 CHAPTER 7. GRAPHICAL MODELS

for all edges t → s. With repeated application of step 2, we can stitch together
the local optimality conditions (7.23) and (7.24) to get

µr(xr)
∏

t→s

νst(xs, xt)

µt(xt)
≤ µr(x

∗
r)
∏

t→s

νst(x
∗
s, x

∗
t)

µt(x∗
t)

(7.25)

Just as the singleton max marginals (7.22) can be expressed in terms of the
messages from the max product algorithm, the edge max-marginals can also
be expressed similarly, by restricting attention to the pair of variables (xs, Xt)
instead of the world of singletons Xs, and by avoiding accounting for the message
Ms→t or Mt→s between the pair:

νst(xs, xt) ∝ φs(xs)φt(xt)φst(xs, xt)
∏

u∈N (s)\t

Mu→s(xs)
∏

u∈N (t)\s

Mu→t(xt)

(7.26)

Combining (7.22) with (7.26), we get

νst(xs, xt)

µs(xs)µt(xt)
∝ φst(xs, xt)

Mt→s(xs)Ms→t(xt)
(7.27)

Applying (7.27) and (7.25) in the factorization for p(x), we get11, we obtain

p(x) ≤ p(x∗)

Since x was arbitrary, we must have x∗ ∈ argmax
x

p(x). 2

An outcome of the proof above is that for trees, the factorization can be
written in terms of max-marginals instead of the potential functions:

p(x) ∝ µr(xr)
∏

t→s

νts(xs, xt)

µt(xt)

The above form is a directed form of factorization and does not hold for general
graphs that may contain cycles. For general graphs, it can be further proved
that the following factorization holds

p(x) ∝
∏

s∈E
µs(xs)

∏

(s,t)∈E

νts(xs, xt)

µs(xs)µt(xt)

11EXERCISE: Prove.

7.2. INFERENCE 411

7.2.4 Junction Tree Algorithm

In many applications, the graphs are not trees. We have not discussed any
pricipled techniques for finding marginals and modes for graphs that are not
trees, though we have discussed them for trees. The elimination algorithm dis-
cussed earlier is applicable for some general graphs, but the question of what
elimination should be chosen, needs to be addressed. The junction tree algo-
rithm is very much related to the elimination algorithm, but is a more principled
approach for inferencing in directed acyclic graphs. Like the sum-product algo-
rithm, the junction tree algorithm can ‘recycle’ computations. This is unlike the
general elimination algorithm, whose computation was focused completely on
a single node. The work on junction trees is primarily attributed to Lauritzen
and Spielgelhalter (1998). The correspondence between the graph-theoretic as-
pect of locality and the algorithmic aspect of computational complexity is made
explicit in the junction tree framework.

For a graph with nodes, it is an intuitive idea to consider clustering com-
pletely connected nodes, form a tree connecting these clusters and finally per-
form message passing the tree. This idea can be formalized using the concept
of a clique tree.

Definition 51 Given a graph G =< V, E > with a set Π ⊆ 2V of maximal
cliques, a clique tree TG is a tree, whose vertices correspond the maximal cliques
Π of G and such that there is an edge between two nodes in the tree only if12 there
is an edge in G between two nodes across the corresponding maximal cliques.

Let us take some examples:

• For the acylcic graph G with V = {1, 2, 3, 4, 5, 6}, E = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 6)},
the (not so interesting) clique tree TG =< Π, EΠ > would be Π = {[1, 2], [1, 3], [2, 4], [2, 5], [3, 6]}
and EΠ = {([1, 2], [2, 4]), ([1, 2], [2, 5]), ([1, 2], [1, 3]), ([1, 3], [3, 6])}.

• For the cyclic graph G with V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4), (2, 3)},
the clique tree TG =< Π, EΠ > would have Π = {[1, 2, 3], [2, 3, 4]} and
EΠ = {([1, 2, 3], [2, 3, 4])}. We will adopt the practice of labeling the edge
connecting nodes corresponding to two maximal cliques C1 and C2, with
their intersection C1 ∩ C2, which will be called the separator set. In the
second example here, the separator set for vertices [1, 2, 3] and [2, 3, 4] is
[2, 3].

• For the slightly different cyclic graph G with V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)},
there are many possible clique trees. One possible clique tree TG =<
Π, EΠ > would have Π = {[1, 2], [1, 3], [2, 4], [3, 4]} and EΠ = {([1, 2], [1, 3]), ([1, 2], [2, 4]), ([1, 3], [3, 4])}.
It is a bit worrisome here that [2, 4] and [3, 4] are not connected, since a
myopic or ‘local’ sum-product algorithm, running on the clique tree might
make a wrong inference that [2, 4] and [3, 4] do not share anything in
common. In this example, for instance, the message coming from [2, 4],

12Since we are interested in a clique ‘tree’, it may be required to drop certain edges in the
derived graph. This can be seen through the third example.

412 CHAPTER 7. GRAPHICAL MODELS

through [1, 2] to [3, 4] has marginalized over X4. But this is incorrect,
since [3, 4] include the variable X4.

With the last example in mind, we will refine the notion of a clique tree to a
junction tree, in order to ensure that local computations are guaranteed to pro-
duce globally consistent answers; that different copies of the same random

variable have ways of communicating with each other.

Definition 52 A junction tree for a graph G =< V, E > having a set Π ⊆ 2V

of maximal cliques, is a particular type of clique tree TG such that for any two
C1, C2 ∈ Π, C1 ∩C2 is a subset of every separator set on the unique path from C1

to C2 in TG. This property of junction trees is called the running intersection
property.

Based on this definition, the clique trees for the first two examples are junction
trees, whereas that for the third is not a junction tree. In fact, there are no
junction tree for the third example. Let us consider another example.

• Consider the cyclic graph G with V = {1, 2, 3, 4, 5}, E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}.
There are many possible clique trees for G. One possible clique tree TG =<
Π, EΠ > has Π = {[1, 2, 3], [2, 3, 4], [3, 4, 5]} and EΠ = {([1, 2, 3], [2, 3, 4]), ([2, 3, 4], [3, 4, 5])}
and this happens to also be a junction tree. Another clique tree with same
vertex set Π and E ′

Π = {([1, 2, 3], [3, 4, 5]), ([2, 3, 4], [3, 4, 5])} is not a junc-
tion tree, since node 2 which is in the intersection of [1, 2, 3] and [2, 3, 4] is
not on every separator on the path between these two nodes. This illus-
trates that how you generate your clique tree matters; some clique trees
may happen to be junction trees, while some may not.

• For the cyclic graph G with V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)},
considered in the third example above, there are no junction trees possible.

The global picture on a graph is specified by the factorization property:

p(x) ∝
∏

C∈Π

φC(xC) (7.28)

On the other hand, the local message passing algorithm should honor constraints
set by the separator set; that the configuration of variables in the separator
set are the same in both its neighbors. More precisely, if we define the set
x̃C = {x̃i,C |i ∈ C} for each C ∈ Π, then, for each separator set C1 ∩ C2, the
separator sets define the constraints in the form

∏

i∈C1C2

δ (x̃i,C1
= x̃i,C2

) (7.29)

7.2. INFERENCE 413

The factorization that message passing on TG =< Π, C′ > should see with the
set of additional constraints will involve multiple copies of each random variable,
but will be tied together through the δ constraints in (7.29):

p̃(x̃i,C , ∀i ∈ C, ∀C ∈ Π) ∝
∏

C∈Π

φC(x̃C)
∏

(C1,C2)∈EΠ

∏

i∈C1∩C2

δ (x̃i,C1
= x̃i,C2

) (7.30)

The (localized) sum-product algorithm will work precisely on the junction tree
TG with factorization as specified in (7.30). The factorization in (7.30) is in fact
equivalent to the factorization in (7.28). In (7.30), the multiple copies of xi’s
cancel out aginst the constraints δ constraint. The is called the junction tree
property and is formally stated in the next proposition.

Theorem 94 For a graph G having distribution p(x) as in (7.28) and for its
junction tree TG having distribution p̃ specified by (7.30), the p̃ distribution sat-
isfies the following property:

p̃(x̃i,C , ∀i ∈ C, ∀C ∈ Π) =

{
p(x) if {xi,C1 = xi,C2 |∀C1, C2 ∈ Π, ∀ i ∈ C1 ∩ C2 }

0 otherwise

That is, the new distribution p̃ is faithful to the original distribution. The tran-
sitivity due to the running intersection property of junction trees is exactly what
you need for this desirable property to hold.

The proof of this theorem is trivial, given the junction tree assumption. As
an exercise, you may verify the truth of this statement for all the junction tree
examples considered so far. The message passing formalisms in Figures 7.9
and 7.10, when applied to the junction tree, will land up not accepting con-
tributions from inconsistent configurations, owing to the δ constraint and will
therefore discover the true marginal/mode.

Theorem 95 Suppose that G has a junction tree TG =< Π, EΠ >. Then run-
ning the sum-product or max-product algorithm on the distribution p̃ defined in
(7.28) will output the correct marginals or modes respectively, for p defined for
G, in (7.30). The φC(x̃C) can be thought of as node potentials for TG, while
δ (x̃i,C1

= x̃i,C2
) are the edge potentials.

Theorem 95 presentes a transformation of the original problem to a problem on
a right kind of tree on which the running intersection property holds so that
marginals and modes are preserved. The proof of this theorem is also simple.
In practice, the message passing algorithm need not create multiple copies of
the shared variables; the sharing can be imposed implicitly.

414 CHAPTER 7. GRAPHICAL MODELS

7.2.5 Junction Tree Propagation

The junction tree propagation algorithm is the sum-product algorithm applied
to the junction tree, with factorization specified by (7.30). It is due to Shafer
and Shenoy [SS90]. Consider the message update rule from the algorithm in
Figure 7.9.

M (r+1)
u→v (xv) =

1

Z
(r)
u→v

∑

xu

φu(xu)φu,v(xu, xv)
∏

q∈N (u)\v

M (r)
q→u(xu)

If neighbors u and v are replaced by neighboring cliques C1 and C2 respectively,
the equation becomes

M
(r+1)
C1→C2

(xC2
) =

1

Z
(r)
C1→C2

∑

x′
C1

φC1
(x′

C1
)

∏

i∈C1∩C2

δ
(
x′

i,C1
= xi,C2

)

︸ ︷︷ ︸
based on separator set C1∩C2

∏

C3∈N (C1)\C2

M
(r)
C3→C1

(x′
C1

)

The constraint based on the separator set ensures that configurations that are

not consistent do not contribute to the outermost summation
∑

x′
C1

. The expres-

sion for the message can therefore be equivalently written as

M
(r+1)
C1→C2

(xC2
) =

1

Z
(r)
C1→C2

∑

x′
C1\C2

φC1(x
′
C1\C2

,xC2)
∏

C3∈N (C1)\C2

M
(r)
C3→C1

(x′
C1

)

(7.31)

Note that in (7.31), the constraints based on separator sets are implicitly cap-

tured in the summation
∑

x′
C1\C2

over only a partial set of variables from x′
C1

.

Further, the message M
(r+1)
C1→C2

(xC2) is not a function of the complete vector xC2

but is only a function of xC2∩C1
. Rewriting (7.31) to reflect this finding, we have

M
(r+1)
C1→C2

(xC2∩C1
) =

1

Z
(r)
C1→C2

∑

x′
C1\C2

φC1
(x′

C1\C2
,xC2∩C1

)
∏

C3∈N (C1)\C2

M
(r)
C3→C1

(x′
C1∩C3

)

(7.32)

This finding is important, since it helps reduce the computational complexity of
the algorithm. You need to send messages whose sizes do not depend on the size
of the cliques themselves but only on the size of the separator sets. Thus, if each
variable was multinomial with k possible values, then the message size would
be k|C1∩C2| instead of k|C2|. Thus, the complexity of junction tree propagation
is exponential in the size of the separator sets. Typically however, the size of
seperator sets are not much smaller than the cliques themselves.

7.2. INFERENCE 415

The junction tree propagation will converge, by the convergence property of
the sum-product algorithm. After convergence, the marginals can be obtained
as

p(xC) = φC(xC)
∏

D∈N (C)

MD→C(xC∩D) (7.33)

7.2.6 Constructing Junction Trees

How do we obtain a junction tree for a graph. And what classes of graphs have
junction trees? We already saw an example of a graph that did not have any
junction tree; G =< V, E >, V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)}.
We also saw an example for which a particular clique tree was not a junction
tree, though it had another clique tree that was a junction tree: G′ with Π =
{1, 2, 3, 4, 5}, EΠ = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}. The junction tree <
V ′

t, Et > has V ′
t = {[1, 2, 3], [2, 3, 4], [3, 4, 5]} and E ′

t = {([1, 2, 3], [2, 3, 4]), ([2, 3, 4], [3, 4, 5])},
which corresponds to the elimination ordering [1, 3, 2, 4, 5]. While the clique tree
V ′′

t = V ′
t and E ′′

t = {([1, 2, 3], [3, 4, 5]), ([2, 3, 4], [3, 4, 5])} is not a junction tree
and corresponds to the elimination ordering [1, 2, 4, 5, 3]. We can see that the
construction of the junction tree really depends on the choice of a ‘nice’ elimina-
tion ordering. One difference between G and G′ is that, while in the former, you
cannot eliminate any node without adding additional edges, in the latter, you
have an elimination ordering [1, 3, 2, 4, 5] that does not need to add extra edges.
For G′, the elimination ordering [1, 2, 3, 4, 5] will not yield a junction tree.

This leads to the definition of a triangulated graph, one of the key prop-
erties of any graph which can be transformed into a junction tree. In fact, a
requirement will be that an elimination algorithm is ‘good’ for junction tree
construction only if it leads to a triangulated graph.

Definition 53 A cycle is chordless if no two non-adjacent vertices on the cycle
are joined by an edge. A graph is triangulated it is has no chordless cycles.

Thus, the graph G with V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)} is not tri-
angulated, whereas, the graph G′ with Π′ = {1, 2, 3, 4, 5}, E ′

Π = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}
is triagulated. In fact, every triangulated graph has at least one junction tree.
Another equivalent characterization of a triangulated graph is as a decomposable
graph.

Definition 54 A graph G =< V, E > is decomposable either if it is complete or
if V can be recursively divided into three disjoint sets A, B and S such that

1. S separates A and B and

2. S is fully connected (i.e., a clique).

3. A ∪ S and B ∪ S are also decomposable.

416 CHAPTER 7. GRAPHICAL MODELS

Following are examples of decomposable graphs:

• V = {1, 2, 3}, E = {(1, 2), (2, 3)}.

• V = {1, 2, 3, 4}, E = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}. Application of elim-
ination procedure on this graph, say starting with 3 should lead in 2 and 4
being connected together, which are already connected in this graph. This
shows the connection between decomposable graphs and elimination.

However, for V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4), (4, 1)}, G is not de-
composable.

Recall from Section 7.2.1, the elimination algorithm, which eliminated one
node at a time, while connecting its immediate neighbors. Thus, for any undi-
rected graph, by the very construction of the elimination algorithm, it is obvious
that the reconstituted graph, output by the elimination algorithm is always tri-
angulated. This can be proved by induction on the number of vertices in the
graph13. The statement is trivial for the base case of a one node graph.

The following theorem is a fundamental characterization of graphs that have
junction trees.

Theorem 96 The following are equivalent ways of characterizing a graph G:

1. G is decomposable.

• (This captures the ‘divide-and-conquer’ nature of message passing
algorithms. In fact, the message passing algorithm exploited

a divide and conquer strategy for computation on trees.)

2. G is triangulated.

• (Elimination can result in a triangulated graph.)

3. G has a junction tree.

• (If the graph is triangulated, it must have at least one junction tree.
And junction tree is a good canonical data structure for conducting
computations on general graphs.)

Some practical impacts of this theorem are listed itemized in brackets by the
side of each of the equivalent characterizations of G. The equivalence of the first
and second statements in the theorem can be proved very simply by induction
on the number of nodes in the graph.

The first step in the junction tree algorithm is triangulating a graph. This
might mean adding extra edges or increasing clique size. But this cannot be
harmful14, since the potential function can be defined over a larger clique

13Prove: EXERCISE.
14What characterizes a graphical models is not the presence of edges, but the absence of

edges. As an the extreme example, a completel graph potentially subsumes every graphical
model.

7.2. INFERENCE 417

as the product of potential functions over its sub-parts. Given a triangu-
lated graph, we know that it must have a junction tree by virtue of theo-
rem 96. How can a junction tree be constructed from a triangulated graph?
The first step would be to isolate all its cliques. Going back to the second
example on page 412, the triangulated graph G with V = {1, 2, 3, 4, 5}, E =
{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)} has three maximal cliques: Π = {[1, 2, 3], [2, 3, 4], [3, 4, 5]}.
There are different ways to connect up the cliques to form a tree. One possi-
ble clique tree TG =< Π, EΠ > has EΠ = {([1, 2, 3], [2, 3, 4]), ([2, 3, 4], [3, 4, 5])}
and this happens to also be a junction tree. Another clique tree has E ′

Π =
{([1, 2, 3], [3, 4, 5]), ([2, 3, 4], [3, 4, 5])} is not a junction tree, since node 2 which
is in the intersection of [1, 2, 3] and [2, 3, 4] is not on every separator on the path
between these two nodes.

While you can discover a junction tree by exhaustive search, that is an in-
feasible idea.However, the search for a junction tree can be performed efficiently
by making use of the following theorem.

Theorem 97 Let G =< V, E > be a triangulated graph with V = {X1, X2, . . . , Xn}
and with Π being the set of maximal cliques. Let TG be a spanning tree for
the clique graph of G, having Π = {C1, C2, . . . , Cm} as the set of vertices and
EΠ = {e1, e2, . . . , em−1} as the set of edges (|Π| = m and |EΠ| = m − 1). Let
S(e) be the separator associated15 with any edge e ∈ EΠ. We will define the
weight16 of the spanning tree as

w(TG) ∈
m−1∑

i=1

|S(ei)| =
m−1∑

i=1

n∑

j=1

[Xj ∈ S(ei)] (7.34)

where [condition] is the indicator function that assumes value 1 if and only if
condition is satisfied and is 0 otherwise. Then, if

T̂G = argmax
TG

w(TG)

T̂G must be a junction tree.

Proof: First we note that for any variable Xj , the number of separator sets in
TG in which Xj appears is upper bounded by the number of cliques in which Xj

appears.

m−1∑

i=1

[Xj ∈ S(ei)] ≤
m∑

i=1

[Xj ∈ Ci] (7.35)

15Since any edge e in the cliqe graph is of the form (C1, C2), where C1, C2 ∈ Π, the separator
associated with e can be viewed as a function S(e) = C1 ∩ C2.

16For the example above with EΠ = {([1, 2, 3], [2, 3, 4]), ([2, 3, 4], [3, 4, 5])}, the weight
is 2 + 2 = 4, and this also happens to be a junction tree. For E ′

Π
=

{([1, 2, 3], [3, 4, 5]), ([2, 3, 4], [3, 4, 5])}, the weight is 1 + 2 = 3 and this is not a junction tree.

418 CHAPTER 7. GRAPHICAL MODELS

Equality will hold if and only if the running intersection property holds for Xj

in TG . By interchanging the order of summations in (7.34) and applying the
inequality in (7.35), it follows that

w(TG) =
m−1∑

i=1

n∑

j=1

[Xj ∈ S(ei)] ≤
n∑

j=1

(
m∑

i=1

[Xj ∈ Ci] − 1

)

Interchanging the summations in the rightmost term yields an upper-bound on
w(TG), which can be attained if and only if TG is a junction tree (that is, if and
only if equality holds in (7.35) for all 1 ≤ j ≤ n)

w(TG) ≤
m∑

i=1

|Ci| − n

We know from lemma 96 that if G is triangulated, it must have a junction tree.
Given that G is triangulated, T̂G = argmax

TG

w(TG) must be a junction tree and

will satisfy w(T̂G) =

m∑

i=1

|Ci| − n. 2

The maximum weight spanning tree problem in (7.34) can be solved exactly
by executing the following step m− 1 times, after intializing Eall

Π to all possible
‘legal’ edges between nodes in Π and EΠ = {}

1. For i = 2 to m − 1, if

ê = argmax
e∈acyclic(EΠ,Eall

Π)

|S(e)|

then set EΠ = EΠ ∪ {e} and Eall
Π = Eall

Π \ {e}.

Here, acyclic(EΠ, Eall
Π) =

{
e ∈ Eall

Π |EΠ ∪ {e} has no cycles
}
. This can be effi-

ciently implemented using Kruksal and Prim’s algorithm. The only additional
requirement is that this problem requires specialized data structure to quickly
check if e ∈ acyclic(EΠ, Eall

Π), that is, if addition of e to the current set of
edges would induce any cycle. This discussion is also relevant for learning tree
structured graphical models such that the structure maximizes some objective
function on the data.

In Figure 7.11, we present the overall junction tree algorithm. Typically,
junction tree propagation is the most expensive step (and is the main ‘online’
step) and has complexity O

(
m|Cmax|k

)
, where k is the maximum number of

states for any random variable and Cmax is the largest clique. The treewidth
τ of a graph is defined as τ = Cmax − 1 in the optimal triangulation. Thus,
the junction tree propagation algorithm scales exponentially in the treewidth τ .
There are many elimination orderings/triangulations. The best triangulation
is the one that leads to smallest value of Cmax. The problem of finding the
best elimination ordering or of finding the best junction tree is NP-hard. In

7.2. INFERENCE 419

Input: A graph G =< V, E >.
Pre-processing:

1. Moralization: Convert a directed graph to an undirected graph by
connecting parents.

2. Introduce delta functions for observed variables.

Triangulation: Triangulate the graph.
Junction tree construction: Construct a junction tree from the triangu-
lated graph.
Junction tree propagation: Using sum-product or max-product, propa-
gate messages on the junction tree.

Figure 7.11: The high-level view of the Junction tree algorithm.

practice, there are many heuristics that work well. Though NP-hard in a worst
case sense, this problem is much easier in the average case.

Many problems do not have bounded treewidth. The junction tree algorithm
is limited in its application to families of graphical models that have bounded
treewidth. Many common graphical models, such as grid structured graphical
model that is commonplace in image processing have very high treewidth. The
treewidth of an n × n grid (i.e., n2 nodes) scales as O(n). Thus, junction tree
becomes infeasible for grids as large as 500 × 500, though it is applicable in
theory.

7.2.7 Approximate Inference using Sampling

While the generic junction tree method is principled, it is limited to graphs with
bounded treewidth. There are several approximate inference methods that could
be considered as alternatives, in practice. One class of approximate inference
techniques is the class of sampling methods.

Monte Carlo Methods

The general umbrella problem underlying Monte Carlo sampling methods is

E[f] =

∫
p(x)f(x)dx (7.36)

where f(x) is some function defined on some possibly high dimensional space
in ℜn and p is a distribution defined on the same space. For f(x) = x, E[f]
turns out to be the mean. For f(x) = δ(x = x′), E[f] becomes the marginal
probability p(X = x′) or more general, for f(x) = δ(x ≤ x′), E[f] becomes
the tail probability p(x ≥ x′). The goal of sampling methods, such as Monte

420 CHAPTER 7. GRAPHICAL MODELS

Carlo methods is to approximate such integrals over such possibly high di-
mensional space using sampling techniques. If we could collect iid samples17

x = (x(1),x(2), . . . ,x(m)) from p(.), then

f̂ =
1

m

m∑

i=1

f(x(i))

is a Monte Carlo estimate of E[f]. Since x is a collection of random samples

from p(.), f̂ is also a random variable. We could ask some questions about such
an estimator:

• Is f̂ unbiased? That is, on an average, will the estimator produce the right
quantity? The estimator is unbiased if

E[f] = Ex[f̂]

Using the linearity property of expectation,

Ex[f̂] =
1

m

m∑

i=1

E
[
f(x(i))

]
= E[f]

that is, the estimator f̂ is indeed unbiased and gives the right answer on
an average.

• The unbiased requirement on the part of the estimator only requires the
sample mean to match the expected mean, on an average. It may also
be desirable that the variance be stable. A related expecation is that as
the number m of samples increases, the estimate should get closer to the
actual answer. In fact, this is true for the estimator just discussed. It can
be shown that if f has finite variance,

var(f̂) =
1

m2

m∑

i=1

var
(
f(x(i))

)
=

m∑

i=1

var
(
f(x(i))

)

m
(7.37)

or equivalently, the spread for var(f̂) is 1√
m

times the spread for f̂ . From

this, we can infer that as m → ∞, var(f̂) → ∞.

The discussion thus far was centered around the assumption that we can
draw samples from p(.). This area of sampling has warranted seperate atten-
tion for research. Even generation of pseudo random numbers is not straightfor-
ward18. As another example, it is not straightforward to sample efficiently from

17The difference between x here and in the case of maximum likelihood estimation is that
in the latter case, x is data provided, whereas here, we consider x sampled from the model
itself. However, the analytical form is similar.

18If a distribution function can be ‘inverted’ a common strategy is to pass a unform distri-
bution through it to generate samples.

7.2. INFERENCE 421

a typically graphical model-like distribution (especially if it is multi-model) such
as

p(x) =
1

Z
exp

{
ax4 + bx3 + cx2 + dx + e

}
︸ ︷︷ ︸

℘(x)

where, the ℘(x) part is easy to compute, whereas 1
Z is hard to compute.

We will not look at a series of attempts at sampling from a distribution p(.).

Adopting Numeric Methods

One natural way out is to adopt standard numerical methods, such as the stan-
dard numerical recipe for evaluating an integral from first principles - creating
discrete intervals and then letting the intervals shrink.

1. Discretize the space of x (such as the real line) into k discrete points,
x1, x2, . . . , xk

2. Compute an approximation to z as ẑ =
k∑

i=1

℘(xi).

3. The samples can then be drawn from one of k points based on the distri-
bution pd:

pd(xi) =
℘(xi)

ẑ

The new distribution has point masses at the samples x1, x2, . . . , xk. As
the number of grows larger, the approximation will get better

While a controllable approximation that works well in one dimension, how well
does such a discretization method scale to higher dimensions. The number of
discrete points scales exponentially19 in the number of dimensions as kn (n being
the dimensionality). Thus, discretization is not feasible in higher dimensions.
Another factor in favour of Monte Carlo methods, vis-a-vis numerical techniques
is that the statement (7.37) for the Monte Carlo estimator is really independent
of the dimensionality n.

Rejection Sampling

Rejection sampling, which dates back to von Neumann in 1950’s assumes that
in addition to the decomposition p(x) = z

℘(x) with ℘(x) easy to compute and 1
Z

is hard to compute, we also have a proposal distribution q(x) that is relatively
easy to (exactly) sample from. q could be one of Gaussians, Cauchy, or some
other member of the exponential family.

q(x) =
zq

q̂(x)

19This problem also goes under the name of the curse of dimensionality - the task that is
easy in a single dimension becomes extremely complex at higher dimensions.

422 CHAPTER 7. GRAPHICAL MODELS

Rejection sampling also assumes that you have a constant M such that q̂(x)
scaled by the constant yields an upper bound for the original distribution ℘(x).

℘(x) ≤ Mq̂(x)

The way rejection sampling works is:

1. First generate a sample y ∼ q(x).

2. Secondly, sample u from a uniform distribution between 0 and Mq̂(y):
u ∼ U [0, Mq̂(y)].

• If u < ℘(y), then accept y as a realization of ℘(x).

• Otherwise, reject y.

We will see that this random procedure itself induces a distribution prej

over x that happens to be the same as ℘(x). For any y that is an output of the
rejection sampling procedure, its probability of being generated by the procedure

is the product of the probability q(y) of choosing y and the probability ℘(y)
Mq̂(y)

of accepting y:

prej
gen(y) =

1

zprej
gen

q(y)

(
℘(y)

Mq̂(y)

)
=

1

zprej
gen

zq
℘(y)

where, the normalization constant 1
z

p
rej
gen

is defined as

zprej
gen

=

∫

y′

q(y′)

(
℘(y′)

Mq̂(y′)

)
dy′ =

∫

y′

1

zq
℘(y′)dy′ =

zp

zq

Combined, these two equalities mean that

prej
gen(y) =

1

zprej
gen

zq
℘(y) =

zq

zprej
gen

zqzp
℘(y) =

1

zp
℘(y) = p(y)

In practice, it crucially matters how small you can make the reject region,
since you would not like to spend too many sampling cycles to generate each
sample y. So it will be best to choose a q̂ that follows ℘ very closely. A measure
of this ‘following closely’ is the ratios of the area Aacc under ℘(x) to the area
Atot under Mq̂(x). This can be thought of as the acceptance probability prej

acc.

prej
acc =

∫

x

℘(x)dx
∫

x

Mq̂(x)dx

=
Aacc

Mzq
=

Aacc

Atot

One of the concerns with rejection sampling in high dimensions is that since
prej

acc ∝ 1
M , the number of attempts before getting a single sample will scale as M .

For instance, suppose X and Y are independent Gaussians with slightly different

7.2. INFERENCE 423

variances - p(x) = N (x,0, σ2
pI) and q(y) = N (y,0, σ2

qI). where ρ ∈ (0, 1.1].

For rejection sampling, we will need to choose an M > ℘(x)
q̂(x) for every x ∈ ℜn.

For this Gaussian, we will require that M > ℘(0)
q̂(0) = exp

{
n log

σq

σp

}
. Note that

if σq is even slightly larger than σp, then M will increase exponentially with n.
That is, we will have to do exponentially many rejection trials before getting a
sample accepted.

In summary, while rejection sampling is useful in low dimensions, it breaks
down in higher dimensions. Markov chain monte carlo (MCMC) builds on re-
jection sampling. While rejection sampling in memoriless - in the sense that
rejected samples are naively abandoned, MCMC preserves rejected samples us-
ing memory.

Importance Sampling

Importance sampling is a more general form of Monte Carlo sampling method.
Recall that Monte Carlo sampling was to solve the problem

E[f] =

∫
p(x)f(x)dx (7.38)

and the Monte Carlo estimate collects iid samples x = (x(1),x(2), . . . ,x(m)) from
p(.) and computes the weighted sum

f̂ =
1

m

m∑

i=1

f(x(i))

The idea of importance sampling is to generate samples y from an alternative
q which is somewhat easier to sample than p. However, how do we make use of
y in estimation? Assuming that q(x) > 0 whenever f(x)p(x) > 0, we rewrite
the expression for E[f] as

E[f] =

∫
p(x)f(x)

q(x)
q(x)dx

Defining g(x) = p(x)f(x)
q(x) , we just re-express

Ep[f] = Eq[g]

This motivates the study of the Monte Carlo estimate ĝ based on samples y

from q.

ĝ =
1

m

m∑

i=1

g(y(i)) =
1

m

m∑

i=1

p(y(i))f(y(i))

q(y(i))
(7.39)

424 CHAPTER 7. GRAPHICAL MODELS

The estimate ĝ is called the importance sampling estimate. The terms p(y(i))
q(y(i))

are called importance weights. It can be shown that ĝ is unbiased, that is,

Ep[f] = Ey[ĝ]

Like for the case of the Monte Carlo estimate, it can also be shown that if g has
finite variance then,

var(ĝ) =
m∑

i=1

var
(
g(y(i))

)

m
(7.40)

or equivalently, the spread for var(ĝ) is 1√
m

times the spread for ĝ.

Importance sampling is useful when q is easier to sample than p. Backing
off a bit, it may happen that q is itself of the form

q(y) =
1

zq
q̂(y)

where q̂(y) is easy to compute while the normalization constant zq is not. This
is especially true in the case of graphical models, for which q̂(y) is simply the
product of some compatibility functions or exponentiated weighted sum of suf-
ficient statistics (exponential family). Similarly, it is often that p(x) = 1

zp
℘(x).

In such a case, we can write

ĝ =
1

m

m∑

i=1

p(y(i))f(y(i))

q(y(i))
=

1

m

m∑

i=1

℘(y(i))f(y(i))

q̂(y(i))

zq

zp

For this formulation, ℘(y(i))
q̂(y(i))

are called the importance weights im(y(i)). Also,

zp/q =
zp

zq
=

1

zq

∫
℘(x)dx =

∫
℘(x)

q(x)

q̂(x)
=

∫
℘(x)

q̂(x)
q(x)dx

which is again the expectation under q of im(y). The Monte Carlo estimate
ẑp/q for zp/q =

zp

zq
is

ẑp/q =
1

m

m∑

i=1

im(y(i)) =
1

m

m∑

i=1

℘(y(i))

q̂(y(i))

This gives you a modified Monte Carlo estimate, which can be contrasted against
(7.39).

ĝ′ =

1
m

m∑

i=1

p(y(i))f(y(i))

q(y(i))

1
m

m∑

i=1

℘(y(i))

q̂(y(i))

=

m∑

i=1

f(y(i))im(y(i))

m∑

i=1

im(y(i)

(7.41)

7.2. INFERENCE 425

This modified Monte Carlo estimate uses samples y from q and also does not
require explict computation of p. Rather it needs to compute only ℘.

Importance sampling considerably widens the scope of Monte Carlo methods,
since it provides flexibility of choosing q. In fact, even if you could sample from
p, it can be useful to use a q, especially when f lies in the tail region(s) of p.
Since q lets you reshape what you sample from, the modified g can help shift the
mass over to regions of p such that getting information from f becomes much
more likely. In practice, adapting q to the shape of f can also lead to reduction
in the variance of ĝ.

Finally, importance sampling can be useful even when you can draw samples
from p(.). For example, say Xi ∈ {0, 1}, for 1 ≤ i ≤ n are n binary random
variables with p(Xi = 1) = ǫ for a very small ǫ, close to 0. Let the Xi’s be
independent (though the example could hold for many non-independent Xi’s as
well). Let us say, we are interested in estimating

p




n∑

i=1

xi

n




≥ 0.5

As can be seen, that

n∑

i=1

xi

n ≥ 0.5 is a very rare event. Importance sampling
can be used to model such rare events which are otherwise computationally
infeasible to simulate.

Like in the case of rejection sampling and numerical techniques, there are
problems that importance sampling techniques have in high dimensional spaces.

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a suite of methods based on
setting up a markov chain to generate samples from a target distribution

p(x) =
1

z
℘(x)

where z may not be easy to compute. The basic idea here is to set up a Markov
chain X1 → X2 → . . . Xn and a sequence of distributions q so that as t → ∞,
q(.|X(t)) → p. While these methods have a flavour of rejection sampling, they
are not memoryless; rejected samples are not entirely discarded. Introduced by
physicists Metropolis, Rosenbluth, Teller in 1953, these methods were general-
ized by Hastings in 1970.

The Metropolis-Hastings algorithm is one of the more popular examples from
this class. It is outlined in Figure 7.12. It builds on the rejection sampling tech-
nique, with two main differences. More importantly, a sample is not discarded
if rejected; the value of Xt+1 is set to Xt. Secondly, the acceptance probability
determines if it is more likely to go X(t) → y or y → X(t).

426 CHAPTER 7. GRAPHICAL MODELS

Input: A target distribution p(x) = 1
z ℘(x).

Initialize: X(1) ∼ q(x) for some arbitrary q.
for t = 1, 2, . . . do

1. Sample y from the conditional probability distribution q(.|X(t)).
2. Sample u ∼ Uniform[0, 1].
3. Define the acceptance probability as

A(X(t),y) = min

{
1,

℘(y)q(X(t)|y)

℘(X(t))q(y|X(t))

}

4. Set

X(t+1) =

{
y, if u ≤ A(X(t),y) //Accept

X(t) otherwise //Reject, but do not discard.

end for

Figure 7.12: The Metropolis-Hastings algorithm.

In the special case of symmetry, that is if q(y|X(t)) = q(X(t)|y),

A(X(t),y) = min

{
1,

℘(y)

℘(X(t))

}

the algorithm acts like a gradient algorithm with some randomness. To see this,
note that if ℘(y) ≥ ℘(X(t)), the algorithm will always accept. Else it accepts

with probability ℘(y)
℘(X(t) < 1; the logic is that you do not always want to reject

even if you were to go downhills, since you might want to wriggle out of local
modes. So you reject, but probabilistically. Thus, the algorithm always tries to
sample from regions of the space where the density is more.

We will eventually see that if q(y|X(t)) → p(y) as t → ∞. Enroute to
proving this, we will require to understand the limiting behaviour of Markov
chains as number of states goes to ∞.

1. The Metropolis-Hastings algorithm in Figure 7.12 generates a first or-
der Makov chain. Assume for simplicity that the Markov chain is finite
state and that X(i) ∈ {x1,x2, . . . ,xk}. For many graphical models, k
could be exponential in the number of nodes in the graphical model. For
the Markov chain X(1),X(2),X(3), . . . generated by the algorithm in Fig-
ure 7.12, X(1) ∼ q(.) while the transition X(t) → X(t+1) is specified by
the homogeneous (i.e. fixed across time steps) conditional distribution

Γ(X(t+1)|X(t)) = A(X(t),y)q(y|X(t))

That is, the transition function for the algorithm is the combination of
the original proposal distribution and the probability of acceptance in the

7.2. INFERENCE 427

accept/reject step. Then, by the steps (1) and (4) of the algorithm in
Figure 7.12,

q(X(t+1)) =
∑

X(t)

q(X(t))Γ(X(t+1)|X(t))

In matrix notation, this translates to

qt+1 = qT
t T (7.42)

where, Γ[i, j] = Γ(X(t+1) = xj |X(t) = xi) and qt[i] = q(X(t) = xi). By
its very definition, Γ is row-stochastic, that is,

Γ1 = 1

We would like q → p, where p is the targetted probability vector. The
following sequence of arguments will help arrive at conditions under which
this will happen.

2. Let r be the fix point of update equation (7.42). Then r is also invariant20

with respect to Γ. Thus, once the distribution qt hits an invariant r, it
stays in qt.

3. In order to have an invariant vector, the matrix must be non-negative
(Γ ≥ 0) and must be row-stochastic, which it is. The matrix Γ is not
symmetric in general. The Perroon Forbenius theorem states that for
any non-negative, row-stochastic matrix A, its spectral radius ρ(A) =

max
i=1,2,...,n

|λi(A)| satisfies the condition ρ(A) = 1 and that it has a left

eigenvector v ≥ 0 such that vT A = v. Since the matrix Γ is both non-
negative and row-stochastic, a consequence of this theorem is that r =

1
k∑

i=1

vk

v will be invariant with respect to Γ.

4. The above conditions and arguments state in principle that there is poten-
tially a fix point for (7.42). In general, the fix point need not be unique; for
a diagonal matrix, there are several invariant distributions. It can shown
that an irreducible matrix Γ (i.e., every state is reachable from every
other state with strictly positive probability) will have a unique invariant
distribution r.

20A vector r ∈ ℜk is invariant with respect to matrix Γ if r represents a probability dis-
tribution (i.e., r

T
1 = 1 and r ≥ 0) and is fixed under the updates of Γ, that is r

T Γ = r.
As an example, you can verify that for random walks on a graph G =< V, E > with 0 jump

probability, r such that vi = di∑

i∈V

di

is invariant, di being the degree of vertex i.

428 CHAPTER 7. GRAPHICAL MODELS

5. But will the algorithm in Figure 7.12 converge to the fix point? To en-
able convergence, another necessary condition is that the Markov chain
should be aperiodic (so that qt does not keep toggling between values) or
equivalently, have a period of 1.

6. With all the armour discussed so far, we state the following theorem,
central to the correct convergence of the algorithm in Figure 7.12:

Theorem 98 For any finite-chain irreducible aperiodic Markov Chain,
the sequence qt+1 = qT

t Γ converges, for an arbitrary q1, to the unique
invariant distribution r of the chain.

The next few steps are dedicated to proving that (i) the Metropolis-
Hastings algorithm satisfies the pre-requisites for this theorem under cer-
tain conditions and (ii) that the target distribution is indeed invariant
with respect to the Markov chain in the Metropolis-Hastings algorithm.

7. The next step is to establish that the matrix Γ defined as

Γ(X(t+1)|X(t)) = A(X(t),y)q(y|X(t))

is irreducible and aperiodic. The Metropolis-Hastings algorithm is very
general, allowing fairly arbitrary proposal distribution. Both these proper-
ties can be established if q(y|X(t)) > 0 for all y, so that Γ(X(t+1)|X(t)) > 0
for all y. For complex models such as graphical models, the q should be
designed so as to make that task of sampling from q efficient. Gibbs
sampling is one such example.

8. The final step is in showing that the target distribution p is invariant for
the Markov chain Γ. That is, for every y,

∑

x

p(x)Γ(y|x) = p(y)

This can be shown by first noting that the Metropolis Hastings Markov
chain Γ satisfies the detailed balance condition with respect to p, which
means

p(x)Γ(y|x) = p(y)Γ(x|y)

This can be proved by simply substituting for Γ(y|x). This leads to the
desired result

∑

x

p(x)Γ(y|x) =
∑

x

p(y)Γ(x|y) = p(y)

since Γ is row-stochastic.

While the algorithm in Figure 7.12 works in principle, it can be very slow,
taking small steps into valleys. In practice, many refinements are made to the
algorithm to make it work fast.

7.3. FACTOR GRAPHS 429

Gibbs Sampling

Gibbs sampling is a simple subclass of Metropolis-Hastings algorithm in which
the transitions Γ are intuitive and easy to draw from. It is especially relevant
for graphical models, which have a large state space of size cn if each random
variable can take c values and the graph has n nodes. Let G =< V, E > be a
graph with n nodes. The Gibbs sampling procedure involves two main steps, as
outlined in Figure 7.13 It is very natural to think of Gibbs sampling in terms of

Input: A target distribution p(x) = 1
z ℘(x) over a graph G =< V, E >.

Initialize: X(1) = x(1) for some arbitrary q.
for step t = 1, 2, . . . do

for i = 1, . . . , n do

Sample: x
(t+1)
i ∼ p(xi | x(t+1)

1,i−1 ∪ x
(t)
i+1,n.

end for

end for

Figure 7.13: The Gibbs sampling algorithm.

the graphical model; the sampling is very much simplified given the conditional
independence property - that a node is indepent of all other nodes, given its
Markov blanket. Thus, each distribution in the sampling step is the probability
of a node given its Markov blanket. This procedure depends on the ordering of
nodes, though. Though a very popular inference procedure for graphical models,
it could take an extemely long time to converge.

For discrete random variables, the graph of configurations is in general a
hypercube. While MCMC potentially allows jumps from one node to another
in the hypercube, Gibbs sampling restricts every step to be along an edge of
the hypercube. This can lead to poor convergence. There are many smarter
algorithms that take larger, but calculated steps in the hypercube, leading to
better convergence, without incurring excessive computational cost for individ-
ual steps.

7.3 Factor Graphs

We have seen that both directed and undirected models can be specified in one
of two equivalent ways each; conditional independence and factorization. The
semantics for directed and undirected models are however different. While the
two specifications are equivalent, factorization can be specified at different levels
of granularity or could be defined using different forms of potential functions
and is therefore richer. For instance, factorization could be over maximal cliques
or over smaller cliques or even over edges, while all these specifications could
map to the same conditional independence properties demanding specialization
in the conditional independence assertions.

Consider a triangular graph, given by the adjacency matrix

430 CHAPTER 7. GRAPHICAL MODELS

A =




1 1 1

1 1 1

1 1 1




The factorization for this graph could be presented as

p(x1, x2, x3) ∝ φ123(x1, x2, x3)

However, the following factorization is also a valid one for the graph

p(x1, x2, x3) ∝ φ12(x1, x2)φ23(x2, x3)φ13(x1, x3)

Such problems interest statisticians a lot, since existence of interactions between
variables influence diagnosis and/or treatments in the medical domain, for ex-
ample. Is it possible to graphically differentiate between the two factorizations?
Factor graphs precisely serve this purpose. In some sense, there is more informa-
tion being embedded in the second factorization; the bonafide triplet interaction
has been decomposed into pairwise interactions. And this information is repre-
sented as ‘factor nodes’ in factor graphs. Corresponding to each factor in the
factorization, factor graphs host a node. The nodes in the original graphical
model are also retained. But edges are changed; there will be an edge between
the factor node and each node whose random variable the factor is a function
of.

Definition 55 Given a graphical model G =< V, E >, with a factorization

p(x) =
∏

a∈F
φa(xa) with F ⊆ 2V , that is compatible with the independence as-

sumptions asserted by the edges E, the factor graph Gf =< V∪F , Ef > is defined
by Ef = {(q, a) | q ∈ V, a ∈ F , q ∈ a} The factor graph Gf is said to encode the
factorization of G.

The set of factor nodes F is a set of placeholders for particular terms in the
factorization. Factor graphs can be looked upon as a ‘graphical way’ of repre-
senting hypergraphs (which can have a single edge spanning multiple vertices),
where each hyperedge can be thought of as spanning all vertices that figure
together in some potential function in the factorization.

As an example, the factor graph for p(x1, x2, x3) ∝ φ123(x1, x2, x3) will be
given by V = {1, 2, 3}, F = {a} and Ef = {(1, a), (2, a), (3, a)}. Whereas, the
factor graph for p(x1, x2, x3) ∝ φ12(x1, x2)φ13(x1, x3)φ23(x2, x3) will be given
by V = {1, 2, 3}, F = {a, b, c} and Ef = {(1, a), (2, a), (1, b), (3, b), (2, c), (3, c)}.

Any undirected/directed graph without any specialized factorization speci-
fied can also be converted into a factor graph. Thus, if V = {1, 2, 3, 4, 5, 6, 7, 8},
E = {(1, 2), (2, 3), (3, 4), (2, 5), (3, 4), (4, 5), (4, 7), (5, 7), (5, 6), (6, 8), (7, 8)}, then
Gf can be read off the maximal cliques; F = {a, b, c, d, e} and Ef = {(1, a), (2, a), (3, a), (2, b), (5, b), (3, c), (4
As another example, consider a hidden markov model with V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

7.4. EXPONENTIAL FAMILY 431

and E = {(1, 2), (1, 6), (2, 3), (2, 7), (3, 4), (3, 8), (4, 5), (4, 9), (5, 10)}. Then the
factor graph will have F = {a, b, c, d, p, q, r, s} and Ef = {(1, a), (2, a), (2, b), (3, b), (3, c), (4, c), (4, d), (5, d), (1, p), (6, p), (2
As a final example, consider a markov decision process, which is a purely di-
rected model and which has five ‘control’ variables in addition to the 10 for
the HMM described above (decision process because there is a control that
helps you decide the behaviour of the evolution across states in the HMM).
It will be specified by V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} and E =
{(1, 2), (1, 6), (11, 1), (2, 3), (2, 7), (12, 2), (3, 4), (3, 8), (13, 3), (4, 5), (4, 9), (14, 4), (5, 10), (15, 5)}.
What will be the factor graph corresponding to this graph? Note that, even
though there are no directed triangles in this graph, nodes 1 throug 5 have two
parents each and the corresponding factors are conditional probabilities of the
form p(x1|x6, x11), p(x2|x7, x12), etc. Thus, the factor graph will have a node
for each such factor connected to three nodes each.

All the factor graph examples considered thus far are factor trees. The sum-
product and max-prodyct algorithms are exact on factor trees. Though they
assume slightly different forms, the essential ideas are the same. There is no
consistent reason for the factor graph being a better representation than the
graphical model representation.

7.4 Exponential Family

The exponential family captures many common discrete21 and continuous22

graphical model formulations at an abstract level. It provides a rich (though
not exhaustive) toolbox of models. The multinomial distribution which models
random variables taking k discrete values is what we have looked at so far.
Gaussian is one of the most widely used continuous distributions. The poisson
distribution helps model distribution over random variables that can take any
integral value (as against just k discrete values).

Definition 56 For a given vector of functions f(x) = [f1(x), . . . , fk(x)] and a
parameter vector η ∈ ℜk, the exponential family of distributions is defined as

p(x, η) = h(x) exp
{
ηT f(x) − A(η)

}
(7.43)

where the h(x) is a conventional reference function and A(η) is the log normal-
ization constant23 designed as

A(η) = log

[∫

x∈Range(X)

exp {ηT f(x)}h(x)dx

]

The domain of the parameters η will be restricted to Domain(η) =
{
η ∈ ℜk | A(η) < +∞

}
.

A(η) plays a fundamental role in hypothesis testing, parameter estimation, etc.,

21Density with respect to the Counting measure.
22Density with respect to the Lebesgue measure.
23The same as log Z for graphical models.

432 CHAPTER 7. GRAPHICAL MODELS

though often not very easy to estimate. The central component here is the log-
linear form. The parametrization η ∈ ℜk, is also called the canonical parametriza-
tion. The function f(x) is a sufficient statistic function.

As an example, the Gaussian density function can be expressed in the expo-
nential form. If X ∼ N (µ, σ2) is a univariate Gaussian distribution, then its
normal parametrization is

p(x, µ, σ2) =
1√
2πσ

exp

{
− 1

2σ2
(x − µ)2

}

This density can be manipulated and shown to be a member of the exponential
family

p(x, µ, σ2) =
1√
2π

exp

{
µ

σ2
x − 1

2σ2
x2 − 1

2σ2
µ2 − log σ

}
= p(x, η)

The parameter vector for the exponential form is η =
[

µ
σ2 ,− 1

2σ2

]
while the

feature function vector is f(x) = [x, x2]. The log normalization constant is

A(η) = 1
2σ2 µ2 + log σ ≡ − η2

1

4η2
+ 1

2 log (−2η2), which determines Domain(η) ={
η ∈ ℜ2 | η2 < 0

}
. Finally h(x) = 1√

2π
for this example. The number of de-

grees of freedom (reflected through two parameters in the moment parametriza-
tion) will precisely be the number of canonical parameters. The canonical
parametrization extended24 to the multivariate Gaussian counterpart will be
discussed in Section 7.5.

As a second example, consider the bernoulli distribution. A bernoulli random
variable X ∈ {0, 1} can model the outcome of any coin-flipping experiment. It
can be expressed as

p(x, µ) = µx(1 − µ)1−x

where µ is the probability of X = 1. Rearranging the terms, we get the expo-
nential form for bernoulli distribution as

p(x, µ) = exp

{(
log

µ

1 − µ

)
x + log (1 − µ)

}
= p(x, η)

with parameter vector specified as η =
[
log µ

1−µ

]
which gives µ as a logistic

function (log of likelihood ratio or log-odds ratio) of η1 and f(x) = [x]. The log
normalization constant is A(η) = − log (1 − µ) ≡ log {1 + eη1}25 while h(x) = 1.
Also, Domain(η) = ℜ. In general, if you started coupling together multiple
distributions and try expressing them in exponential form, determining η could
become a very hard problem.

As a third example, consider the poisson26 random variable X ∈ N (set of
natural numbers). Its density function is given by

p(x, µ) =
µxe−µ

x!
24EXERCISE.
25EXERCISE.
26When London was being bombed in World war 2, experts were trying to model where the

bomb would next fall using a 2D poisson distribution.

7.5. A LOOK AT MODELING CONTINUOUS RANDOM VARIABLES 433

Poisson distributions are often used to model events, such as the ringing of a
telephone. The mean parameter µ controls the density or frequency with which
the event is happening. The canonical parametrization for this distribution can
be obtained using a routine rewrite as

p(x, µ) =
1

x!
exp {(log µ)x − µ}

where h(x) = 1
x! , η = [log µ], f(x) = [x], A(η) = µ = eη1 with Domain(η) = ℜ.

In all examples considered so far, we algebriacally converted the density
function from a moment parametrization to a canonical representation as a
member of the exponential family. How about going backwards from a canonical
form to moment parametrization? The vector of moment parameters is defined
as µ = [µ1, µ2, . . . µk] = [E[f1(X)], E[f2(X)], . . . , E[fk(X)]]. That is, we can get
the moment parameters by taking expectations of the sufficient statistics fi(X)
that sit in the exponent of the canonical form. And the expecation of the ith

component of this function can be proved to be the same as ∂A
∂ηi

. That is

∇A(η)i =
∂A

∂ηi
= E[f(X)] = µi (7.44)

Further, it can be proved that

∇2A(η)ij =
∂2A

∂ηi∂ηj
= cov {fi(X), fj(X)} = E [(fi(X) − µi)(fj(X) − µj)] = µij

The proof of the two above statements are straightforward and use the prop-
erty that A(η) is infinitely differentiable. To illustrate this, we will revisit the
canonical parametrization for the Gaussian example.

p(x, µ, σ2) =
1√
2π

exp

{
µ

σ2
x − 1

2σ2
x2 − 1

2σ2
µ2 − log σ

}
= p(x, η)

The moments can be derived to me µ1 = E[x] = µ and µ2 = E[x2] = σ2 + µ.
Similarly, for the poisson distribution, the moment parameter is simply [µ] as
also var(X) = µ. For the bernoulli distribution, E(X) = µ and var(X) =
(1 − µ)µ.

7.5 A Look at Modeling Continuous Random

Variables

A normal or gaussian distribution is one of the most widely (ab)used proba-
bility distributions. They come up in the central limit theorem in the sums
of independent or weakly dependent random variables, whose normalized sum
coverges to a gaussian (justifying their wide use). They are very often used

434 CHAPTER 7. GRAPHICAL MODELS

to model noise. Example graphical models that use gaussian distribution are
Gaussian graphical models, Gauss-Markov time series, etc.

Another reason for their wide use is computational. In the case of continuous
random variables, messages are functions rather than vectors. In general, this
can often force us to quantize the messages. But in the case of gaussians (and in
general for exponential models which we will shortly see), the message passing
can be performed in terms of sufficient statistics. Kalman filters are a special
case of message passing that pass sufficient statistics as messages.

The form of the density function for Gaussian distribution, with x, µ ∈ ℜn

and Σ ∈ ℜn×n is

p(x, µ,Σ) =
1

(2π)
1
2

√
det(Σ)

exp

{
1

2
(x − µ)T Σ−1(x − µ)

}
(7.45)

where µ is the mean vector and Σ ≻ 0 is the covariance matrix27. It can be veri-

fied that µ is indeed the mean vector; µ = E[X] =

∫

ℜn

xp(x, µ,Σ)dx. Similarly,

it can be verified that Σ = E[(X−µ)(X−µ)T]. The quantity 1

(2π)
1
2
√

det(Σ)
is the

normalization constant and can be computed as

∫

ℜn

exp

{
−1

2
(x − µ)T Σ−1(x − µ)

}
dx.

If n = 1, the integral is easy to compute. For computing integrals for multivari-
ate problem, it is a good idea to reduce the matrix Σ by diagonalization.

What sits in the exponent of the density function is a quandratic term. The
contours of constant probability are ellipsoids, with shape determined by Σ−1

and center as µ (which does not affect the shape of the ellipsoid). For example,
if Σ−1 is diagonal, the axes of the ellipsoid will be aligned along the coordinate
axes.

The parametrization (µ,Σ) is called the moment parametrization of the
Gaussian; µ is the first order moment of x while Σ is the matrix of second order
centered moment. There is another canonical parametrization of the Gaussian
which is related to the sum-product algorithm. The parameters are a new vector
and a new matrix:

η = Σ−1µ

and a new matrix
Ω = Σ−1

With a bit of algebra, the Gaussian density can be re-expressed in terms of the
canonical parameters as:

p(x, η,Ω) = exp

{
ηT x − 1

2
xT Ωx + x

}
(7.46)

27Recall that a matrix is positive definite if all its eigenvalues are strictly positive or equiv-
alently, ∀z 6= 0, z

T Σx > 0.

7.5. A LOOK AT MODELING CONTINUOUS RANDOM VARIABLES 435

where

x = −1

2

{
n log (2π) − log |Ω| + ηT Ω−1η

}

is a constant, analogous to the normalization constant in the moment parametriza-
tion of the Gaussian density in (7.45). The parametrization for (7.45) is more
naturally suited for graphical models, because, as we will see, the canonical
parameters can be directly related to the compatibility functions when you
start breaking up the Gaussian into a graphical model-like factorization. Typ-
ically, graphical model factorizations invoke canonical parameters. The above
parametrization is often referred to as N (η,Ω).

Equation (7.46 gives a quadratic form in the exponent and is a special case
of the exponential family representation, which happens to be a very general
concept. Note that all logarithms are to the base e. The quadratic term in the
exponent can be rewritten as a trace:

xT Ωx = trace(ΩxxT)

where trace(A) is the sum of the diagonal entries of A and happens to be linear.
The Gaussian density using this transformation is obtained in its log-normal
form, which has an exponent linear in its features of x and xxT .

It can be shown that linear functions of Gaussian random vectors are Gaus-

sian;

n∑

i=0

Yi ∼ N (0, (n + 1)σ2) if each Yi ∼ N (0, σ2). Also, if Xi =

n∑

j=0

Yi then

p(xi+1 | xi) = exp
{
− 1

2σ2 (xi+1 − xi)
2
}

and the random variables Xi form a
markov chain with factorization

p(x) = exp

{
− 1

2σ2
x2

0

} n∏

i=1

exp

{
− 1

2σ2
(xi+1 − xi)

2

}

We can verify that for this markov chain, E[X1] = EX0

[
EX1|X0

[X1 | X0]
]

=
EX0 [X0 + E[Y0]] = 0 and in general E[Xi] = 0. Also, E[X1X2] = 2σ2.

The canonical parameters for p(x) can be read off the factorization as η = 0

and a tridiagonal, sparse

Ω =




2 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0

0 0 −1 . . . 0

.

. −1

0 0 0 . . . 2




436 CHAPTER 7. GRAPHICAL MODELS

The matrix Ω is sparse, because the graph is sparse (just a markov chain).
Missing edges translate to zeros; for any graph, if there is no edge between Xi

and Xj , Ωij = 0.
Factor analysis is another example application of gaussian density functions.

Principal component analysis and Karhunen Loeve transform are limiting cases
of factor analysis. The motivation here is dimensionality reduction for cases
when Y ∈ ℜn and n is very large, such as the size of an image for a naive
1 − d raster scanned pixel vector representation. The complete vector need
not really capture the intrinsic dimensionality of the object being described
(such as a face). Factor analysis is useful if you think that the data should be
lying in some lower (d << n) dimensional space28. Let ω1, ω2, . . . , ωd ∈ ℜn

be d (linearly independent) basis vectors. Consider the linear subspace M ={
y ∈ ℜn

∣∣∣∣∣y =
d∑

i=1

xiωi, xi ∈ ℜ, ωi ∈ ℜn

}
. Factor analysis tries to induce a

probabilitic distribution over the subspace M , by defining X ∼ N (0d, Id×d)
and

Yn×1 = µn×1 + Ωn×dXd×1 + Kn×1

where the ith column of Ω is ωi, K ∼ N (0, D) is gaussian noise (capturing the
assumption that the model may not be exactly correct) and µ ∈ ℜd is the shift
(in subspace ℜn) vector. Though very naive, it has not stopped researchers
and especially practitioners from using it successfully. The components ωi’s
are extracted from a large database using eigenvalue analysis (such as eigenface
analysis in image processing literature).

The graphical model representation for factor analysis is very simple; V =
{X1, X2, . . . , Xd,Y} and E = {(X1,Y), (X2,Y), . . . , (Xd,Y)}. The Xi’s are
marginally independent as indicated by G. Further, we can infer that E[Y] = µ
and

Σ = E
[
(Y − µ)(Y − µ)T

]
= E

[
(ΩX + K)(ΩX + K)T

]
= ΩΩT + D

Finally, you can show that

(
Xd×1

Yn×1

)
∼ N

((
0d×1

µn×1

)
,

(
Id×d ΩT

d×n

Ωn×d

(
ΩΩT + D

)
n×n

))

In practice, it is useful to infer a distribution for X (distribution on weights for
different eigenfaces) used to synthesize a particular observation Y = ŷ (such as
a face image). That is, it can be required to infer p(X | ŷ). Fortunately29, this
turns out to be a Guassian and this can be inferred using the Bayes rule and

28There is a lot of interest these days in identifying the manifold (especially non-linear
subspaces, such as spheres) in which the data lies. In the classical technique of factor analysis,
we make a very restrictive assumption that the data lies in some linear subspace.

29The conditional distribution need not always stay in the same family. But for Gaussians,
the conditional distribution stays in the same family.

7.6. EXPONENTIAL FAMILY AND GRAPHICAL MODELS 437

algebraic operations on matrices. In particular, the following property turns out
to be useful. If

(
X

Y

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

then, µX|y = µ1 + Σ12Σ
−1
22 (y − µ2), V ar(X | y) = Σ11 − Σ12Σ

−1
22 Σ21 and

V ar(X | y) � Σ11 = V ar(X). The last expression indicates that observation
over Y should reduce uncertainity over X.

7.6 Exponential Family and Graphical Models

We will now discuss the exponential family in the setting of graphical mod-
els. Particularly, we will discuss how to stitch together exponential models on
graphs. Many, if not all graphical models take an exponential form. We will
mainly discuss undirected graphs. Recall from (7.12), the standard factorization
for an undirected graphical model

p(x) =
1

Z

∏

C∈Π

φC(xC)

where φC is a compatibility or potential function and Π is the set of all maximal
cliques. All we do in exponential form is rewrite it in the log form to get an
additive decomposition. This does not always hold, since will need that all φC
are non-negative in order to take their logs.

p(x) = exp

{∑

C∈Π

log φC(xC) − log Z

}

The above additive decomposition is essentially in exponential form, though
not quite in the exponential family form (we still need to specify the canonical
parameters). As an example, consider a Gaussian graphical model with X ∼
N (0,Ω) (canonical parametrization) defined on a tree G =< V, E > with noisy
observations Y = CX + V, V ∼ N (0, R). Then the conditional distribution
p(X | Y = y) is also Gaussian, which can be decomposed according to the tree
structure of G.

p(x|y) ∝
∏

s∈V
p(ys|xs)

∏

(s,t)∈E
exp

{
−1

2
[xs xt]Jst[xs xt]

T

}

where,

Jst =

[
Ωs(t) Ωts

Ωst Ωt(s)

]

438 CHAPTER 7. GRAPHICAL MODELS

with Ωs(t) specified so that Ωss =
∑

t∈N (s)

Ωs(t). In this representation, it is pos-

sible to do message passing using the canonical parameters in the sum/product
updates (the basis of Kalman filters).

You could also have bernoulli random variables at every node (for example,
to model the spread of a contagious disease in a social network of people) and one
might be interested in building a probability distribution over the social network.
Then, with every node Xs ∼ Ber(λs) ∈ {0, 1} (canonical parametrization) and
choosing30 φst = exp {λstfst(xs, xt)} where, fst = xsxt +(1−xs)(1−xt) defined
so that it takes value 1 iff xs = xt (both are diseased or healthy) and is 0
otherwise, we have the following factorization:

p(x) =
∏

s∈V
exp {λsxs}

∏

(s,t)∈E
exp {λstfst(xs, xt)} (7.47)

If λst = 0, it indicates no coupling between the related individuals. For a
reasonably contagious disease, we expect λst to be non-negative atleast. The
value of θs indicates the belief that an individual Xs was intially diseased; higher
the value, more will be the belief. Though not directly reflecting the marginal
probability, λs is an indicator of the log-odds ratio.

Let us consider another instance - a problem of counting the vertex coverings
in a graph using the sum-product formalism. We will associate a random vari-
able Xi ∈ {0, 1} with each node in the graph. Then, the following exponential
form for p(x) will serve our purpose:

p(x, η) = exp

{
η

n∑

i=1

xi − A(η)

} ∏

(s,t)∈E
(1 − (1 − xs)(1 − xt))

where h(x) =
∏

(s,t)∈E
(1 − (1 − xs)(1 − xt)) ensures that we indeed have a vertex

cover and f(x) =

n∑

i=1

xi. It can be proved that as η → −∞ (which means

you are increasingly penalizing larger coverings), the distribution goes to the

minimum cardinality vertex covering (i.e.,

n∑

i=1

xi).

If a graphical model were to be used to represent a language model for spell-
checking or validity, etc. of an input string x of length upto n, you can have
a substantially fewer number of parameters than if you were to have a naive
potential over all 26 characters in an alphabet leading to a table of size 26n.
This parameter reduction can be achieved by having indicator feature functions

30Remember that in a graphical model, we are free to choose the form of the potential
functions so that they match the semantics. Here we pick edge potentials that reflect the
coupling between health of related individuals, thereby shaping the distribution.

7.6. EXPONENTIAL FAMILY AND GRAPHICAL MODELS 439

f(x) corresponding to interesting (and not all) substrings such as ‘ion’, ‘ing’. To
model such apriori information about ’striking patterns’, it is useful to think of
graphical models in the following reduced parametrization form, where feature
function fα can represent some such information as a feature function:

p(x, η) = h(x) exp

{∑

C∈Π

∑

α∈IC

ηαfα(xC) − A(η)

}
(7.48)

where IC is the index for clique C so that fα(xC) corresponds to only those
interesting features that are local in terms of clique C.

7.6.1 Exponential Models and Maximum Entropy

The data fitting principle of maximum entropy, which is suitable for learning
models from data leads naturally to graphical models in exponential form and
also gives nice semantics to the weights in the exponential family. There are
many problems with constraints on distributions, but where the information
is not complete. For instance, if we knew that for two binary random vari-
ables X, Y ∈ {0, 1} and for their paired observations, 2/3 times X takes value
0, 3/4 times, Y takes value 1 and if you are asked, to specify the fraction of
times (X, Y) = (0, 0), what would you answer with the insufficient specifica-
tion? Or going back to our diseased network model, if you are given obser-
vations on healths of similarly networked people and were to translate these
observations into constraints on the moments (and/or the joint quantities), how
would you determine the parameters of the probability distribution? There
could be many distributions/parameters that are consistent with the obser-
vations. What principle should be adopted for making a good choice of the
parameters/distribution?

More concretely, say you are given some (feature) functions fα(x) with α ∈ I
and are also given some observations µ̂α on the expected values of the functions,
called empirical moments. The observations could come either from data or from
physical constraints. We are interested in the family of distributions that are
consistent with these constraints.

P(µ̂) =

{
p(.)

∣∣∣∣∣
∑

x

p(x)fα(x) = µ̂α ∀α ∈ I

}

Note that the family could be an empty set if the set of constraints are incon-
sistent. However, we will assume that the constraints are consistent. We are
interested in choosing a particular p̂ from P(µ) in a principled manner. Max-
imum entropy is one such principled method. Entropy is, roughly speaking, a
measure of uncertainity or randomness. It has played a vital role in physics,
chemisty, statistics, computer science, communication31, etc.

31Entropy plays a fundamental role in deciding how far you could compress a sequence of
bits.

440 CHAPTER 7. GRAPHICAL MODELS

Definition 57 The entropy H(p) of the distribution p on a random variable
(vector) X is given by the expected value of the log of the distribution. Depending
on whether the random variable (vector) is continuous or discrete, we will have
two different definitions of expectation (and therefore for the entropy). For
discrete random variable (vector) X,

H(p) = −
∑

x

p(x) log p(x)

whereas, for continuous valued random variable X,

H(p) = −
∫

x

p(x) log p(x)dx

It can be easily proved that H(p) ≥ 0 (convention being that 0 log 0 = 0).
H(p) = 0 if and only if X is deterministically always some a, making p(a) = 1
and p(x) = 0, ∀x 6= a. H(p) is maximal for the uniform distribution.

The principle of maximum entropy can be now defined:

Definition 58 Given P(µ̂) =

{
p(.)

∣∣∣∣∣
∑

x

p(x)fα(x) = µ̂α ∀α ∈ I

}
, choose

p̂ = argmax
p∈P(µ̂)

H(p)

The intuition here is to balance across the constraints. It is also called the
principle of least commitment since the goal is to simultaneously respect the
data and not commit to anything more.

Theorem 99 The maximum entropy solution exists and is unique. The unique
solution takes the form

p(x) ∝ exp

{∑

α∈I

ηαfα(x)

}
(7.49)

Proof: The first thing to note is that P(µ̂) is a convex32 (linear), closed33 and
bounded set of distributions. Further, H(p) is continuous, and this, in con-
junction with the nature of P(µ̂), guarantees that a maximum will be attained.
Also, H(p) is strictly concave34, implying that the maximum will be unique.

The canonical parameters are actually the Langrange multipliers. Consider
the Lagrangian L(p, η, λ):

L(p, η, λ) = H(p) +
∑

α∈I

ηα

[
µ̂α −

∑

x

p(x)fα(x)

]
+ λ[1 −

∑

x

p(x)]

32What if the set is empty?
33Which means the optimum cannot escape to the boundary.
34Since ∂2H

∂p2 = − 1

p
< 0.

7.6. EXPONENTIAL FAMILY AND GRAPHICAL MODELS 441

The KKT necessary and sufficient conditons (see (4.88) on page 296) for opti-

mality of (p̂(x), η̂, λ̂) yield:

1. ∂L
∂p = 0 ⇒ log p̂(x) −

∑

α∈I

η̂αfα(x) − λ̂ = 0. That is,

p̂(x) = exp

{∑

α∈I

η̂αfα(x)

}
eλ̂ (7.50)

2.
∑

x

p̂(x) = 1. Substituting for p(x) from (7.50), we get

eλ̂ =
1

∑

x

exp

{∑

α∈I

η̂αfα(x)

}

which is a constant.

This proves that p(x) ∝ exp

{∑

α∈I

ηαfα(x)

}
. 2

This result shows how exponential families can arise in a fairly natural way.
It can be further shown that a slight generalization of the maximum entropy
principle, called the Kullkack-Leibler divergence very naturally leads to the max-
imum likelihood principle.

Definition 59 The Kullkack-Leibler (KL) divergence D(p||q) between two dis-
tributions p(.) and q(.) is given by the expectation over p(.) of the log-likelihood
ratio of p(.) over q(.).

D(p||q) =
∑

x

p(x) log
p(x)

q(x)

For distributions p(.) and q(.) over continuous valued random variables

D(p||q) =

∫

x

p(x) log
p(x)

q(x)
dx

Like any distance, the KL divergence is always non-negative. Also, p ≡ q if
and only if D(p||q) = 0. However, by inspection, we can infer that D(p||q) is
assymetric, unlike metrics. That is D(p||q) 6= D(q||p). If q(.) were the uniform
distribution D(p||q) = H(p) + c, where c is some constant.

We will next define a slight generalization of the maximum entropy principle.
Recall the definition of P(µ̂). Now let q be some additional prior or reference
distribution. The generalized definition goes as:

442 CHAPTER 7. GRAPHICAL MODELS

Definition 60 Given P(µ̂) =

{
p(.)

∣∣∣∣∣
∑

x

p(x)fα(x) = µ̂α ∀α ∈ I

}
and a ref-

erence distribution q(x), choose

p̂ = argmin
p∈P(µ̂)

D(p||q)

The interpretation here is: get as close as possible to the reference distribution,
while respecting the data in the form of the constraint set P(µ̂). For the max-
imum entropy principle, the reference distribution happened to be the uniform
distribution. Note that we have an ‘argmin’ here instead of an ‘argmax’.

Theorem 100 The solution to the minimum KL divergence problem in defini-
tion 60 exists and is unique. The unique solution takes the form

p(x) ∝ q(x) exp

{∑

α∈I

ηαfα(x)

}

The reference distribution q(x) plays the role of the function h(x) in the expo-
nential form.

Proof: The proof of existence and uniqueness here are the same as that for
the counterpart in the proof of theorem 99. The only change will be the KKT

necessary and sufficient conditions for optimality of (p̂(x), η̂, λ̂) (see (4.88) on
page 296).

Consider the Lagrangian L(p, η, λ):

L(p, η, λ) = D(p||q) +
∑

α∈I

ηα

[
µ̂α −

∑

x

p(x)fα(x)

]
+ λ[1 −

∑

x

p(x)]

The KKT necessary and sufficient conditons yield:

1. ∂L
∂p = 0 ⇒ log p̂(x) −

∑

α∈I

η̂αfα(x) − λ̂ − log q(x) = 0. That is,

p̂(x) = q(x) exp

{∑

α∈I

η̂αfα(x)

}
eλ̂ (7.51)

2.
∑

x

p̂(x) = 1. Substituting for p(x) from (7.50), we get

eλ̂ =
1

∑

x

q(x) exp

{∑

α∈I

η̂αfα(x)

}

which is a constant.

This proves that p(x) ∝ q(x) exp

{∑

α∈I

ηαfα(x)

}
. 2

7.7. MODEL FITTING 443

7.7 Model fitting

Thus far we have discussed graphical models and inference in these models. But
how do learn the potential functions associated with a model or the canonical
parameters associated with the exponential form, given some data from the
real world that describes the phenomena? This opens up a new interesting
fundamental question: ‘how to infer models from data?’. We will also need a
measure of how ‘good’ a model is and this is often driven by the end goal. These
discussions forms the topic of discussion for this section.

Consider a coin tossing experiment, in which X ∼ Ber(µ) where µ =
Pr (X = 1). Let us say we observe a sequence of coin tosses: [x(1), x(2), . . . , x(m)].
Can we use this data to infer something about µ? There are two primary ways
to do this.

1. The Bayesian school of thought views the Bayes rule as the fundamental
method for inventing model from the data:

p(θ | x) =
p(x | θ)p(θ)

p(x)

where θ is the underlying model parameter, p(x | θ) is the likelihood
term, p(θ | x) is the posterior that summarizes the remaining uncertainty
in θ, given that you have observed the data x. This simple statement
has consequences on the way you might view parameters; by imposing a
distribution over θ, you are encoding the belief that the parameter itself
is a random quantity. This requires viewing all parameters as random
variables. The Bayesian technique views µ as a random quantity following
a Beta(a, b) distribution35 on [0, 1].

µ ∼ Beta(a, b) ∝ µa−1(1 − µ)b−1

The Bayesian tries to model the inherent uncertainity in the statistician
about the value of the parameter (µ). The Bayesian thus has a more or
less fixed procedure for folding in the data into the model.

2. The frequentist’s way of measuring probabilities is as numbers measured
as outcomes over repeated trials as against the subjective notion of prob-
ability adopted by the Bayesians. The frequentist would object to the
Bayesian view on several counts: (i) the subjectivity of the procedure; is
there a sound justification for the choice of µ ∼ Beta(a, b) and for the par-
ticular choice of a and b? (ii) that different results for the same data set
could be obtained by different statisticians adhering to different choices of
the prior. The frequentist belief is that one should be completely objective
with the data; the data should speak so that you get the same model, no
matter who builds the model. It does not make sense for the probability

35The shape of the Beta distribution depends on the value of the parameters - it could be
either uniform or bell-shaped.

444 CHAPTER 7. GRAPHICAL MODELS

of a coin throwing up heads to be a random variable. However, the fre-
quentist does not have any fixed procedure for inventing a model from the
data. The frequentist thus considers several estimators for the parameters.
One estimator is the sample mean of the data. Any estimator is assessed
for its properties such as bias, variability, etc. Variability asks: How much
would the estimated value vary if the data sample changed? How will the
estimate behave if we repeated the experiement several times?

Both Bayesian and frequentist views are compatible with graphical models.
Also, the two views agree that there could be different models for different
(coin-tossing) experiments. The Bayesian view often gives you a good way of
generating good procedures (that is, procedures with good properties) whereas
the frequentist view often gives you a very good way of evaluating a procedure.

7.7.1 Sufficient Statistics

Let X be a random variable. In the present discussion, we will often assume it
to correspond to a vector of observations (that is data). Any function τ(X) is
called a statistic. From the Bayesian point of view, a statistic τ(X) is sufficient
for the parameter variable θ if θ ⊥ X | τ(X). This relation can be expressed
graphically as a markov chain with V = {X, τ(X), θ}, E = {(X, τ(X)), (τ(X), θ).
Intuitively, this means that the function of the observations τ(X) is what is
essential in data to explain the characteristics of θ and that all the dependence
between X and θ is being mediated by τ(X). τ(X) is typically much smaller
than X itself.

From the frequentist point of view, θ is an unknown fixed parametrization
that we would like to estimate. The sufficiency for a frequentist is that

p(x | τ(x); θ) = p(x | τ(x))

That is, the family of distributions specified by the parametrization θ becomes
independent of θ when conditioned on the sufficient statistic τ(x); it indicates
that we have conditioned on sufficient information to capture any information
from θ.

A view of sufficiency unified across the Bayesian and frequetist perspectives
can be obtained by treating it as a statement about factorization:

p(x, τ(x), θ) = φ1(τ(x), θ)φ2(τ(x),x)

It can be proved that this is indeed a unified view of sufficiency, consistent
with the Bayesian and frequentist views. Though there is a difference in in-
terpretations, it amounts to the same factorization. Note the similarity of the
factorization here with that for general graphical models. As we will see, for the
graphical model family, sufficiency properties can be read out, just on the basis
of their factorization. Further, the sufficiency property stands our clearly for
exponential family. Given iid data36 x = (x(1),x(2), . . . ,x(n)) each from some

36This assumption is common-place because it makes computations very simple and decom-
posable. It is often not the case, since there could be dependence in the sampling.

7.7. MODEL FITTING 445

exponential family, and given an η (which corresponds to the θ being discussed
thus far in the context of model estimation), we can easily infer that

p(x1,m; η) =
m∏

i=1

p(x(i); η) =

(
m∏

i=1

h(x(i))

)

︸ ︷︷ ︸
φ2(τ(x),x)

exp

{
ηT

(
m∑

i=1

f(x(i))

)
− mA(η)

}

︸ ︷︷ ︸
φ1(τ(x),η)

This algebra tells us that the quantity τ(x) =
m∑

i=1

f(x(i)) is the sufficient statis-

tic. Note that φ1 can potentially depened on τ(x), though it does not depend
in this case. The key to estimating η are the sufficient statistics τ(x). We will
also realize that the prefactor h(x) does not play a significant role here.

The quantity

µ =
1

m

m∑

i=1

f(x(i)) =
∑

x

℘(x)f(x)

is called the empirical moment parameter vector, where the empirical distribu-
tion ℘(x) is obtained by placing point mass at data points.

℘(x) =
1

m

m∑

i=1

δ(x − x(i))

The empirical moment parameters are a special type of empirical moments dis-
cussed on page 439. Note that the empirical moment parameters are simply
the sufficient statistics scaled down by the number of data points. The empiri-
cal moment parameter vector can be contrasted against the moment parameter
vector µ = [E[f1(X)], E[f2(X)], . . . , E[fk(X)]] for exponential families, as de-
fined on page 433. The two differ in the probability distributions with respect
to which they compute their expectations; while the former computes with re-
spect to the empirical distribution, the latter computes with respect to the true
distribution.

As an example, consider the Ising model, defined on a graph G =< V, E >,
which is a member of the exponential family. It is distribution is very similar
to that of the disease network model (7.47), only difference is that only the first
term xsxt is retained in the definition of fst(x).

p(x, η) ∝ exp




∑

s∈V
ηsxs +

∑

(s,t)∈E
ηstxsxt





By appropriately identifying the feature function vector f and η of size |V|+ |E|
each, we can determine the empirical moments to be

µ̂s =
1

m

m∑

i=1

xi
s

446 CHAPTER 7. GRAPHICAL MODELS

and

µ̂st =
1

m

m∑

i=1

xi
sx

i
t

which are just the marginal counts.
What about empirical moments for the reduced parametrization discussed

earlier in (7.48) on page 439?

p(x, η) = h(x) exp

{∑

C∈Π

∑

α∈IC

ηαfα(xC) − A(η)

}

Given iid data x =
(
x(1),x(2), . . . ,x(m)

)
, the following factorization holds if each

x(i) follows the distribution specified by the reduced parametrization. Since the
apriori information is captured using indicative feature functions, you can have
a reduced set of sufficient statistics.

p(x1,m; η) =
m∏

i=1

p(x(i); η) =

(
m∏

i=1

h(x(i))

)

︸ ︷︷ ︸
φ2(τ(x),x)

exp




∑

α

ηα




m∑

i=1

∑

C∈Π|α∈IC

fα(x(i))


− mA(η)





︸ ︷︷ ︸
φ1(τ(x),η)

The form of the empirical moments in this case pools over all cliques that are
relevant for a particular feature type fα (for instance, in a grid, some features
may be commonly defined/parametrized across all vertical edges while others
across all horizontal edges) and then pools over all data:

µ̂α =

m∑

i=1

∑

C∈Π|α∈IC

fα(x(i))

The reduced parametrization assumes some kind of homogenity in the model.
More precisely, it makes the statistical assumption that the parameter ηα is
independent of the exact position in G and is determined by the local graphical
structure. This parametrization assuming homogenity is often desirable since it
gets a more stable estimator with less variance even using relatively less data.
In fact, the reduced parametrization yields a new exponential family with much
lower dimensions, in which the parameters ηα enter in a purely linear way37.
The issues of when and how to pool data are important ones in modeling.

7.7.2 Maximum Likelihood

The likelihood function interests both Bayesian and frequentists alike. Recall
that likelihood p(x | θ) was one part of the Bayes rule. The frequentist inter-
pretation of this quantity is as ‘the likelihood of a fixed x as θ varies’ whereas
the Bayesian interpretation of this quantity is as ‘the conditional probability of

37A widely used different class of exponential families is called curved exponential families,
in which the parameters ηα enter in non-linear ways.

7.7. MODEL FITTING 447

a varying x given a fixed θ.’ The frequentist thus views likelihood as a function
of theta L(θ) that measures, in some sense, the goodness of θ as it is varied
for the particular sample of data in hand. It is often useful to talk about the
log-likelihood instead38.

Definition 61 Given a sample x =
{
x(1),x(2), . . . ,x(m)

}
, the log-likelihood

(LL) is defined as

LL(θ;x) =
1

m
log p(x | θ)

Note that the 1
m term does not really change the optimization and its usage is

conventionally just to normalize the log-likelihood.

The maximum likelihood estimate (MLE) is defined next.

Definition 62 Given a sample x =
{
x(1),x(2), . . . ,x(m)

}
, the maximum likeli-

hood estimate (MLE) θ̂MLE of θ is defined as

θ̂MLE = argmax
θ

LL(θ;x)

As the name suggests, this principle treats log-likelihood as a measure of goodness
of the parameter and picks that value which maximizes the LL. Though not
against Bayesian principles, MLE has been of greater interest to the frequentists.
The estimate θ̂MLE is called a point estimate, since the method gives you just a
single point.

Let us try to fit (that is, adjust the parameters of) a scalar Gaussian N (µ, σ2)
to some data

{
x(1), x(2), . . . , x(m)

}
using the MLE principle. We will assume

that the data is iid. This will mean that the joint distribution over the data
will factorize into individual data instances, given the parameters.

LL(µ;x) =
1

m

m∑

i=1

log p(x(i) | µ) = − 1

2m
log 2π − 1

2m

M∑

i=1

(x(i) − µ)2

The LL is a quadratic in µ (that is θ), which achieves its maximum at

µ̂MLE =
1

m

m∑

i=1

x(i)

as expected. The data determines the shape of the likelihood and MLE looks
for the point µ̂MLE that maximizes the LL.

This example of parameter estimation for the simple Gaussian is one of the
motivations for using MLE; MLE corresponds to an intuitively appealing esti-
mation for the mean parameter. Secondly MLE has good asymptotic properties.

38Since it is a monotonic transformation between the likelihood and log-likelihood, it does
not really matter much whether we look at the former or the latter. It is usually more
convenient to look at the log-likelihood (LL).

448 CHAPTER 7. GRAPHICAL MODELS

A frequentist takes more interest in the asymptotic properties of the estimator.
We can look upon θ̂MLE as a random variable, since the data x was itself ran-
dom and θ̂MLE is a function of the data. As the amount of data grows, any
reasonable estimator should behave ‘well’. One yardstick of good behaviour of
the estimator is consistency, that is, if there was some true underlying θ∗, we
would like

θ̂MLE
m→∞→ θ∗

Under most conditions, MLE estimators are consistent. Generally, it can be
worrisome if the estimator does not converge to the true answer even with
infinite amount of data.

Another yardstick of good behaviour is that asymptotically, the estimator’s
spread around the true value of the parameter must be Gaussian-like. MLE
estimators honor this feature as well; with increasing m, the distribution of
θ̂MLE tends to be Gaussian with the true mean θ∗ and the spread Σ given by
the Fisher information matrix39.

In small sample regimes (that is, if you do not have too much data), MLE
does not behave well. In such settings, the frequentist adds a penalty term,
called the regularization term (such as µ2 in the above example) to the likelihood
objective to somehow prevent the estimator from drifting away based on a small
m.

7.7.3 What the Bayesians Do

The Bayesians focus more on the posterior p(θ | x), which is the likelihood
multiplied by a prior.

p(θ | x) ∝ p(x | θ)p(θ)

For example, let x(i) ∼ N (µ, 1) for 1 ≤ i ≤ m and let µ ∼ N (ν, σ2). The param-
eter µ is a random variable, whereas the hyperparameters µ′ and σ are fixed. The
choice of the values µ′ and σ could significantly influence the posterior. There
is a class of models40 called the ‘hierarchical Bayes models’ that put a prior on
the hyper-parameters, priors again on the hyper-hyper-parameters and so on.
It stops (for pragmatic reasons) when the abstration has been sufficiently per-
formed so that it matters little what the fixed values of the hypern-parameters
are.

The posterior for this example, takes the form

p(θ | x1,m) ∝ exp

{
−1

2

m∑

i=1

(x(i) − µ)2

}
exp

{
− 1

2σ2
(µ − ν)2

}

The Bayesian is not interested just in the point estimate, but moreso in the entire
posterior distribution. In this case (a special instance of Kalman filters) the pos-
terior again turns out to be a Gaussian; µx1,m

∼ N (E(µ | x1,m), V ar(µ | x1,m)).

39Related to this is the Cramer-Rao lower bound.
40The broader area is called Robust Bayesian statistics.

7.7. MODEL FITTING 449

A little calculation should convince you that µx1,m
∼ N

(
mσ2

mσ2+1 µ̂MLE + 1
mσ2+1ν, V ar(µ | x1,m)

)
.

How does the posterior behave as m → ∞? We can easily see that with increas-
ing amount of data, the likelihood will completely swamp the prior. That is,
E(µ | x1,m)

m→∞→ µ̂MLE . So the choice of the hyper-parameters is irrelevant as
the size of the data goes to ∞. Thus, MLE behaves well asymptotically even
from the Bayesian point of view. Unlike the frequentist, the Bayesian does not
need to explicitly handle the small sample regimes.

In general, the posterior might not have a finite parametrization. In such
cases, the Bayesians do compute point estimates. Examples of point estimates
computed by Bayesians are:

1. Bayes estimate: This is the mean of the posterior:

θ̂Bayes =

∫
θp(θ | x1,m)dθ

2. MAP estimate: This is the mode of the posterior:

θ̂MAP = argmax
θ

1

m
log {p(θ | x1,m)}

The MAP estimate is very much related to the MLE. Invoking the Bayes
rule and ignoring the term involving log p(x1,m),

θ̂MAP = argmax
θ

1

m
log {p(x1,m | θ)} +

1

m
log {p(θ)} (7.52)

=
iid

argmax
θ

1

m

m∑

i=1

log
{

p(x(i) | θ)
}

+
1

m
log {p(θ)}

The first term in the decomposition is the data likelihood term, while the
second term is the prior term. Let us study this decomposition.

(a) This decomposition suggests that if the prior is uniform, θ̂MAP =

θ̂MLE .

(b) Secondly, in the asymptotic case, as m → ∞, the prior component
fades away (since it has no dependence on m in the numerator) in

contrast to the likelihood term41. In fact, as m → ∞, θ̂MAP →
θ̂MLE .

(c) If the prior is assumed to be Gaussian, then the prior term will assume
the form of a quadratic penalty. This is the same as a quadratic
regularization term for MLE. With different choices of priors on θ,
you get different regularizations. For example, a Laplacian prior on θ
results in L1 regularization. For example, Lasso is L1 regularization
for a regression problem. How the choice of regularization affects
these estimators is an area of active research.

41One could use the central limit theorem or law of large numbers to study the behaviour
of the likelihood term as m → ∞.

450 CHAPTER 7. GRAPHICAL MODELS

7.7.4 Model Fitting for Exponential Family

We will initiate the discussion of model fitting in exponential families by looking
at maximum likelihood (ML) estimation. Just as for most other properties of
exponential models, there is something crisper that we can state about the ML
properties of exponential models. The optimization conditions will turn out to
take special and easily interpretable forms.

Recall the specification of any member of the exponential family from (7.43).

p(x | η) = h(x) exp
{
ηT f(x) − A(η)

}

We will now see how the empirical moment parameters, defined on page 445
and discussed subsequently become relevant for parameter estimation. Given iid
observations x =

{
x(1),x(2), . . . ,x(n)

}
, the normalized LL for this distribution

decouples as a sum

LL(η;x) =
1

m
log p(x | η) (7.53)

=
1

m

{
ηT

m∑

i=1

f(x(i)) − mA(η)

}
+ log h(x) (7.54)

=

{
1

m
ηT

m∑

i=1

f(x(i))

}
− A(η) + log h(x) (7.55)

=
{
ηT µ(x)

}
− A(η) + log h(x) (7.56)

where µ(x) = 1
m

m∑

i=1

f(x(i)) is the vector of empirical moment parameters. Since

h(x) is not a function of the parameter (and instead, is a constant offset), it
follows that the MLE for the exponential family takes the form

µ̂ML ∈ argmax
η∈Domain(η)

{
ηT µ(x) − A(η)

}

This is a very crisp formulation of sufficiency; given data, all you need to com-
pute are µ(x), forget the data x and focus on solving the optimization problem.
Since A(η) is infinitely differentiable and since the remainder of the objective
is linear, we could make use of the first order necessary optimality conditions
from (4.44) on page 270:

∇LL(η;x) = 0

That is,

µ(x) −∇A(η) = µ(x) − E(f(X)) = 0

where, we may recall from (7.44) on page 433 that ∇A(η) is the vector of
moments predicted by the model. This important condition

7.7. MODEL FITTING 451

µ(x) = E(f(X)) (7.57)

is called the moment matching condition42 and it states that for maximizing the
likelihood, we need to match the empirical moments to the model moments. In
general, these coupled d equations are complex and non-linear ones, that are not
very easy to solve, though there are some exceptions. The necessary conditions
suggest that the parameters should be learnt in such a way that if you drew
samples from the model, they should look like the given data.

As example, let X be a bernoulli random variable. Recollect the specification
of the bernoulli distribution as a member of exponential family from page 7.4:
η = log µ

1−µ , f(x) = x and A(η) = log {1 + eη}. This leads to the following
moment matching conditions

µ =
1

m

m∑

i=1

x(i) = A′(η) =
eη

1 + eη

The empirical moments is the fraction of heads that come up in the m coin
tosses of the experiment. The expression for η will be

η = log

(
µ

1 − µ

)

which corresponds to the logs-odd ratio. When does this have a solution? It
has a solution if µ ∈ (0, 1) but not if i = 1 or i = 0, which can happen if all the
coin tosses landed up with heads or tails43. If µ ∈ (0, 1

2), η < 0 and if µ ∈ (1
2 , 1),

η > 0. So if µ = 1, strictly speaking the MLE does not exist. Note that if we
were to use the original formulation of the bernoulli distribution on page 432,
moment matching would have yielded the MLE as µ = µ. For large amounts of
data, using the weak law of large numbers, you can be convinced that this loss
can be recovered using even the exponential formulation.

As another example, let us revist the multivariate normal distribution in the
canonical form first uncovered in (7.46):

p(x, η,Ω) = exp

{
ηT x − 1

2
trace(ΩxxT) + x

}

where
η = Σ−1µ

and
Ω = Σ−1

42This is related to moment matching rooted in classical statistics. Though not related
directly to maximum likelihood, these two boil down to the same criteria for the exponential
family.

43This is not impossible, especially if the tossing is done by some magician such as Persi
Warren Diaconis or by a machine built by him.

452 CHAPTER 7. GRAPHICAL MODELS

Moment matching will yield the model first order and second order moments
in terms of the empirical mean and the empirical second order moment matrix
respectively. That is,

E[x] = µ =
1

m

m∑

i=1

x(i) = µ

and

E[xxT] = Σ + µµT =
1

m

m∑

i=1

x(i)
(
x(i)
)T

Solving this system, we get ΩML as the inverse of the sample covariance matrix

ΩML =

(
1

m

m∑

i=1

x(i)
(
x(i)
)T

− µµT

)−1

(which exists if the sample covariance matrix has full rank) and

ηML = ΩMLµ

In practice (such as in text mining problems), it can happen that many fea-
tures are never observed and consequently, the corresponding empirical moment
parameters will be 0. Similarly, for the multivariate Gaussian example, if you do
not have sufficient data, the sample covariance matrix may not have full rank.
More precisely, we need to pay heed to Domain(η), since the optimal values
could reside on the boundary. This is addressed using regularization through a
penalized log-likelihood objective.

7.7.5 Maximum Likelihood for Graphical Models

For general large graphical models, the moment matching is not at all easy to
solve. It has therefore been a practice to often resort to iterative algorithms for
solving the set of moment matching equations. We will illustrate this difficulty
through the Ising model (c.f. page 445), which is a model on an undirected
graph G =< V, E >.

p(x, η) = exp




∑

s∈V
ηsxs +

∑

(s,t)∈E
ηstxsxt − A(η)





Let us say we have iid data x = (x(1),x(2), . . . ,x(m)). The empirical moments
are

µ̂s =
1

m

m∑

i=1

xi
s

and

µ̂st =
1

m

m∑

i=1

xi
sx

i
t

7.7. MODEL FITTING 453

The d = |V| + |E| moment matching equations will be

∑

x∈{0,1}|V|

exp




∑

s∈V
ηsxs +

∑

(s,t)∈E
ηstxsxt − A(η)



xs = µ̂s

and
∑

x∈{0,1}|V|

exp




∑

s∈V
ηsxs +

∑

(s,t)∈E
ηstxsxt − A(η)



xsxt = µ̂st

The task is to estimate the values of the |V| + |E| sized vector η. The log-
normalization constant A(η) is in turn very complex and involves

A(η) =
∑

x∈{0,1}|V|

exp




∑

s∈V
ηsxs +

∑

(s,t)∈E
ηstxsxt − A(η)





In general, though the equations are intuitive (asserting that parameters be
picked to match the data), solving them is very very complex. What if the
graph were a tree? Then the solution can be obtained efficiently, as we will see
subsequently. Also, A(η) as well as the marginal p(x; η) could be computed in
polynomial time leading to efficient inference as well. Thus, solving the moment
matching equations is closely linked to the graph structure. In general, solv-
ing the estimation problem inevitably involves solution to the marginalization
problem, which can at least be performed efficiently for tree structured models.

Let us consider some graphical models, whose estimation problems are easy.
Consider a markov chain with V = {X1, X2, X3, X4}, E = {(X1, X2), (X2, X3), (X3, X4)}.
Though it can be thought of as a directed model, we will choose an exponential
factorization that will link it to the general exponential machinery. Let each Xi

have k possible states. Also, let

λst =
∑

i = 1, j = 1kλst,ij(δ(xs, i)δ(xt, j))

where δ(x, i)δ(y, j) is an indicator feature function for each fixed (i, j) pair and
is expressible as a k × k matrix. λst,ij ’s are the canonical parameters. We can
then adopt the exponential form

p(x;λ) = exp {λ12(x1, x2) + λ23(x2, x3) + λ34(x3, x4)}

Given data x = (x(1),x(2), . . . ,x(m)), the empirical moment parameters (suffi-
cient statistics scaled down by m) can be computed to be

µst(xs, xt) =
1

m

m∑

i=1

δ(xs = x(i)
s)δ(xt = x

(i)
t)

for (s, t) ∈ {(1, 2), (2, 3), (3, 4)} and

µs(xs) =
1

m

m∑

i=1

δ(xs = x(i)
s)

454 CHAPTER 7. GRAPHICAL MODELS

for s ∈ {1, 2, 3, 4}.
These simply correspond to the empirical marginal probability ℘(xs, xt).

The moment matching conditions can be satisfied44 by the following assignments
to the canonical parameters:

λ̂12,12 = log µ12(x1, x2)

λ̂23,23 = log
µ23(x2, x3)

µ2(x2)

λ̂34,34 = log
µ34(x3, x4)

µ3(x3)

Thus, the canonical parameters can be computed in closed form. The task is
similarly simple for trees - the basic intuition has been captured in this markov
chain example. However, the simple solution suggested in this four node example
does not hold for a cyclic graph having 4 nodes with edges defined as E =
{(X1, X2), (X2, X3), (X3, X4), (X4, X1)}.

The task is also equally simple, with closed form solutions for the class of
decomposable graphs (which could be graphs with cycles), defined on page 415
in definition 54.

7.7.6 Iterative Algorithms

We will now move to more general graphs and describe iterative algorithms for
solving fixed point equations. We will assume that the potential functions are
defined on maximal cliques.

p(x, φ) ∝
∏

C∈Π

φC(xC) ≡ exp

{∑

C∈Π

θC(xC)

}

The general setting for maximum likelihood optimization is that we have to
solve a set of fixed point equations

F(η) = Eη[f(X)] − µ = 0

(such as µ̂α =
m∑

i=1

∑

C∈Π|α∈IC

fα(x(i)) in the case of reduced parametrization - c.f.

page 446). For this system, we will investigate an iterative solution of the form

η(t+1) = η(t) + f
(
η(t)
)

so that at the fixed point η(t∗), f
(
η(t∗)

)
= 0 and therefore η(t∗+1) = η(t∗). t is

the time step.
This general algorithm is called Iterative Proportional Fitting (IPF) and

goes as follows for a general undirected graph G =< V, E >:

44EXERCISE: Prove.

7.7. MODEL FITTING 455

1. Start with some initial factorization (which could be uniform)

p(x) ∝
∏

C∈Π

φ
(0)
C (xC) ≡ exp

{∑

C∈Π

θ
(0)
C (xC)

}

2. For t = 1 onwards, let C’ range stepwise over the cliques in Π. Update

φ
(t+1)
C′ (xC′) = φ

(t)
C′ (xC′)

µC′(xC′)

µ
(t)
C′ (xC′)

(7.58)

where, µ
(t)
C′ (xC′) is the current model marginal, computed as45

µ
(t)
C′ (xC′) =

1

Zφ(t)

∑

xV\C′

p(x;φ(t))

While the model marginals can be computed efficiently for tree structured
or even decomposable graphs using message passing formalisms, we may
have to resort to approximate inferencing for general graphs. µC′ are the
empirical marginals that are precomputed from data x as

µC′(xC′) =
1

m

m∑

i=1

δ
(
xC′ ,x

(i)
C′

)

Equivalently one may also use the following update rule:

θ
(t+1)
C′ (xC′) = θ

(t)
C′ (xC′) + log

µC′(xC′)

µ
(t)
C′ (xC′)

(7.59)

The algorithm is called iterative proportional fitting because at every step, the
potentials are updated proportional to how well the empirical moment param-
eters fit the model moments for a clique C′.

Convergence of the iterative algorithm

It is easy to see that at the fix point t = t∗, the algorithm will yield the MLE
φ(t∗) since, for all C ∈ Π,

F(φ(t∗)) = µ
(t∗)
C (xC) − µC(xC) = 0

45You could formulate this problem using a set of δC feature functions, and λC,vC
canonical

parameters, as was adopted in the example on page 453. Here, vC is a configuration vector
that could be assumed by variables on clique C.

456 CHAPTER 7. GRAPHICAL MODELS

But we also need to show that the updates will always converge to the fix point.
We first observe that after updating using step (7.59) (or equivalently, (7.58)),
the moment matching will be achieved for clique C′.

µ
(t+1)
C′ (xC′) = µC′(xC′)

Why is this so? By definition,

µ
(t+1)
C′ (xC′) =

1

Zθ(t+1)

∑

xV\C′

p(x; θ(t+1)) =
1

Zθ(t+1)

∑

xV\C′

exp



θ

(t)
C′ (xC′) +

∑

C∈Π,C6=C′

θ
(t)
C (xC)





That is, every factor that is not in C′ is not changing with respect to the previous
step. Expanding upon this, using the update equation (7.59),

µ
(t+1)
C′ (xC′) =

1

Zθ(t+1)

∑

xV\C′

exp



θ

(t)
C′ (xC′) + log

µC′(xC′)

µ
(t)
C′ (xC′)

+
∑

C∈Π,C6=C′

θ
(t)
C (xC)



 =

1

Zθ(t+1)

µC′(xC′)

µ
(t)
C′ (xC′)

∑

xV\C′

exp

since µC′(xC′) and µ
(t)
C′ (xC′) are independent of the inner summation. This leads

to

µ
(t+1)
C′ (xC′) =

Zθ(t)

Zθ(t+1)

µC′(xC′)

µ
(t)
C′ (xC′)

∑

xV\C′

p(xC′ ; θ(t)

By definition,

µ
(t)
C′ (xC′) =

∑

xV\C′

p(xC′ ; θ(t)

Thus,

µ
(t+1)
C′ (xC′) =

Zθ(t)

Zθ(t+1)

µC′(xC′)

Since both empirical and model moments are expected to sum to 1 across all
cliques in the graph, we should have

1 =
∑

C′∈Π

µ
(t+1)
C′ (xC′) =

∑

C′∈Π

Zθ(t)

Zθ(t+1)

µC′(xC′) =
Zθ(t)

Zθ(t+1)

Consequently, we will have that once the update step (7.59) is applied, moment
matching will hold on C′.

µ
(t+1)
C′ (xC′) = µC′(xC′)

This takes us one step forward. But are these step updates guranteed to lead to
convergence? To see that convergence holds, we will note that the IPF algorithm
is an instance of the coordinate-wise ascent algorithm (c.f. page 301). This
becomes obvious by stating the log-likelihood objective

LL(θ;x) =
1

m

(∑

C∈Π

θCµC′(xC′)

)
− A({θC | C ∈ Π})

7.7. MODEL FITTING 457

and viewing it as a function of θC′

g(θC′) = LL
(
θC′ ;

{
θC = θ

(t)
C | C 6= C′

}
,x
)

The first order necessary optimality condition for g(θC′) precisely yield the mo-
ment matching equation for C′. Since g(θC′) can be shown to be concave, the
first order necessary conditions are also sufficient. The fact that the application
of coordinate descent in this setting will lead to convergence follows from the
fact that LL(θ;x) is strongly concave.

7.7.7 Maximum Entropy Revisted

The IPF algorithm exploited the idea of matching moments in order to maximize
likelihood. Recall from Section 7.6.1, the maximum entropy principle that seeks
to find ℘(.) ∈ P(µ̂) that maximizes H(p). P is the set of all distributions that
satisfy empirical moment constraints µ̂α:

P(µ̂) =

{
p(.)

∣∣∣∣∣
∑

x

p(x)fα(x) = µ̂α ∀α ∈ I

}

The problem of maximum entropy was also shown to be equivalent to the prob-
lem of minimizing the KL divergence between p and the reference uniform dis-
tribution u:

p̂ME = argmax
p∈P(µ̂)

H(p) = argmin
p∈P(µ̂)

D(p||u) (7.60)

On the other hand, the problem of maximum likelihood estimation problem is
specified as

p̂MLE = argmax
η

1

m

m∑

i=1

log p(x(i); η)

To help us establish the connection between the two, we will define the data x

driven empirical distribution as

℘x(x) =
1

m

m∑

i=1

δ(x = x(i))

This definition yields an alternative expression for the MLE as the minimizer of
the KL divergence between the empirical distribution and the model distribu-
tion.

458 CHAPTER 7. GRAPHICAL MODELS

p̂MLE = argmax
η

(
1

m

m∑

i=1

℘x log p(x(i); η)

)
(7.61)

= argmax
η

(
1

m

m∑

i=1

℘x log p(x(i); η)

)
+

(
1

m

m∑

i=1

℘x log ℘x

)
(7.62)

= argmax
η

− D (℘x||p(x; η))

= argmin
η

D (℘x||p(x; η))

= argmin
p∈E(f)

D (℘x||p(.)) (7.63)

where, E(f) is the exponential family of distributions having f as the vector of
feature functions that also figure in the specification of constraints in P (µ):

E(f) =
{
p(.)

∣∣p(x; η) ∝ exp
{
ηT f(x)

}}

We will now show the equivalence of specifications in (7.60) and (7.63). The
discussion so far will be relevant in our proof. On the one hand, we have seen in
(7.49) in theorem 99 that the constraint in E(f) is satisified by any solution to
(7.60). While on the other hand, we know that the moment matching conditions
for (7.63) in (7.57) are precisely the constraints in P(µ).

Theorem 101 p̂MLE = p̂ML for exponential families, where:

p̂MLE = argmin
p∈E(f)

D (℘x||p(.))

and
p̂ME = argmin

p∈P(µ̂)

D(p||u)

Two differences between these formulations are:

1. While p̂MLE involves optimization over the second argument in the KL
divergence, p̂ME involves optimization over the first argument.

2. The entry point of the data is also toggled in the two; while p̂ME has data
entering through constraint set P, p̂MLE has data entering through the
cost function.

This is characteristic of dual problems.

Proof: This can be proved by first showing that the problem in (7.60) is the
dual of (7.63). Next we will need to apply duality theory in Theorem 82, which
states that for convex cost function and convex inequality constraint set, the
KKT conditions are necessary and sufficient conditions for zero duality gap.
It can be proved that (7.60) is convex and that the parameters for p̂MLE are
solutions to the KKT conditions.

7.8. LEARNING WITH INCOMPLETE OBSERVATIONS 459

The theorem can also be proved by invoking the so called pythagorean theo-
rem46 for general class of distance that includes distributions. In this particular
case, it can be shown that for all p̂ ∈ P(µ) ∩ E(f) and for all pP ∈ P(µ) and
pE ∈ E(f),

D(pP ||pE) = D(pP ||p̂) + D(p̂||pE)

If q̂, p̂ ∈ P(µ)∩E(f), then it will turn out by simple application of the theorem
that D(q̂||p̂) + D(p̂||q̂) = 0, which implies that p̂ = q̂. That is, P(µ) ∩E(f) is a
singleton and p̂ should correspond to both p̂MLE and p̂ML. 2

7.8 Learning with Incomplete Observations

Thus far, we have focussed on learning parameters for graphical models using
complete observations; the underlying model was p(x; θ) and the observations
(data) were x = (x(1),x(2), . . . ,x(n)). An example of such a learning task was
presented in the case of Markov chains on page 453. Consider the hidden markov
model from page 430 with V = {X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5} and E =
{(X1, X2), (X1, Y1), (X2, X3), (X2, Y2), (X3, X4), (X3, Y3), (X4, X5), (X4, Y4), (X5, Y5)}.
where nodes {X1, X2, X3, X4, X5} are hidden variables and nodes {Y1, Y2, Y3, Y4, Y5}
are the observed variables.

Mixture models are another set of popular example, which feature hidden
variables. Many real world problems are characterized by distinct classes/subpopulations
that the data falls into and can be modeled using mixture models.

Definition 63 Let Z ∈ {z1, z2, . . . , zk} be a multinomial variable indicating
mixture component. Let X be a random variable (vector), whose distribution is
specified, conditioned on different values zi of Z as

p(x|zi; θi) ∼ fi(x; θi)

Then the finite mixture model is defined as

p(x)
k∑

i=1

p(zi)fi(x; θi)

with k being the number of mixture components, Z called the mixture indi-
cator component, fi(x; θi) termed as the density of the ith mixture compo-
nent with parameters θi. The quantities p(zi) = πi are also called mixing
weights, representing the proportion of the population in subpopulation i. Thus,
π = [π1, π2, . . . , πk] and θ = [θ1, θ2, . . . , θk] are the paramaters of a finite mix-
ture model, with a fixed value of k. As a graphical model, the mixture model
can be represented as a two node graph: G =< V, E > with V = {X, Z} and
E = {(X, Z)}.

46The right angle here is not the conventional one, but a notional one.

460 CHAPTER 7. GRAPHICAL MODELS

As an example, the density of each mixture component could be Gaussian with
θi = (µi,Σi).

fi(x; θi) ∼ N (µi,Σi)

The distribution p(x) is then called a mixture of Gaussians. In general, it not
Gaussian itself.

How can the parameters be learnt in the presence of incomplete data? In
the case of the HMM example, we might be provided only with observations y

for Y and expected to learn the parameters. Or in the case of mixture models,
we might be presented only with instances of X in the form of x and required to
learn parameters π and θ. We will illustrate parameter learning for the mixture
model problem.

7.8.1 Parameter Estimation for Mixture Models

It can be shown that learning for mixture models is an easy problem if the data
is fully observed in the form (x, z) =

[
(x(1), z(1)), (x(2), z(2)), . . . , (x(m), z(m))

]
.

The joint distribution can be decomposed as

p(x, z; θ) = p(z)p(x | z, θ)

If p(x | z, θ) is Gaussian and since p(z) is multinomial, the joint will be in expo-
nential form with Gaussian and multinomial sufficient statistics. The maximum
likelihood estimation will boil down to moment matching with respect to these
sufficient statistics, leading to an easy estimation problem.

In the incomplete data setting, we are given only x while observations z on
the mixture components are hidden. The likelihood can still be expressed and
maximized:

LL(π, θ;x) =
1

m

m∑

i=1

log p(x(i); θ) =
1

m

m∑

i=1

log




k∑

j=1

πjfj(x
(i); θj)




subject to the constraints that πj ≥ 0 and
k∑

j=1

πj = 1.

Unfortunately, log cannot be distributed over a summation and that creates
the main bottleneck. In case the densities are Gaussians, the objective to be
maximized will be

LL(π, µ,Σ;x) =
1

m

m∑

i=1

log




k∑

j=1

πjN
(
x(i);µj ,Σj

)



subject to the constraints that πj ≥ 0 and

k∑

j=1

πj = 1.

7.8. LEARNING WITH INCOMPLETE OBSERVATIONS 461

1. M-step: Writing down the KKT necessary and sufficient optimality con-
ditions (see (4.88) on page 296) for this maximization problem, subject to
its associated inequality and linear equality constraints yields:

(a) For µj

µj =

m∑

i=1

p(zj | x(i), µ,Σ)x(i)

m∑

i=1

k∑

j=1

p(zj | x(i), µ,Σ)

(7.64)

(b) And for Σj

Σ′
j =

m∑

i=1

p(zj | x(i), µ,Σ)
(
x(i) − µj

)(
x(i) − µj

)T

m∑

i=1

k∑

j=1

p(zj | x(i), µ,Σ)

(7.65)

These steps are called the M − steps or the maximization steps, since
they are obtained as necessary and sufficient conditions of optimality for
a maximization problem.

2. E-step: The posterior p(zj | x(i), µ,Σ) and the prior πj in (7.65) and
(7.64) can be determined using Bayes rule as

(a)

p(zj | x(i), µ,Σ) =
πjf(x;µj ,Σj)

k∑

a=1

πaf(x;µa,Σa)

(b)

πj =
1

m

m∑

i=1

p(zj | x(i), µ,Σ)

The problem is that we do not get a closed form solution here; what we
obtain are a set of coupled, non-linear equations and need to iterate between
these steps to arrive at the fix point. This is where the expectation maximization
(EM) algoriothm comes in. We now will specify the EM algorithm in a more
general setting.

462 CHAPTER 7. GRAPHICAL MODELS

7.8.2 Expectation Maximization

Let X be a set of observed variables and Z be a set of hidden variables for some
statistical model. Let x be m observations on X. In this general setting, we
really need not assume that the samples in x are iid (though you could). We
will assume that the MLE problem would have been easy47 if z was observed
data for the hidden variables Z (such as in the case of the mixture model). The
complete data log-likelihood would have been:

LL(θ;x, z) =
1

m
log p(x, z; θ)

Given a predictive distribution q(z|x), the expected complete data log-likelihood
is a function of the observed x and θ and is defined as

LLE(θ;x) =
∑

z

q(z|x) log p(x, z; θ) (7.66)

The expected complete data log-likelihood is an auxilliary function that gives a
lower bound on the actual log-likelihood we want to optimize for. The actual
log-likelihood in this general setting will be:

LL(θ;x) =
1

m
log

{∑

z

p(x, z; θ)

}

For example, the actual log-likelihood with iid assumption will be:

LL(θ;x) =
1

m

m∑

i=1

log

{∑

z

p(x(i), z; θ)

}

Theorem 102 For all θ and every possible distribution q(z|x), following holds:

LL(θ;x) ≥ LLE(θ;x) +
1

m
H(q) (7.67)

Equality holds if and only if

q(z|x) = p(z|x; θ)

Proof: First of all

LL(θ;x) =
1

m
log

{∑

z

q(z|x)
p(x, z; θ)

q(z|x)

}

47The trick in such a setting is to identify the model, X and Z so that you make the MLE
problem easy in the presence of complete data.

7.8. LEARNING WITH INCOMPLETE OBSERVATIONS 463

Using the Jensen’s inequality (since log is a strictly convex function),

LL(θ;x) ≥ 1

m

∑

z

q(z|x) log p(x, z; θ)

︸ ︷︷ ︸
LLE(θ;x)

− 1

m

∑

z

q(z|x) log q(z|x)

︸ ︷︷ ︸
H(q)

Equality holds if and only if p(x,z;θ)
q(z|x) is a constant, that is,

q(z|x) ∝ p(x, z; θ) = p(z|x; θ)p(x; θ) ∝ p(z|x; θ)

This can happen if and only if q(z|x) = p(z|x; θ). 2

A consequence of theorem 102 is that

max
θ

LL(θ;x) = max
θ

max
q

LLE(θ;x) +
1

m
H(q) (7.68)

The EM algorithm is simply coordinate ascent on the auxilliary func-

tion LLE(θ;x) + 1
mH(q). The expectation and maximization steps at time

instance t can be easily identified for the formulation in (7.68) as

1. Expectation Step:

q(t+1) = argmax
q

LLE(θ(t);x)+
1

m
H(q) = argmax

q
−D

(
q(z|x)||p(z|x; θ(t))

)
+log

{
x; θ(t)

}

(7.69)

Since, LLE(θ(t);x)+ 1
mH(q) ≤ log

{
x; θ(t)

}
by theorem 102, the maximum

value is attained in (7.69) for q(z|x) = p(z|x; θ(t)). Thus, the E-step can
be summarized by

q(t+1)(x|x) = p(z|x; θ(t)) (7.70)

The E-step can involve procedures such as sum-product for obtaining
marginals and/or conditions, if the distribution is defined on a graphi-
cal model, to obtain p(z|x; θ(t)).

2. Maximization Step:

θ(t+1) = argmax
θ

LLE(θ;x) +
1

m
H(q(t+1))

Since the maximization is over θ and since H(q) is independent of θ, we
can rewrite the M-step to be

464 CHAPTER 7. GRAPHICAL MODELS

θ(t+1) = argmax
θ

LLE(θ;x) = argmax
θ

∑

z

q(z|x) log p(x, z; θ) (7.71)

In essence, the M-step looks very much like an ordinary maximum like-
lihood estimation problem, but using predicted values of z. The M-step
may not have a closed form solution, in which case, it may be required to
resort to iterative techniques such as IPF (7.7.6).

Let us take some examples to illustrate the generic EM procedure outlined
here. It is particularly useful if the term log p(x, z; θ) were to split up into smaller
terms (such as sum of sufficient statistics in the case of exponential models).
Consider the Gauss Markov process specified by Zt+1 = θZT + Wt, where Z0 ∼
N (0, 1) and Wt ∼ N (0, 1). Let θ ∈ ℜ be the parameter to be estimated. The
graphical model representation is V = {Z1, Z2, Z2, . . . , Zn, X1, X2, . . . , Xn} and
E = {(Z1, Z2), (Z1, X1), (Z2, Z3), (Z2, Z2), . . . , (Zn−1, Zn), (Zn−1, Xn−1), (Zn, Xn)}.

Say what we observe are noisy, indirect observations Xt = Zt + Vt, Vt ∼
N (0, σ2) being the observation noise. Let x be a set of m iid observations for
X while Z remains hidden. Both X and Z are vectors of random variables of
size n each. Then,

LL(θ;x) =
1

m

m∑

i=1

p(x(i); θ)

=
1

m

m∑

i=1

log

{∫

z

n∏

t=1

1√
2πσ

exp

{
−1

2

(x
(i)
t − zt)

2

σ2
p(z; θ)dz

}}
(7.72)

which is a mess! In contrast, the lower-bound component LLE allows us to
move the integration outside the logarithm, enabling more simplification:

LLE(θ;x) =
1

m

∫

z

q(z|x) log p(xz; θ)dz

=
1

m

∫

z

q(z|x)
m∑

i=1

log p(x(i)z; θ)dz

=
1

m

∫

z

q(z|x)
m∑

i=1

[
log p(z, θ) +

n∑

t=1

log

(
1√

2πσ2

)
− 1

2σ2
(x

(i)
t − zt)

2

]
dz

As can be seen above, p(x(i)|z; θ) is independent of θ and therefore, the term
q(z|x) log p(x(i)|z; θ) can be brought out as a separate constant (since that part
of the integral will not change with θ). This leads to the following simplified
expression for LLE

7.8. LEARNING WITH INCOMPLETE OBSERVATIONS 465

LLE(θ;x) =
1

m

∫

z

q(z|x) log p(xz; θ)dz

= C +
1

m

∫

z

q(z|x) [log p(z1) + log p(z2|z1; θ) + . . . + log p(zn|zn−1; θ)] dz

= C ′ +
1

m

∫

z

q(z|x) [log p(z2|z1; θ) + . . . + log p(zn|zn−1; θ)] dz

In the E-step, the Kalman filter can be used to compute p(z|x; θ(t+1)) in terms
of θ(t). In the M-step, first order necessary optimality conditions on LLE will
yield θ(t+1).

Recall from Section 7.7.7, equation (7.63) that the likelihood maximization
problem can be viewed as a problem of minimizing the KL divergence between
the empirical distribution and the model distribution.

p̂MLE = argmin
p∈E(f)

D (℘x||p(x; θ))

While the likelihood maximization perspective lead to a lower-bounding strategy
in the form of EM, an alternative upper-bounding strategy can also be adopted
to view EM, though it is only the older bound in disguise. Making use of
theorem 102, we can prove that for all distributios q(z|x) and any parameter θ,
the following always holds:

D (℘(x)||p(x; θ)) ≤ D (℘(x)q(z|x)||p(x, z; θ)) (7.73)

This statement says that the KL divergence between the empirical and model
distributions that maximum likelihood tries to minimize is upperbounded by
the KL divergence between the ‘completed’ empirical and model distributions.
As before, it can also be shown that the bound is tight if and only if q(z|x) =
p(z|x; θ). The E-step will remain the same as before. Only, the M-step will
slightly change:

1. KL divergence perspective of E-Step:

q(t+1)(z|x) = argmin
q

D
(
℘(x)q(z|x)||p(x, z; θ(t))

)

2. KL divergence perspective of M-Step:

θ(t+1) = argmin
θ

D
(
℘(x)q(t+1)(z|x)||p(x, z; θ)

)

These modified E and M steps correspond to coordinate descent in constrast to
the earlier perspective of coordinate ascent.

466 CHAPTER 7. GRAPHICAL MODELS

7.9 Variational Methods for Inference

In contrast to the sampling methods, variational methods are deterministic and
fast algorithms that generate good approximations to the problems of comput-
ing marginals and MAP configurations. They are involve the reformulation of
the quantity of interest (such as log-likelihood, first order moments, marginal
distributions, etc.) as the solution of some optimization problem. They are
useful in several ways:

• The variational formulation often leads to efficient algorithms for deter-
mining exact solutions. Many algorithms discussed thus far, could be
discovered as efficient techniques for solving the variational optimization
problem.

• For many quantities that are hard to compute, the variational perspec-
tive leads to approximate solutions. Mean field and loopy sum product
algorithms can also be viewed as special cases of approximation through
variational inference.

• In contrast to approximate sampling methods, these are faster, determin-
istic and cheaper (in terms of memory).

We will motivate variational methods using two examples.

1. The first is the mean field algorithm for the Ising model defined on a graph
G =< V, E > of binary (0/1) variables, with pairwise interactions between
adjacent variables captured through their product (xsxt)

p(x, η) ∝ exp




∑

s∈V
ηsxs +

∑

(s,t)∈E
ηstxsxt





The Gibbs sampling for the Ising model derives updates of the form

x
(t+1)
i =





1 if u ∼ uniform[0, 1] ≤ 1 + exp



−ηi +

∑

j∈N (s)

ηijx
(t)
j





0 otherwise

which correspond to a non-deterministic version of the message passing
algorithm (owing to u ∼ uniform[0, 1]). The updates are very simple and
local, making this a good choice.

The mean field method has its roots in physics. It makes a deterministic to
the Gibbs update by replacing each random variable Xi by a deterministic
mean parameter µi ∈ [0, 1] (which can be thought of as the probability of
Xi = 1) and updates µi using

µ
(t+1)
i =


1 + exp



−ηi +

∑

j∈N (s)

ηijµ
(t)
j








−1

7.9. VARIATIONAL METHODS FOR INFERENCE 467

Thus, the mean field algorithm is exactly a message passing algorithm, but
has some semantics related to sampling techniques. We will see that the
mean field algorithm is a specific instance of variational methods and it
can be formulated as coordinate descent on a certain optimization problem
and subsequently be analysed for convergence, etc.

2. The loopy sum-product (also called the loopy belief propagation) method
is another instance of variational methods. ‘Loopy’ here means on graphs
with cycles. If the tree width were low, you could create a junction tree
and perform message passing, but what if the tree width were large, such
as with a grid. This algorithm is the most naive application of the sum-
product updates (originally developed for trees in Section 7.2.2) and apply
it to graphs with cycles. This naive procedure has had extraordinary
success in the fields of signal processing, compute vision, bioinformatics
and most importantly, in communication networks, etc.

The message passing algorithm, when applied on a tree, breaks it into
subtrees and passes messages between subtrees, which are independent
(share no variable). But the moment you add an edge connecting any two
subtrees, they are not independent any more. Passing messages around in
cycles can lead to over-counting (analogous to gossip spreading in a social
network). Thus, the message passing algorithm ceases to remain an exact
algorithm and does not even gurantee convergence.

What turns out to be actually very important is how long are the cycles
on which messages are being propagated; for long cycles, the effects of
over-counting can be weakened. More technically speaking, the behaviour
will depend on

(a) The girth of the graph (length of cycles): For larger girth, you could
run the message passing for many iterations before you land up with
overcounting.

(b) The strength of the potentials are, or in other words, how close to
independence is the model. For example, in the Ising model itself,
based on the coupling induced through terms of the form xsxt, if the
coupling is weak, almost close to independence, the algorithm will
be perfect, giving almost exact answers. There is a region of tran-
sition, based on strengthening of the coupling terms, beyond which
the algorithm breaks down.

3. The idea behind variational methods is to represent the quantity of interest
(such as the marginal or mode over a graphical model) as the solution to
an optimization problem. For example, the solution to Ax = b (as in the
case of inferencing for Kalman filters) with A ≻ 0 and b ∈ ℜn can be
represented as the solution to

x̃ = argmin
x

1

2
xT Ax − bT x

468 CHAPTER 7. GRAPHICAL MODELS

This is precisely a variational formulation for the linear system Ax = b.
If the system of equations Ax = b is large48 the solution x̃ = A−1b may
not be easy to compute, in the event of which, iterative (and sometimes
approximate) solutions to the optimization problem can be helpful. One of
the most succesful techniques for solving such systems (without inverting
matrices) is the conjugate gradient method, discussed in Section 4.5.8,
that solves the system in exactly O(n) steps.

4. As will be seen on page 432 in Section 7.4, the bernoulli distribution can
be expressed as

p(x, η) = exp {ηx − A(η)}
for X ∈ {0, 1}. A(η) = log (1 + eη). We saw in Section 7.4 that the mean
is given by

µ = Eη = ∇A(η) =
eη

1 + eη
= (1 + e−η)−1

The key is in noting that µ corresponds to the ‘slope of’ a supporting
hyperplane (see Figure 4.38 on page 271) for epi(A(η)) in a (η, A(η)) space.
Thus, we are interested in all the hyperplanes that lie below epi(A(η)),
with intercept C along the axis for A(η):

µT η − C ≤ A(η)

and want to get as close to a supporting hyperplane as possible

C∗ = sup
η

{µT η − A(η)} = A∗(µ)

Borrowing ideas from duality theory (c.f. Section 4.4), we call the function
sup

η
{µT η − A(η)} as the dual function A∗(µ). C∗ is the intercept for the

supporting hyerplane. In the case of the bernoulli example, we have

A∗(µ) = sup
η

{µT η−log 1 + eη} =

{
(1 − µ) log (1 − µ) + µ log µ if µ ∈ (0, 1)

∞ otherwise

Under nice conditions (such as under Slaters constraint qualification dis-
cussed in definition 42 on page 290), the operation of taking duals is
symmetric ((A∗)∗ = A), that is,

A(θ) = sup
µ

{µT η − A∗(µ)}

Under the conditions of zero duality gap, it should happen that if

µ̂(η) = argmax
µ

{µT η − A∗(µ)}

48Of course, as we saw in Section 7.5, such a system comes up in the case of solution to
Kalman filters, but can be computed efficiently by exploiting the tree structure of the graph
in inverting the matrix. The discussion here is for general graphs.

7.9. VARIATIONAL METHODS FOR INFERENCE 469

is the primal optimum, then µ̂T η − A∗(µ̂) is the supporting hyperplane
to A(η), meaning that µ̂ is the mean we were seeking. This yields a
variational representatation for the original problem of finding the mean.
The dual itself is also useful in determining the log-normalization constant
for problems such as parameter estimation. We can confirm in the simple
bernoulli case that indeed

µ̂(η) = µ(η) =
eη

1 + eη

We will now generalize the variational formulation of the bernoulli case to
the exponential family.

p(x; θ) = exp
{
θT f(x) − A(θ)

}

where, x ∈ ℜn and f : ℜn → ℜd. Let us say we are interested in computing the
first order moments

µ = E[f(x)] (7.74)

Following a similar line of argument as for the case of the bernoulli distribution,
we define the dual as

A∗(µ) = sup
θ

{
µT θ − A(µ)

}

The key ingredients in this calculation are to set the gradient with respect to θ
to 0, as a necessary first order condition.

µ −∇A(θ) = 0 (7.75)

This looks like the moment matching problem that results from maximum likeli-
hood estimation. The only difference is that µ need not come from data, it is the
argument to A∗(η). When will (7.75) have a solution? In the simple bernoulli
case, we already saw that we will have a solution η = − log µ − log 1 − µ if
µ ∈ (0, 1). As another example, for the univariate Gaussian, f(x) = [x, x2] and

A(η) = 1
2σ2 µ2 + log σ ≡ − η2

1

4η2
+ 1

2 log (−2η2) (as seen on page 432). The system

(7.75) can be shown to have a solution only if µ2−µ2
1 > 0, that is if the variance

is positive. For two examples, the conditions under which solutions exist to
(7.75) are extremely simple - it should be possible to generate data using the
distribution.

Assuming that a solution θ(µ) exists to (7.75), and exploiting the fact that
θ(µ) satisfies moment matching conditions (7.75)

∑

x

p(x; θ(µ))f(x) = µ (7.76)

470 CHAPTER 7. GRAPHICAL MODELS

and using the property that

A(µ) =
∑

x

A(µ)p(x; θ(µ))

the dual will have the form

A∗(µ) = θT (µ)µ − A(µ)

= θT (µ)

(∑

x

p(x; θ(µ))f(x)

)
− A(µ)

=
∑

x

p(x; θ(µ))
(
θT (µ)f(x) − A(µ)

)

=
∑

x

p(x; θ(µ)) log p(x; θ(µ))

= −H(p(x; θ(µ))) (7.77)

That is, the dual is precisely the negative entropy −H(p(x; θ(µ))) of the distri-
bution whose parameters θ(µ) are obtained by moment matching. The dual for
the bernoulli case which resembled an entropy was by no means a coincidence!
If M is the set of all possible moments that make a solution to the system (7.75
or equivalently 7.76) feasible, that is

M =

{
µ ∈ ℜd

∣∣∣∣∣
∑

x

p(x; θ)f(x) = µ for some p(.)

}

then the dual could also be expressed as

A∗(µ) =

{
−max H(p(x; θ(µ))) such that E[f(x)] = µ for µ ∈ M
∞ otherwise

Another way of characterizing M is as the set of all first order moments that
could be generated by p(x; θ). In any case, M is often very had to characterize
and loop belief propagation etc. are often used to approximate it.

Finally, we will write down the variational problem as a reformulation of
(7.74), of which mean field, (loopy) sum-product, Gauss Seidel, Jacobi, etc can
be found to be special cases. Writing down the dual of the dual of (7.77), and
assuming zero duality gap, we get a reformulation of (7.74):

A(θ) = sup
µ∈M

{
µT θ − A∗(µ)

}
(7.78)

Again, A(θ) is a very hard function to compute, mainly because M is simple to
characterize. This maximumization problem is concave, since A∗(η) is concave

7.9. VARIATIONAL METHODS FOR INFERENCE 471

and the constraint set M is convex. Under zero duality gap conditions (which
holds in this case), the optimal point will be achieved at µ̂(θ) = E[f(x)].

We will us take some examples to illustate the use of variational techniques.
For problems of estimating moments, f could be the feature functions. For
problems of estimating marginals, f can be chosen to be the indicator function.

The simplest example is for a two node chain: V = {X1, X2}, E = {(X1, X2)},
X1, X2 ∈ {0, 1} and

p(x; θ) ∝ exp {θ1x1 + θ2x2 + θ12x1x2}
The moments are: µi = E[Xi] = p(Xi = 1) and µ12 = E[X1X2] = p(X1 =
1, X2 = 1). The set M is

M =

{
µ ∈ ℜ3

∣∣∣∣∣
∑

x

p(x; θ)f(x) = µ for some p(.)

}
= {µi ∈ [0, 1], 0 ≤ µ12 ≤ min(µ1, µ2), 1 + µ12 − µ1 − µ2 ≥ 0}

Let us next write down the dual in terms of the entropy of the distribution

A∗(µ) = −H(p(x;µ)) =
∑

x1,x2

p(x1, x2) log p(x1, x2)

= µ12 log µ12 + (µ1 − µ12) log (µ1 − µ12) + (µ2 − µ12) log (µ2 − µ12)

+ (1 + µ12 − µ1 − µ2) log (1 + µ12 − µ1 − µ2) (7.79)

The corresponding variational problem will be

A(θ) = max
µ∈M

{θ1µ1 + θ2µ2 + θ12µ12 − A∗(µ)}

Though this can be solved using the method of Lagrange multipliers (c.f., Sec-
tion 4.4.1), etc., we expect the optimal solution to the variational problem to
be

µ̂1 =
1

z

∑

x1∈{0,1},x2∈{0,1}
x1 exp {θ1x1 + θ2x2 + θ12x1x2} =

exp θ1 + exp θ1 + θ2 + θ12

1 + exp θ1 + exp θ2 + exp θ1 + θ2 + θ12

There are many applications of variational inference to quantity estimation
problems that have either no exactly solutions, or that have solutions not com-
putable in polynomial time. Further, variational principles can be used to study
how the approximate algorithms behave; whether they have fix points, whether
they converge. what answers do they give, etc.. For instance, in belief prop-
agation from a variational perspective, the messages correspond to lagrange
multipliers (for active constraints in M) that are passed around.

In general, the sets M are very complex. For example, with a complete 7
node graph, there will be O(3 × 108) constraints. For an n node tree, you will
have 4(n − 1) constraints. The variational principle provides the foundation
for many approximate methods such as the Naive mean field algorithm, which
restricts optimization to a ‘tractable’ set of M, such as one for which the joint
distribution over a graphical model is factorized by treating the variables as
completely independent.

