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Abstract 

Least Squares SVMs include the well known LSSVM and the Proximal SVM, which 

are normally trained by solving a system of linear equations, or through a matrix 
inversion. We examine a variant in which the objective function is similar to the 

Proximal SVM, while the constraints are those of LS-SVMs; we term this as a 
Relaxed Least Squares SVM (RLSSVM). The RLSSVM yields a simple dual 
formulation, for which we propose a fast sequential update algorithm; the 
update rules is about two to four times faster than conventional approaches on 

large datasets, while yielding similar error rates. Finally, we show that for a given 
LSSVM with any specified kernel matrix, there is an equivalent Relaxed SVM with 
the same solution. This opens up the possibility of developing alternate ways of 
solving the very popular LSSVM. 

 
Keywords: Support Vector Machines, Classification, Regression, Function 
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I. Introduction 

 
The literature on neural networks is replete with powerful and efficient techniques for 
pattern classification and function approximation. The ideas on learning complexity, first 
investigated in the context of multilayer neural networks have now been encompassed 
in the area of Support Vector Machines (SVMs). SVMs have emerged in recent years as 
a powerful paradigm for pattern classification and regression [1-4]. SVMs emerged from 
research in statistical learning theory on how to regulate generalization in learning, and 

the tradeoff between structural complexity and empirical risk.  
 
The classical maximum margin SVM classifier aims to minimize an upper bound on the 
generalization error through maximizing the margin between two disjoint half planes [1, 

4]. This basically involves solving a quadratic programming problem that could be 
prohibitive on large data sets. To overcome this problem, Suykens and Vandewalle 

proposed the “least square SVM” (LSSVM) formulation [5]. The formulation considers 
equality constraints and adds an extra term to the cost function. As a result, the 
solution follows from directly solving a set of linear equations. The resulting system of 
equations is not positive definite, making it more difficult to solve. Some pre-

conditioning is performed to the system of linear equations, so that more efficient 
numerical optimization methods could be applied. Therefore, the solution of the training 
procedure for LSSVM can be found by solving two sets of linear equations. 
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In this paper, we propose a new formulation for SVM called Relaxed LSSVM. The 
formulation is a variant of LSSVM and proximal SVM [6]. Solving relaxed LSSVM involves 
solving a system of linear equation that is guaranteed to be positive definite. Therefore, 

the solution of the training procedure for relaxed LSSVM can be obtained by solving a 
single system of linear equation in contrast to solving two systems of linear equations 
as required for LSSVM. This yields a speed up by a factor of 2-3 times over LSSVM on 
standard data sets. 

 

Given a set of M patterns xk
 , where xk

 =( ,1

k
x ,2

k
x …, k

Nx )T, with corresponding labels xk
 ∈ 

{-1, +1}, the LS-SVM determines a separating surface of the form w
Tφ(x) + b = 0 by 

solving a problem of the form 
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where 0>C  is a parameter. 

Here, φ is a function that maps patterns from the input space into a higher 
dimensional feature space; qk is the error variable associated with the k-th constraint. 
Proximal SVMs, proposed by Fung and Mangasarian in 2001 [6], minimize the objective 
function 
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subject to the constraint  
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Here, e is a vector of ones of appropriate dimension; I is the identity matrix; and D is a 
diagonal matrix whose entries are the class labels (±1) of the patterns. The notation 
has been changed from that in [5], [6] to make it consistent with the rest of this paper. 
Note that the error variables qi are not constrained to be non-negative, i.e. they can be 
of either sign. The solution to LS-SVM involves the solution of a system of linear 
equations, while proximal SVMs involve a matrix inversion. 

 
The Relaxed LSSVM formulation has an objective function similar to the Proximal SVM 
and has LSSVM-type constraints. We derive simple update rules for each of them, which 
yield a speedup by factors of upto 2-3 times on a set of benchmark datasets, while 

providing similar error rates as the conventional formulations. While considerable 
research has been done on working set and decomposition methods for solving the 

classical L1 norm SVM [7]-[15], there have been fewer, more recent attempts at 
developing SMO type fast update algorithms for Least Squares SVMs [16]-[17]. The 

update rules we propose in this work are motivated by recent work on the IDSA 
algorithm [18] for the L1 norm SVM. Since the matrix in LSSVM is not positive definite, it 

has to be pre-conditioned [26]. On the other hand, Relaxed LSSVM yields a matrix in 
the quadratic objective function that is guaranteed to be positive definite. Relaxed SVM 



 

 

 

 

Jayadeva\current papers\fsmo\l2smo1.doc  Page 3 of 19 

therefore has the advantage of linear update rules, coupled with positive definite 
matrix. With respect to training time, we empirically show that Relaxed SVM scales 
much better with the size of the data set, when compared to Proximal SVM and LSSVM.  
 

Finally, we show that the classical least squares SVM formulation (1)-(2) can be solved 
by solving a single Relaxed LSSVM with a modified kernel matrix. This opens up the 
route to alternative IDSA style algorithms for solving LS-SVMs. 
 

The remainder of the paper is organized as follows. Section II discusses the LSSVM and 
Proximal SVM formulations. Section III is devoted to the Relaxed LSSVM formulation 

and an algorithm for its solution. Section IV deals with variants of the Relaxed LSSVM. 
Section V deals with experimental results. Section VI contains a discussion on how the 
Relaxed LSSVM is related with the classical LSSVM. Section VII contains concluding 
remarks. Appendix I presents an extension to the conventional LSSVM through a single 

unconstrained minimization. 
 
II. Least Squares and Proximal SVMs 
 

Suykens and Vandewalle proposed Least Squares SVMs (LS-SVMs) in 1998 [5], which 
solves the following optimization problem. 
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where 0>C  is a parameter. The first term on the R.H.S. of (9) is a for regularization, 

while the second term is the empirical error. The constant C determines the relative 
importance of the two. Writing the Karush-Kuhn-Tucker (KKT) necessary and sufficient 
optimality conditions and simplifying, Suykens and Vandewalle showed that the LS-SVM 
classifier parameters w and b may be determined by solving the following system of 

equations. 
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where λ is the vector of Lagrange multipliers, e is a vector of M ones, I is an identity 
matrix of size M x M , and K is the kernel matrix, whose entries are given by 

( )[ ] ( ) . ..., 2, 1,       , Mj i,xxK
iTi

ij == φφ  (8) 

As pointed out by Suykens and Vandewalle [5], the system of equations (7) can be 
solved by iterative methods. However, the matrix on the L.H.S. of (7) is not positive 
definite. By using appropriate transformations such as preconditioning (such as those 
given in [5], the system may be transformed into a positive definite one so that 

iterative methods such as conjugate gradient or successive over-relaxation may be 
applied. 
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Proximal SVMs, introduced by Fung and Mangasarian in 2001 [6], solve the following 
problem 
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subject to the constraint  
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Here, e is a vector of ones of appropriate dimension; I is the identity matrix; and D is a 
diagonal matrix whose entries are the class labels (±1) of the patterns. Simplification of 

the K.K.T. conditions leads to 
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The cost of solving a general system of linear equations or of inverting a matrix is the 

same, O(M 3), where M is the size of the system or the order of the matrix. The aim of 
this paper is to suggest a more efficient route to training SVMs formulated in the least 

squares sense. 
 

III. A Twist to Proximal SVMs 
 

We first consider the problem 
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subject to constraint (6). We refer to this problem as the Relaxed LSSVM; its objective 

function is in the spirit of the Proximal SVM when A = 1. However, note that for a 
general nonlinear kernel, the constraints are very different from those employed in 
Proximal SVMs, viz. (10). While the objective function is similar to Proximal SVMs, the 
constraints are those of LS-SVMs. 

 
The Lagrangian for the problem (13) subject to constraints (6) is given by 
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The K.K.T. optimality conditions are given by 
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From (15) and (16), we observe that 
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where the kernel function K is defined in the usual manner. 

 
The dual formulation is obtained by maximizing L, which, on simplification, is given by 
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Note that we have an unconstrained Quadratic Programming Problem, without even box 

constraints. For any positive definite kernel K, the matrix Q is guaranteed to be positive 
definite. The additional term (1/C) in the diagonal entries of Q are expected to also 
contribute to faster convergence as compared to when K alone is used. 
 

We now derive a sequential minimization procedure for determining the 
Lagrange multipliers λi, i.e. by updating one multiplier at a time. Without loss of 

generality, let λ1 be the multiplier being updated. The objective function in (20) may be 

rewritten as a function of λ1 only, as 
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where we have assumed that Q is symmetric. For the new value of λ1 to lie at an 
extremal point of Q(λ1), we have 
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For the extremal point to be a maximum, we require 
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Note that this condition may be satisfied by matrices Q that are not necessarily positive 
definite, as required in the case of typical SVM learning algorithms [19]. From (23), we 
obtain 
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Note that the second term on the R.H.S. of (25) may be written as 
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Defining 
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and from (19) and (21), we rewrite (26) as 
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Substituting from (28) into (25), we have 
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which gives us the update rule 
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In general, the k-th multiplier is updated by using the rule 
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We can now write the update algorithm for determining the solution to (13) constrained 
by (6), which we term as the 2SMO algorithm. 

 
The 2SMO Algorithm for the Relaxed LSSVM 

1. Pick a multiplier λk that violates (18), i.e. ( ) ( )( ).11
kold

k

kkold
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C
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λ
  

2. If all multipliers satisfy the K.K.T. conditions, then the minimum has been 
attained. Stop. 

3.  Update λk by using (31). 

4. Go to Step 1. 

 
The update rule updates one multiplier at a time, and the convergence of the 2SMO 
update rule (31) is linear in M. This also follows from the work of [20]. The update rule 

is attractive from many viewpoints. The new value of )(
i

xf , denoted by )(
inew

xf , may 

be computed by computing the incremental change in multiplier λk, which depends only 

on Kik. Advantages in terms of a distributed or parallel implementation using O(M) 
processors may be a topic of future research. 
 

It is also possible to simplify the above update algorithm by avoiding checks for the 
K.K.T. conditions, and continue updating multipliers until the change in their values falls 
below a specified tolerance. However, this proves to be less efficient. 
 

IV. Variants of the Relaxed LSSVM 
 

A simple variant of is obtained by changing the constraints to inequality ones, i.e. we 
consider the problem 
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The change in the constraints to an inequality appears redundant, since if the L.H.S. is 
greater than 1, it can always be met as an equality by reducing the value of the error 
variable. However, in the dual formulation, the Lagrange multipliers are now 
constrained to be non-negative. The K.K.T. conditions specify that 

( )[ ] ,1  0 ≥+⇒= bxwy
iT

ii φλ  (34) 

( )[ ] .1  0
C

bxwy iiT

ii

λ
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Using (34) and (35), we can derive another update rule, which reduces the number of 
multipliers that need to be updated. Since the multipliers are bounded from one side 
and not from the other, we refer to this as the SeqsuiSMO algorithm. 

 
The SesquiSMO Algorithm for the Relaxed LSSVM 

1. Pick a multiplier λk that violates (34) or (35). If all multipliers satisfy the K.K.T. 

conditions, then the minimum has been attained. Stop. 
2. Update λk by using (31). 

3. Go to Step 1. 
 
One of the desirable features of the classical SVM is that the multipliers are bounded 

from both below and above. This is useful when implementation needs to consider finite 
word length effects, e.g. in embedded systems. It also simplifies checks for terminating 
updates. In classical SVMs, the classifier can be very sensitive to a few training patterns 
that lie near the decision boundary; Least Squares SVMs offer a less sparse solution but 
are more robust to noise because the classifier depends on nearly all data patterns; 

small changes in individual patterns do not tend to perturb the classifier in a major way. 
 

 
V. Experimental Results 
 

The 2SMO and the SesquiSMO algorithms were implemented in C++ and run on 

a a dual 3.2GHz Xeon server with 4 GB RAM with the Linux OS. We used the RBF kernel 
in all our experiments, with the value of the exponent (gamma) set to 1. The value of 
the slack parameter C was also chosen to be 1. Unless otherwise mentioned, in all our 
experiments, the kernel entries were computed on a need basis and cached for further 

use. All results are reported by following the standard 10-fold cross-validation 
methodology. 
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The performance of the algorithms was compared with that of the C 
implementation of LSSVM running on the same platform. We ran a series of 
experiments to study the effect of the parameter A, for a fixed value of C.  Figures 1 
and 2 show the effect on training time, of varying A for the kr-vs-kp and mushroom 

datasets, respectively. The plot indicates that training time montonically decreases with 
A, and that the rate of decrease of training time varies inversely with the value of A; the 
lower the value of A, the greater is the rate at which the training time decreases. The 
training time saturates beyond a sufficiently large value of A (104).  This behavior may 

be understood from equation (31). A larger value of A corresponds to a larger step size, 
and the algorithm converges faster, leading to a lower value of training time. The rate 

of change of the step size is larger for smaller values of A. This explains why the curve 
has a much larger slope for lower values of A. Therefore, a large value of A is a prudent 
choice. 

Fig. 1. Plot of training time vs. A for the kr-vs-kp dataset. 
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In order to understand how the algorithm scales with the number of training 
samples, we ran SesquiSMO, LSSVM and L2SMO on partitions of the mushroom dataset. 

No kernel caching was used in the case of SesquiSMO. The sizes of the training sets 
were chosen to be integral multiples of 1/12th of the total size. Figure 3 shows the 
variation of the training times of SesquiSMO, LSSVM and L2SMO with subset size for the 
adult dataset. Least squares fits to the three curves are given by: 
tLSSVM  = 1.2409x

2
 - 10.0613x + 22.4068 

t2SMO  = 0.8053x
2
 - 6.6341x + 14.8170 

tSesquiSMO    =0.6889x
2
    -  5.6329 x + 12.8290 
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Fig. 2. Plot of training time vs. A for the mushroom dataset. 

Fig. 3. Plot of variation of training times for SesquiSMO,   LSSVM and 
L2SMO with increasing size of the adult dataset for training 
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In other words, with increase in the size of the dataset, the training time for 
SesquiSMO grows at a much slower rate than it does for LSSVM. This indicates that 
2SMO and SesquiSMO scale better than LSSVM.  

 

We next conducted a set of experiments on a number of binary classification 
datasets from the UCI repository. The datasets were picked to cover a wide range of 
number of features and instances. The first column of Table 1 presents the number of 
instances and features for each dataset in the corresponding order as comma-separated 

values along with the name of the dataset. The largest subset of points that could be 
accomodated was limited by the memory requirements of LSSVM. The results on the kr-

vs-kp and mushroom datasets therefore correspond to 50% of the complete datasets. 
The Table indicates the training times, accuracy, and the number of support vectors 
yielded by 2SMO, SeqquiSMO, and LSSVM on each of the datasets. Based on the results 
of the first experiment, we chose A = 104 for 2SMO. The experiments for all datasets 

were conducted with kernel caching. In nearly all cases, the three algorithms find 
solutions with the same number of support vectors, and show the same generalization 
performance. 

 

Table 1: Comparison between training times for LSSVM, 2SMO, and SesquiSMO. In 
nearly all cases, the three algorithms find solutions with the same number of support 

vectors, and show the same generalization performance. 
DATASET METHOD SUPPORT VECTORS ACCURACY TRAINING TIME (S) 

LSSVM 215 67.02 ± 0.98 0.023 

2SMO 215 66.60 ± 1.14 0.009 
BREAST-CANCER 

(286,51) 
SesquiSMO 215 66.60 ± 1.14 0.006 

LSSVM 359 85.53 ± 1.10 0.044 

2SMO 357 91.19 ± 0.88 0.020 
BREAST-W 

(699,10) 
SesquiSMO 356 91.19 ± 0.88 0.021 

LSSVM 783 69.78 ± 0.76 0.204 

2SMO 783 69.78 ± 0.76 0.157 
CREDIT-G 

(1000,64) 
SesquiSMO 783 69.78 ± 0.76 0.151 

LSSVM 240 54.72 ± 1.16 0.019 

2SMO 240 54.72 ± 1.16 0.012 
HEART-C 
(302,23) 

SesquiSMO 240 54.72 ± 1.16 0.010 

LSSVM 233 66.35 ± 0.85 0.017 

2SMO 233 66.35 ± 0.85 0.011 
HEART-H 
(294,25) 

SesquiSMO 233 66.35 ± 0.85 0.010 

LSSVM 165 79.45±0.87 0.04 

2SMO 165 79.43±0.96 0.03 
HEART-STATLOG 

(270,14) 
SesquiSMO 135 78.34±1.10 0.009 

LSSVM 113 77.86±1.52 0.009 

2SMO 113 81.45±1.54 0.001 
HEPATITIS 

(155,30) 
SesquiSMO 109 81.45±1.54 0.001 

LSSVM 230 93.12 ± 1.24 0.056 

2SMO 230 94.82 ± 0.88 0.017 
IONOSPHERE 
(350,35) 

SesquiSMO 198 95.03 ± 0.78 0.011 

PIMA-INDIAN LSSVM 601 65.96 ± 0.95 0.100 
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2SMO 601 65.96 ± 0.95 0.073 (768,9) 

SesquiSMO 601 65.96 ± 0.95 0.069 

LSSVM 2890 93.85 ± 0.17 3.123 

2SMO 2890 93.85 ± 0.17 2.093 
SICK 

(3772,33) 
SesquiSMO 2890 93.85 ± 0.17 1.953 

LSSVM 146 83.61 ± 1.49 0.018 

2SMO 146 82.50 ± 1.61 0.007 

SONAR 

(208,61) 
 SesquiSMO 138 81.62 ± 1.85 0.004 

LSSVM 222 72.71 ± 2.32 0.017 

2SMO 223 84.15 ± 1.16 0.006 
VOTE 

(435, 33) 
SesquiSMO 223 84.15 ± 1.16 0.006 

LSSVM 1582 89.86 ± 1.67 0.905 

2SMO 1582 92.62 ± 1.11 0.450 KR-VS-KP  

SesquiSMO 1582 92.62 ± 1.11 0.435 

LSSVM 4030 99.98 ± 0.02 7.005 

2SMO 4030 100 ± 0.00 4.27 MUSHROOM 

SesquiSMO 4030 100 ± 0.00 4.04 

 

It can be observed that the training time of SesquiSMO is consistently lower than 
that of 2SMO and LSSVM. For larger datasets, SesquiSMO achieves higher speedup 

factors, roughly between 2 and 4. We note that all three algorithms converge to 
solutions with approximately the same number of support vectors, on all datasets. 

2SMO therefore emerges as an attractive alternative to implementing least squares 
SVMs. 

 
 

VI. Relating the The Relaxed LSSVM formulation with the Classical LSSVM 
 

VI.I.  Extension to the conventional LSSVM through Penalty Functions 
 

We now discuss the connection between the classical LSSVM formulation and the 
relaxed SVM one. We also derive two simple update rules based on the 1SMO 
formulation. 

 
Given an optimization problem of the form 

( ),Min   xf  (36) 

subject to the constraints 
( ) , ...,  ,2 ,1  ,0 Ljxh j ==  (37) 

where f(x) is  convex and hj(x), j = 1, 2, …L,  are linear, the solution to (36)-(37) may be 

determined using the theory of Sequential Unconstrained Minimization Techniques 

(SUMTs). This is achieved by solving a sequence of optimization problems [21] of the 
form 

( ) ,)(  )(Min  
1

2∑ =
+=

L

j jpp xhx fxE α  (38) 

The procedure may be outlined as follows 
1. Set p = 0. Choose the value of the co-efficient α0, and an initial state x

0
. 
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2. Find the minimum of Ep(x). Denote the solution as x
p*

. 

3. If the constraints (37) are satisfied, stop. 
4. If not, choose xp* as the new initial state, and choose αp+1 such that αp+1  > αp. Set 

p = p + 1. Go to step 2. 
5. In the limit, as p → ∞, the sequence of minima x1*

, x
2*

, … x
p*

, …, will converge to 

the solution of the original problem (36)-(37). 
 

The above procedure, which is a restriction of Sequential Unconstrained Minimization 
Techniques to convex programming problems with equality constraints, allows us to 
extend the 2SMO algorithm to the classical LSSVM. To do this, we first note that the 
dual of the classical LSSVM (5)-(6) is given by 

∑∑ ∑ == =
−

M

1i1 1
 

2

1
    Minimize iijji

M

i j

M

j i Pyy λλλ
λ

 (39) 

                subject to the constraints 

,yλ i

M

i i 0
1

=∑ =
 (40) 

where 

.   
,

1

,








=+

≠

=
ji

C
K

jiK

P
ii

ij

ij
 (41) 

The SUMT based procedure outlined above indicates that we need to solve a 
sequence of minimization problems of the form 

( ) ∑∑ ∑

∑∑∑ ∑

== =

=== =

−+=

+−=

M

i ipijji

M

i j

M

j i

M

i iipiijji

M

i j

M

j ip

λ αPλλyy

yαPyyE

11 1

2

1

M

1i1 1

2
2

1

 
2

1
    Minimize λλλλ

λ
 (42) 

Note that the sequence of minima of (42) yields the solution to the classical SVM 
formulation (40)-(41) in the limit p → ∞, in which case, we also see that αp → ∞. 

 

 The connection between the relaxed SVM and the classical LSSVM is now clear. 
Observe that (42) is identical to the relaxed SVM formulation of (20)-(21), with αp = 

1/2A. Therefore, the solution to the classical SVM cannot be obtained by setting A=0 in 
(20)-(21), but by solving a sequence of problems with diminishing values of A, and with 
A → 0 in the limit. Thus, the 2SMO algorithm needs to be incorporated into a loop in 

which A is progressively reduced to zero, and for each fixed value of A, steps 1-3 of the 
2SMO algorithm are executed. This algorithm may be summarized as follows. 

 
Simulating the LSSVM through the Relaxed LSSVM 

1. Set A, and the factor ρ by which A will be changed in the sequence of sub-problems. 

2. Run the 2SMO algorithm with the specified value of A until convergence is attained.  
3. If  λTy is sufficiently close to 0, Stop. Otherwise, go to Step 4. 
4. Update A as A ← ρA. Increment the value of the number of SUMT iterations. 

5. Go to Step 2. 
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We ran a SUMT based algorithm as described above on two datasets, viz., 
mushroom and breast-cancer. For each experiment, we initialize A with a value of 104 , 
and successively reduce A by a factor of ρ=0.9.  We observe the value of λTy after each 
SUMT-iteration (comprising step 3). Figure 3 shows how λTy reduces as a function of 
the number of SUMT-iterations. As expected, the value of λTy decreases with successive 

iterations and quickly converges to 0. Figure 4 shows for the sick dataset, how the 
Lagrange multipliers for 2SMO converge to the solution obtained by LSSVM, as 

iterations progress. The plot demonstrates that the sequence of Relaxed LSSVM sub-
problems converges to the solution of the classical SVM. 

 
 At this point, we remark that the offset b is given by (29) for any nonzero value 
of A. However, when A = 0, the expression for b is a ratio of two quantities that are 
zero. This may be interpreted by noting that in the classical SVM, the value of b is 
indeterminate, since it may be determined by considering any of the support vectors, 
for which 

( )[ ] ( )
( )iT

i

i

iTiT

i

xwyb

ybxwbxwy

φ

φφ

−=⇒

=+⇒=+

  

    1
 (43) 

since 1
2 =iy . The value of b may be determined from any support vector, or by 

averaging the values obtained for different support vectors. The classical LSSVM 
solution may therefore be treated as the limiting case of a Relaxed SVM. Of course, this 

is only of academic interest, and is not a computationally attractive procedure, since a 
number of Relaxed LSSVM problems need to be solved to obtain the LSSVM solution. 

 
 We now change our focus to two different approaches for solving the classical 

LSSVM, and show that it is not necessary to find the solution to the classical SVM by 
solving a sequence of problems, but by solving a single unconstrained problem.  

Fig. 4. Plot of ||λSUMT – λLSSVM|| vs. iteration number for the SUMT based 

algorithm on the sick dataset. 
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VII. Concluding Remarks 
 

In this paper, we introduce a variant of the classical LSSVM, which we term as the 
Relaxed LSSVM. The Relaxed SVM differs from the conventional LSSVM in having the 

additional term 2

2
b

A
 in the objective function; in this respect, it may be treated as a 

Least Squares Formulation with an objective function similar to the Proximal SVM [6] 
and constraints of the classical LSSVM. We show that the Relaxed SVM can be solved 
through its dual, which involves an unconstrained quadratic minimization problem. This 
leads to an efficient update rule for the multipliers, termed as 2SMO, in which individual 

multipliers are updated. The simplicity of the 2SMO Algorithm allows for several 

optimizations. For example, caching the values of 1−
iiK  requires only O(M) storage, but 

reduces the computational cost significantly per iteration. We discuss some of the 
implementation aspects and demonstrate on a number of benchmark datasets that the 

update rules proposed in this work can be used to obtain marked in terms of 
convergence time. 
 

The update rule also allows for the updates to be distributed over several 
processors, each responsible for updating a small subset (ideally a single) multiplier. 

This is of value in a distributed setting, where the dataset may be either collected over 
a network, or may be so large that it cannot be handled on a single machine. This may 

be of particular value in online learning scenarios on large distributed systems. 

Fig. 5. Plot of variation of λ
T
y with increasing iteration numbers for the SUMT 

based algorithm on the ionosphere dataset. 
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We show three ways in which a similar update rule can be developed for the 

classical LSSVM, which normally requires the minimization of a quadratic objective 
function subject to a linear constraint. Firstly, the theory of Sequential Unconstrained 

Minimization Techniques shows that the SVM can be solved through a sequence of 
Relaxed LSSVMs, in which the co-efficient A is successively reduced to zero. Secondly, 
by using exact penalization, we derive a new objective function. It may be observed 
that other rules may be obtained by using different exact penalty functions [24], where 

a differential equation is solved to obtain the multipliers. Thirdly, we show that the 
classical LSSVM can be reduced to an unconstrained quadratic minimization problem. 

Whether the solution of LSSVM through Relaxed SVMs is computationally advantageous 
is an interesting question for current investigation. 
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Appendix I 

Extension to the conventional LSSVM through a Single Unconstrained 
Minimization : Non-smooth penalty functions 

 
In the case of convex programming problems, it is possible to use exact penalty 

functions [22], [23] that require the solution of a single unconstrained minimization, 
instead of a sequence of problems, as in the case of SUMTs. On the lines of the exact 

penalty function proposed in [21]-[25], we note that the solution to (39)-(40) can be 
determined by solving the following problem. 

λyβλeDPDλλE
TTT

C +−=
2

1
    Minimize

λ
 (44) 

Following [24], [25], it can be shown, using a Control Lyapunov Function approach, 
that the gradient dynamical system 

( )rβyGλeλ sgn−−=&  (45) 

λyr
T &&=  (46) 

where G = DPD, r = y
Tλ and 

( )




<−

>
=

0,1

0,1
sgn

θ

θ
θ  (47) 

converges to a solution of the problem (39)-(40) for any choice of β, and starting from 

any initial λ. 
 
27. Solution through Substitution 
 

We once again consider the problem (39)-(40). The Lagrangian for this problem 

may be written as 

( ),
2

1

2

1
111 1

yeGyλγ λ GλλL TTT

i

M

i i

M

i i

M

i

M

j ijji λγλλλ −−=−−= ∑∑∑ ∑ === =
 (48) 

where  
G = DPD, (49) 

D being a diagonal matrix containing class labels on its diagonal. A minimum of (39)-
(40) requires that the K.K.T. conditions for a minimum of (48) are satisfied. In other 
words, 

.    0    0 eDPDλyγyγeDPDλLλ −=⇒=−−⇒=∇  (50) 

Pre-multiplying (50) by yT, we have 

( ) ( ).1
        eyDPDλy

M
eyDPDλyMeyDPDλyγyy TTTTTTT −=⇒−=⇒−= γγ  (51) 

Substituting in (48), we obtain 



 

 

 

 

Jayadeva\current papers\fsmo\l2smo1.doc  Page 18 of 19 

( )

( )

.
2

1

12

2

1

1

2

1

1

2

1

λλλ

λλλ

λλλλ

λλλ

TT

TTTT

TTTTTT

TTTTT

dW

eyy
M

IDPDyy
M

DPD

eyyλDPDλyy
M

eDPD

eyDPDλyyλ
M

eDPDL

−=

















−−





−=

−−−=

−−−=

 (52) 

where 
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1

     ;
2

eyy
M

IdDPDyy
M

DPDW TT
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−=  (53) 

Therefore, the solution to (47)-(49) and the solution to the following problem have a 

one-to-one correspondence. 

,
2

1
    Minimize λλλ

λ

TT dW −  (54) 

where W and d are given by (53). In order for us to develop a 2SMO style update 
algorithm for solving (54), we require W  to be positive semi-definite; this is not 
ensured in general. 
 

 We modify the Lagrangian in (52) to  
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Note that the last term on the R.H.S. of (55) is positive semi-definite everywhere. This 

is because the matrix DPDyy
T  is positive definite, it being the product of two positive 

definite matrices. On the feasible surface, y
Tλ = 0, and hence, the last term is zero, 

since it may be rewritten as ( )( )λλ
α

DPDyy
TT

2
. We observe that (55) may be simplified 

to  
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 (56) 

where d is given by (53). The consequence is that W is modified to W1 , where 

.
2

1 DPDyy
M

DPDW
T









−+= α  (57) 

We observe that for sufficiently large α, the matrix W1 on the L.H.S. of (57) will be 

positive semi-definite. We remark that the form of (54) can also be obtained by using 

the exact penalty function proposed by Fletcher [23] for equality constrained problems.  
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 We further remark that the fact that λT
y = 0 on the feasible surface may be 

utilized to allow the use of kernel matrices that are not necessarily positive definite. 
This may be done by modifying the Lagrangian in (56) to 
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 (58) 

The values of α and β need to be chosen so that the Hessian is always positive semi-

definite. The possibility of using Non-Mercer kernels by choosing a larger value of β  is 

worthy of further investigation, and bears a certain resemblance to the regularization 
term used in Ridge Regression and similar approaches. Larger values of α and β may 

also have a bearing on the convergence rate. We examine some of these aspects in a 
companion paper. However, a minor point of consideration is, that for larger values of 

α, the matrix DPDyy
M

DPD T








−+

2
α  is not necessarily symmetric. We consider the 

quadratic form 

λλλ TT dRE −=
2

1
 (59) 

and note that when R is not symmetric, it may be replaced by its symmetric 

component, that is ( )T
RR +

2

1
. This is because 

( ) ( ) ,
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2

1
λλλλλλ TT

RR
T

RR
T

R
T −++=  (60) 

but  

( ) ,0
2

1
=− λλ T

RR
T  (61) 

since the matrix (R – RT) is antisymmetric. 

 
The results indicate that one could solve the LSSVM through a Relaxed LSSVM, and 
evolve update algorithms similar to the 2SMO or SesquiSMO. However, note that 
additional computations may be required to determine matrices W1 and the vector d. 
These are likely to adversely affect any potential speedup. We defer further discussion 

on this aspect for the present.  


