n = 5;
E = [0 1 0 1 1; ...
1 0 1 0 1; ...
0 1 0 1 1; ...
1 0 1 0 1; ...
1 1 1 1 0];
cvx_begin
variable P(n,n) symmetric
minimize(norm(P - (1/n)*ones(n)))
P*ones(n,1) == ones(n,1);
P >= 0;
P(E==0) == 0;
cvx_end
e = flipud(eig(P));
r = max(e(2), -e(n));
disp('------------------------------------------------------------------------');
disp('The transition probability matrix of the optimal Markov chain is: ');
disp(P);
disp('The optimal mixing rate is: ');
disp(r);
Calling SDPT3: 68 variables, 9 equality constraints
For improved efficiency, SDPT3 is solving the dual problem.
------------------------------------------------------------
num. of constraints = 9
dim. of sdp var = 10, num. of sdp blk = 1
dim. of linear var = 8
dim. of free var = 5 *** convert ublk to lblk
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version predcorr gam expon scale_data
HKM 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime
-------------------------------------------------------------------
0|0.000|0.000|5.1e+01|2.1e+01|3.8e+03| 1.600000e+01 0.000000e+00| 0:0:00| chol 1 1
1|0.929|0.955|3.7e+00|1.0e+00|1.7e+02| 2.267598e+01 -9.470840e+00| 0:0:00| chol 1 1
2|1.000|0.951|1.8e-06|6.0e-02|1.9e+01| 9.706394e+00 -7.808212e+00| 0:0:00| chol 1 1
3|0.994|0.277|2.7e-06|4.4e-02|7.5e+00| 6.612292e-01 -6.215577e+00| 0:0:00| chol 1 1
4|1.000|0.873|5.0e-06|5.6e-03|9.5e-01| 3.400135e-02 -8.928562e-01| 0:0:00| chol 1 1
5|0.677|0.489|1.6e-06|2.9e-03|4.5e-01|-5.555305e-01 -9.948414e-01| 0:0:00| chol 1 1
6|0.986|0.940|8.9e-08|1.7e-04|2.0e-02|-7.414098e-01 -7.608264e-01| 0:0:00| chol 1 1
7|0.988|0.988|4.8e-09|2.2e-06|2.4e-04|-7.498951e-01 -7.501312e-01| 0:0:00| chol 1 1
8|0.989|0.989|3.1e-10|5.3e-06|8.3e-06|-7.499988e-01 -7.500014e-01| 0:0:00| chol 1 2
9|1.000|0.989|1.1e-12|1.8e-07|2.6e-07|-7.499999e-01 -7.500000e-01| 0:0:00| chol 2 2
10|1.000|0.989|9.6e-13|5.8e-09|7.9e-09|-7.500000e-01 -7.500000e-01| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations = 10
primal objective value = -7.49999998e-01
dual objective value = -7.50000000e-01
gap := trace(XZ) = 7.90e-09
relative gap = 3.16e-09
actual relative gap = 8.22e-10
rel. primal infeas = 9.59e-13
rel. dual infeas = 5.78e-09
norm(X), norm(y), norm(Z) = 1.1e+00, 8.3e-01, 2.8e+00
norm(A), norm(b), norm(C) = 1.0e+01, 2.0e+00, 2.5e+00
Total CPU time (secs) = 0.21
CPU time per iteration = 0.02
termination code = 0
DIMACS: 9.6e-13 0.0e+00 1.1e-08 0.0e+00 8.2e-10 3.2e-09
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +0.75
------------------------------------------------------------------------
The transition probability matrix of the optimal Markov chain is:
0 0.3750 0 0.3750 0.2500
0.3750 0 0.3750 0 0.2500
0 0.3750 0 0.3750 0.2500
0.3750 0 0.3750 0 0.2500
0.2500 0.2500 0.2500 0.2500 0
The optimal mixing rate is:
0.7500