randn('state', 0);
rand('state', 0);
n = 10;
m = 50;
p = 5;
tmp = randn(n,1);
A = randn(m,n);
b = A*tmp + 10*rand(m,1);
F = randn(p,n);
g = F*tmp;
cvx_begin
variable x(n)
minimize -sum(log(b-A*x))
F*x == g
cvx_end
disp(['The analytic center of the set of linear inequalities and ' ...
'equalities is: ']);
disp(x);
Successive approximation method to be employed.
SDPT3 will be called several times to refine the solution.
Original size: 160 variables, 105 equality constraints
50 exponentials add 400 variables, 250 equality constraints
-----------------------------------------------------------------
Cones | Errors |
Mov/Act | Centering Exp cone Poly cone | Status
--------+---------------------------------+---------
50/ 50 | 2.435e+00 3.573e-01 0.000e+00 | Solved
50/ 50 | 1.982e-01 3.069e-03 0.000e+00 | Solved
49/ 49 | 2.535e-02 4.842e-05 0.000e+00 | Solved
11/ 46 | 1.342e-03 1.284e-07 0.000e+00 | Solved
0/ 6 | 1.582e-04 1.762e-09 0.000e+00 | Solved
-----------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): -64.8504
The analytic center of the set of linear inequalities and equalities is:
-0.3618
-1.5333
0.1387
0.2491
-1.1163
1.3142
1.2303
-0.0511
0.4031
0.1248